首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theory predicts that homoploid hybrid speciation will be facilitated by selfing, yet most well-documented hybrid species are outcrossers. One possible explanation for this puzzle is that conditions in hybrid populations may favor selfing, even in otherwise outcrossing species. For example, in self-incompatible plants, mixtures of self and interspