首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the presenilin 1 (PS1) gene are associated with autosomal dominant, early-onset, familial Alzheimer's disease and result in increased release of the hyperaggregatable 42-amino acid form of the amyloid beta-peptide (A(beta)42). To determine which subcellular compartments are potential source(s) of released Abeta42, we compared the levels and spatial segregation of intracellular A(beta)40 and A(beta)42 peptides between N2a neuroblastoma cells doubly transfected with the "Swedish" familial Alzheimer's disease-linked amyloid precursor protein variant and either wild-type PS1 (PS1(wt)) or familial Alzheimer's disease-linked delta9 mutant PS1 (PS1delta9). As expected, PS1delta9-expressing cells had dramatically higher levels of intracellular Abeta42 than did cells expressing PS1wt. However, the highest levels of A(beta)42 colocalized not with endoplasmic reticulum or Golgi markers but with rab8, a marker for trans-Golgi network (TGN)-to-plasma membrane (PM) transport vesicles. We show that PS1 mutants are capable of causing accumulation of A(beta)42 in late compartments of the secretory pathway, generating there a readily releasable source of A(beta)42. Our findings indicate that PS1 "bioactivity" localizes to the vicinity of the TGN and/or PM and reconcile the apparent discrepancy between the preponderant concentration of PS1 protein in proximal compartments of the secretory pathway and the recent findings that PS1 "bioactivity" can control gamma-secretase-like processing of another transmembrane substrate, Notch, at or near the PM.  相似文献   

2.
The plasma membrane (PM) contains an asymmetric distribution of lipids between the inner and outer bilayer leaflets. A lipid of special interest in eukaryotic membranes is the negatively charged phosphatidylserine (PS). In healthy cells, PS is actively sequestered to the inner leaflet of the PM, but PS redistributes to the outer leaflet when the cell is damaged or at the onset of apoptosis. However, the influence of PS asymmetry on membrane protein structure and folding are poorly understood. The pH low insertion peptide (pHLIP) adsorbs to the membrane surface at a neutral pH, but it inserts into the membrane at an acidic pH. We have previously observed that in symmetric vesicles, PS affects the membrane insertion of pHLIP by lowering the pH midpoint of insertion. Here, we studied the effect of PS asymmetry on the membrane interaction of pHLIP. We developed a modified protocol to create asymmetric vesicles containing PS and employed Annexin V labeled with an Alexa Fluor 568 fluorophore as a new probe to quantify PS asymmetry. We observed that the membrane insertion of pHLIP was promoted by the asymmetric distribution of negatively charged PS, which causes a surface charge difference between bilayer leaflets. Our results indicate that lipid asymmetry can modulate the formation of an α-helix on the membrane. A corollary is that model studies using symmetric bilayers to mimic the PM may fail to capture important aspects of protein-membrane interactions.  相似文献   

3.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) are a conserved family of soluble cytoplasmic proteins that can bind sterols, translocate between membrane compartments, and affect sterol trafficking. These properties make ORPs attractive candidates for lipid transfer proteins (LTPs) that directly mediate nonvesicular sterol transfer to the plasma membrane. To test whether yeast ORPs (the Osh proteins) are sterol LTPs, we studied endoplasmic reticulum (ER)-to-plasma membrane (PM) sterol transport in OSH deletion mutants lacking one, several, or all Osh proteins. In conditional OSH mutants, ER-PM ergosterol transport slowed ~20-fold compared with cells expressing a full complement of Osh proteins. Although this initial finding suggested that Osh proteins act as sterol LTPs, the situation is far more complex. Osh proteins have established roles in Rho small GTPase signaling. Osh proteins reinforce cell polarization and they specifically affect the localization of proteins involved in polarized cell growth such as septins, and the GTPases Cdc42p, Rho1p, and Sec4p. In addition, Osh proteins are required for a specific pathway of polarized secretion to sites of membrane growth, suggesting that this is how Osh proteins affect Cdc42p- and Rho1p-dependent polarization. Our findings suggest that Osh proteins integrate sterol trafficking and sterol-dependent cell signaling with the control of cell polarization.  相似文献   

4.
Photodynamic therapy (PDT) is a non-invasive treatment widely applied to different cancers. The goal of PDT is the photo-induced destruction of cancer cells by the activation of different cell death mechanisms, including apoptosis and/or necrosis. Recent efforts focusing on understanding the mechanisms of cell death activated by PDT find that it depends on the type of photosensitizer (PS), targeted organelles, and nature of the light used. It is generally accepted that very short incubation times are required to direct the PS to the plasma membrane (PM), while longer periods result in the accumulation of the PS in internal compartments such as the endoplasmic reticulum or mitochondria. Glycosylation of the PS targets cancer via saccharide receptors on the cell surface, and is generally assumed that these compounds rapidly internalize and accumulate, e.g. in the endoplasmic reticulum. Herein we demonstrate that a minor fraction of a glycosylated chlorin compound residing at the PM of cancer cells can activate necrosis upon illumination by compromising the PM independently of the length of the incubation period. The results presented here show that the PM can also be targeted by glycosylated PS designed to accumulate in internal organelles. PS activation to induce necrosis by compromising the plasma membrane has the benefits of fast cell death and shorter irradiation times. The findings described here expand our understanding of the cellular damage induced by phototherapies, presenting the possibility of activating another cell death mechanism based on the incubation time and type of light used.  相似文献   

5.
Abstract

P4-ATPases, a subfamily of P-type ATPases, translocate cell membrane phospholipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet to generate and maintain membrane lipid asymmetry. Exposure of phosphatidylserine (PS) in the exoplasmic leaflet is well known to transduce critical signals for apoptotic cell clearance and platelet coagulation. PS exposure is also involved in many other biological processes, including myoblast and osteoclast fusion, and the immune response. Moreover, mounting evidence suggest that PS exposure is critical for neuronal regeneration and degeneration. In apoptotic cells, PS exposure is induced by irreversible activation of scramblases and inactivation of P4-ATPases. However, how PS is reversibly exposed and restored in viable cells during other biological processes remains poorly understood. In the present review, we discuss the physiological significance of reversible PS exposure in living cells, and the putative roles of flippases, floppases, and scramblases.  相似文献   

6.
It is well known that lipids are heterogeneously distributed throughout the cell. Most lipid species are synthesized in the endoplasmic reticulum (ER) and then distributed to different cellular locations in order to create the distinct membrane compositions observed in eukaryotes. However, the mechanisms by which specific lipid species are trafficked to and maintained in specific areas of the cell are poorly understood and constitute an active area of research. Of particular interest is the distribution of phosphatidylserine (PS), an anionic lipid that is enriched in the cytosolic leaflet of the plasma membrane. PS transport occurs by both vesicular and non‐vesicular routes, with members of the oxysterol‐binding protein family (Osh6 and Osh7) recently implicated in the latter route. In addition, the flippase activity of P4‐ATPases helps build PS membrane asymmetry by preferentially translocating PS to the cytosolic leaflet. This asymmetric PS distribution can be used as a signaling device by the regulated activation of scramblases, which rapidly expose PS on the extracellular leaflet and play important roles in blood clotting and apoptosis. This review will discuss recent advances made in the study of phospholipid flippases, scramblases and PS‐specific lipid transfer proteins, as well as how these proteins contribute to subcellular PS distribution.   相似文献   

7.
Many cytosolic proteins are recruited to the plasma membrane (PM) during cell signaling and other cellular processes. Recent reports have indicated that phosphatidylserine (PS), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) that are present in the PM play important roles for their specific PM recruitment. To systematically analyze how these lipids mediate PM targeting of cellular proteins, we performed biophysical, computational, and cell studies of the Ca(2+)-dependent C2 domain of protein kinase Calpha (PKCalpha) that is known to bind PS and phosphoinositides. In vitro membrane binding measurements by surface plasmon resonance analysis show that PKCalpha-C2 nonspecifically binds phosphoinositides, including PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), but that PS and Ca(2+) binding is prerequisite for productive phosphoinositide binding. PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) augments the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by slowing its membrane dissociation. Molecular dynamics simulations also support that Ca(2+)-dependent PS binding is essential for membrane interactions of PKCalpha-C2. PtdIns(4,5)P(2) alone cannot drive the membrane attachment of the domain but further stabilizes the Ca(2+)- and PS-dependent membrane binding. When the fluorescence protein-tagged PKCalpha-C2 was expressed in NIH-3T3 cells, mutations of phosphoinositide-binding residues or depletion of PtdIns(4,5)P(2) and/or PtdIns(3,4,5)P(3) from PM did not significantly affect the PM association of the domain but accelerated its dissociation from PM. Also, local synthesis of PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) at the PM slowed membrane dissociation of PKCalpha-C2. Collectively, these studies show that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) augment the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by elongating the membrane residence of the domain but cannot drive the PM recruitment of PKCalpha-C2. These studies also suggest that effective PM recruitment of many cellular proteins may require synergistic actions of PS and phosphoinositides.  相似文献   

8.
VPS13 proteins are proposed to function at contact sites between organelles as bridges for lipids to move directionally and in bulk between organellar membranes. VPS13s are anchored between membranes via interactions with receptors, including both peripheral and integral membrane proteins. Here we present the crystal structure of VPS13s adaptor binding domain (VAB) complexed with a Pro-X-Pro peptide recognition motif present in one such receptor, the integral membrane protein Mcp1p, and show biochemically that other Pro-X-Pro motifs bind the VAB in the same site. We further demonstrate that Mcp1p and another integral membrane protein that interacts directly with human VPS13A, XK, are scramblases. This finding supports an emerging paradigm of a partnership between bulk lipid transport proteins and scramblases. Scramblases can re-equilibrate lipids between membrane leaflets as lipids are removed from or inserted into the cytosolic leaflet of donor and acceptor organelles, respectively, in the course of protein-mediated transport.  相似文献   

9.
Amyloid beta-peptide (Abeta) is generated by the consecutive cleavages of beta- and gamma-secretase. The intramembraneous gamma-secretase cleavage critically depends on the activity of presenilins (PS1 and PS2). Although there is evidence that PSs are aspartyl proteases with gamma-secretase activity, it remains controversial whether their subcellular localization overlaps with the cellular sites of Abeta production. We now demonstrate that biologically active GFP-tagged PS1 as well as endogenous PS1 are targeted to the plasma membrane (PM) of living cells. On the way to the PM, PS1 binds to nicastrin (Nct), an essential component of the gamma-secretase complex. This complex is targeted through the secretory pathway where PS1-bound Nct becomes endoglycosidase H resistant. Moreover, surface-biotinylated Nct can be coimmunoprecipitated with PS1 antibodies, demonstrating that this complex is located to cellular sites with gamma-secretase activity. Inactivating PS1 or PS2 function by mutagenesis of one of the critical aspartate residues or by gamma-secretase inhibitors results in delayed reinternalization of the beta-amyloid precursor protein and its accumulation at the cell surface. Our data suggest that PS is targeted as a biologically active complex with Nct through the secretory pathway to the cell surface and suggest a dual function of PS in gamma-secretase processing and in trafficking.  相似文献   

10.
Conventional electroporation (EP) by 0.1 to 1 kV/cm pulses longer than 100 micros, and supra-electroporation by 10 to 300 kV/cm pulses shorter than 1 micros cause different cellular effects. Conventional EP delivers DNA, proteins, small drugs, and fluorescent indicators across the plasma membrane (PM) and causes moderate levels of phosphatidylserine (PS) translocation at the PM. We hypothesize that supra-EP is central to intracellular effects such as apoptosis induction and higher levels of PS translocation. Our cell system model has 20,000 interconnected local models for small areas of the PM and organelle membranes, small regions of aqueous media, appropriate resting potentials, and the asymptotic EP model. Conventional EP primarily affects the PM, but with a hint of endoplasmic reticulum involvement. Supra-EP can involve all of a cell's membrane at the largest fields. Conventional EP fields tend to go around cells, but supra-EP fields go through cells, extensively penetrating organelles.  相似文献   

11.
Oxysterol-binding protein (OSBP)-related protein (ORP) 6, a member of subfamily III in the ORP family, localizes to membrane contact sites between the endoplasmic reticulum (ER) and other organelles and functions in non-vesicular exchange of lipids including phosphatidylinositol-4-phosphate (PI4P) in neurons. In this study, we searched for the lipid counter-transported in exchange for PI4P by using molecular cell biology techniques. Deconvolution microscopy revealed that knockdown of ORP6 partially shifted localization of a phosphatidylserine (PS) marker but not filipin in primary cultured cerebellar neurons. Overexpression of ORP6 constructs lacking the OSBP-related ligand binding domain (ORD) resulted in the same shift of the PS marker. A PI4KⅢα inhibitor specifically inhibiting the synthesis and plasma membrane (PM) localization of PI4P, suppressed the localization of ORP6 and the PS marker at the PM. Overexpression of mutant PS synthase 1 (PSS1) inhibited transport of the PS marker to the PM and relocated the PI4P marker to the PM in Neuro-2A cells. Introduction of ORP6 but not the dominant negative ORP6 constructs, shifted the localization of PS back to the PM. These data collectively suggest the involvement of ORP6 in the counter-transport of PI4P and PS.  相似文献   

12.
We developed a confocal morphometric analysis to quantitate the relative plasma membrane (PM) expression of the Na/H exchanger NHE3 in living PS120 fibroblasts. NHE3 is a membrane transport protein that is acutely regulated by changes in the number of molecules expressed at the PM. To quantitate the PM expression of NHE3 under various experimental conditions, we stably expressed a chimera of rabbit NHE3 and green fluorescent protein (NHE3-GFP) in PS120 fibroblasts. A three-dimensional (3D) map of the intracellular distribution of NHE3-GFP was obtained by confocal laser scanning microscopy (CLSM) of cells superfused with a styryl dye, FM 4-64. This fluorophore rapidly and reversibly labeled the outer lipid layer of the PM, which allowed generation of a digital mask of the PM and calculation of the fraction of a total cellular NHE3-GFP expressed at the PM. This analysis was successfully used to quantitate the relative PM expression of NHE3-GFP in control cells (25%) and a decrease in the expression caused by subsequent exposure of cells to wortmannin (5.1%). Reliability of the method was confirmed by cell surface biotinylation, which yielded very similar results. Confocal morphometric analysis is fast and reproducible and could potentially be used for investigations on regulation of expression of other membrane proteins.  相似文献   

13.
During endochondral ossification, growth plate chondrocytes release plasma membrane (PM) derived matrix vesicles (MV), which are the site of initial hydroxyapatite crystal formation. MV constituents which facilitate the mineralization process include the integral membrane ectoenzymes alkaline phosphatase (ALPase) and nucleotide pyrophosphatase phosphodiesterase (NPP1/PC-1), along with a phosphatidylserine- (PS-) rich membrane surface that binds annexins and calcium, resulting in enhanced calcium entry into MV. In this study, we determined that chick growth plate MV were highly enriched in membrane raft microdomains containing high levels of cholesterol, glycophosphatidylinositol- (GPI-) anchored ALPase, and phosphatidylserine (PS) localized to the external leaflet of the bilayer. To determine how such membrane microdomains arise during chondrocyte maturation, we explored the role of PM cholesterol-dependent lipid assemblies in regulating the activities of lipid translocators involved in the externalization of PS. We first isolated and determined the composition of detergent-resistant membranes (DRMs) from chondrocyte PM. DRMs isolated from chondrocyte PM were enhanced in ganglioside 1 (GM1) and cholesterol as well as GPI-anchored ALPase. Furthermore, these membrane domains were enriched in PS (localized to the external leaflet of the bilayer) and had significantly higher ALPase activity than non-cholesterol-enriched domains. To understand the role of cholesterol-dependent lipid assemblies in the externalization of PS, we measured the activities of two lipid transporters involved in PS externalization, aminophospholipid translocase (APLT) and phospholipid scramblase (PLSCR1), during maturation of a murine chondrocytic cell line, N1511. In this report, we provide the first evidence that maturing chondrocytes express PLSCR1 and have scramblase activity. We propose that redistribution of PS is dependent on an increase in phospholipid scramblase activity and a decrease in APLT activity. Lastly, we show that translocator activity is most likely to be modulated by membrane cholesterol levels through a membrane raft microdomain.  相似文献   

14.
Cholesterol is essential for cell physiology. Transport of the “accessible” pool of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) by ER‐localized GRAMD1 proteins (GRAMD1a/1b/1c) contributes to cholesterol homeostasis. However, how cells detect accessible cholesterol within the PM remains unclear. We show that the GRAM domain of GRAMD1b, a coincidence detector for anionic lipids, including phosphatidylserine (PS), and cholesterol, possesses distinct but synergistic sites for sensing accessible cholesterol and anionic lipids. We find that a mutation within the GRAM domain of GRAMD1b that is associated with intellectual disability in humans specifically impairs cholesterol sensing. In addition, we identified another point mutation within this domain that enhances cholesterol sensitivity without altering its PS sensitivity. Cell‐free reconstitution and cell‐based assays revealed that the ability of the GRAM domain to sense accessible cholesterol regulates membrane tethering and determines the rate of cholesterol transport by GRAMD1b. Thus, cells detect the codistribution of accessible cholesterol and anionic lipids in the PM and fine‐tune the non‐vesicular transport of PM cholesterol to the ER via GRAMD1s.  相似文献   

15.
Synaptotagmin-like mitochondrial-lipid-binding (SMP) domain proteins are evolutionarily conserved family of proteins in eukaryotes that localize between the endoplasmic reticulum (ER) and either the plasma membrane (PM) or other organelles. They are involved in tethering of these membrane contact sites through interaction with other proteins and membrane lipids. Recent structural and biochemical studies have demonstrated that SMP domain proteins transport a wide variety of lipid species by the ability of the SMP domain to harbor lipids through its unique hydrophobic cavity. Growing evidence suggests that SMP domain proteins play critical roles in cell physiology by their actions at membrane contact sites. In this review, we summarize the functions of SMP domain proteins and their direct roles in lipid transport across different membrane compartments. We also discuss their physiological functions in organisms as well as “bypass” pathways that act in parallel with SMP domain proteins at membrane contact sites.  相似文献   

16.
ER-plasma membrane (PM) contacts are proposed to be held together by distinct families of tethering proteins, which in yeast include the VAP homologues Scs2/22, the extended-synaptotagmin homologues Tcb1/2/3, and the TMEM16 homologue Ist2. It is unclear whether these tethers act redundantly or whether individual tethers have specific functions at contacts. Here, we show that Ist2 directly recruits the phosphatidylserine (PS) transport proteins and ORP family members Osh6 and Osh7 to ER–PM contacts through a binding site located in Ist2’s disordered C-terminal tethering region. This interaction is required for phosphatidylethanolamine (PE) production by the PS decarboxylase Psd2, whereby PS transported from the ER to the PM by Osh6/7 is endocytosed to the site of Psd2 in endosomes/Golgi/vacuoles. This role for Ist2 and Osh6/7 in nonvesicular PS transport is specific, as other tethers/transport proteins do not compensate. Thus, we identify a molecular link between the ORP and TMEM16 families and a role for endocytosis of PS in PE synthesis.  相似文献   

17.
When a posterior fragment of the chick's marginal zone (PM) was exchanged with equal sized lateral marginal zone fragment (LM), of the same blastoderm, its capacity to initiate an ectopic primitive streak (PS) was found to be both size and stage dependent. Good correlation was demonstrated between the areas of PM fragments and the number of cells they contained. In stage X blastoderms, PM fragments containing less than 1200 cells were incapable of initiating an ectopic PS. Transplanted PMs containing between 1200 and 1500 cells initiated a lateral ectopic PS in 50% of the cases, while in the other 50% a posterior PS developed from the original posterior side. PMs containing 1500 cells or more in all cases initiating an ectopic PS and inhibited the formation of a posterior PS. At stage XI, laterally transplanted PMs containing less than 1800 cells were not effective. Stage XI PMs containing 1800-2300 cells in some cases succeeded in initiating a lateral ectopic PS, in addition to the posterior one. Stage XI PMs containing 2300 cells or more invariably promoted the development of an ectopic PS, but were unable to suppress the formation of a posterior PS, so that two PSs developed in the same blastoderm, one posterior and one ectopic. When a stage XI PM fragment was laterally transplanted into a younger, stage X blastoderm, the minimal effective cell number needed to initiate an ectopic PS increased to at least 3000 cells, again without inhibiting the formation of a posterior PS. The inductive potential of a stage X PM is therefore at least twice that of a stage XI PM. The marginal zone belt of stage X blastoderms was checked for the decrease in its developmental potential from the posterior to the lateral side by evaluating its effect on the developmental expression of two competing stage X PMs, one located posteriorly and the other inserted laterally. The developmental expression of the laterally inserted PM was consistently inferior to that of the posterior PM. The developmental expression of each PM was not related to absolute size, but depended on the size ratio of lateral PM/posterior PM. When the ratio was 1.2 or less, only posterior PSs developed. When the ratio was 1.3-1.4, three different results were encountered: (1) only a posterior PS, (2) posterior plus lateral, and (3) only lateral PS. When the ratio was 1.5 or more, only a lateral PS developed, which suppressed the posterior PS.  相似文献   

18.
The TMEM16 family of membrane proteins displays a remarkable functional dichotomy – while some family members function as Ca2+-activated anion channels, the majority of characterized TMEM16 homologs are Ca2+-activated lipid scramblases, which catalyze the exchange of phospholipids between the two membrane leaflets. Furthermore, some TMEM16 scramblases can also function as channels. Due to their involvement in important physiological processes, the family has been actively studied ever since their molecular identity was unraveled. In this review, we will summarize the recent advances in the field and how they influenced our view of TMEM16 family function and evolution. Structural, functional and computational studies reveal how relatively small rearrangements in the permeation pathway are responsible for the observed functional duality: while TMEM16 scramblases can adopt both ion- and lipid conductive conformations, TMEM16 channels can only populate the former. Recent data further provides the molecular details of a stepwise activation mechanism, which is initiated by Ca2+ binding and modulated by various cellular factors, including lipids. TMEM16 function and the surrounding membrane properties are inextricably intertwined, with the protein inducing bilayer deformations associated with scrambling, while the surrounding lipids modulate TMEM16 conformation and activity.  相似文献   

19.
Ras signalling on the endoplasmic reticulum and the Golgi   总被引:1,自引:0,他引:1  
Current models evoke the plasma membrane (PM) as the exclusive platform from which Ras regulates signalling. We developed a fluorescent probe that reports where and when Ras is activated in living cells. We show that oncogenic H-Ras and N-Ras engage Raf-1 on the Golgi and that endogenous Ras and unpalmitoylated H-Ras are activated in response to mitogens on the Golgi and endoplasmic reticulum (ER), respectively. We also demonstrate that H-Ras that is restricted to the ER can activate the Erk pathway and transform fibroblasts, and that Ras localized on different membrane compartments differentially engages various signalling pathways. Thus, Ras signalling is not limited to the PM, but also proceeds on the endomembrane.  相似文献   

20.
Activation of the P2X7 receptor (P2X7R) triggers a remarkably diverse array of membrane trafficking responses in leukocytes and epithelial cells. These responses result in altered profiles of cell surface lipid and protein composition that can modulate the direct interactions of P2X7R-expressing cells with other cell types in the circulation, in blood vessels, at epithelial barriers, or within sites of immune and inflammatory activation. Additionally, these responses can result in the release of bioactive proteins, lipids, and large membrane complexes into extracellular compartments for remote communication between P2X7R-expressing cells and other cells that amplify or modulate inflammation, immunity, and responses to tissue damages. This review will discuss P2X7R-mediated effects on membrane composition and trafficking in the plasma membrane (PM) and intracellular organelles, as well as actions of P2X7R in controlling various modes of non-classical secretion. It will review P2X7R regulation of: (1) phosphatidylserine distribution in the PM outer leaflet; (2) shedding of PM surface proteins; (3) release of PM-derived microvesicles or microparticles; (4) PM blebbing; (5) cell–cell fusion resulting in formation of multinucleate cells; (6) phagosome maturation and fusion with lysosomes; (7) permeability of endosomes with internalized pathogen-associated molecular patterns; (8) permeability/integrity of mitochondria; (9) exocytosis of secretory lysosomes; and (10) release of exosomes from multivesicular bodies. This work was supported by NIH grants R01-GM36387 and P01-HLHL18708 (G.R.D.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号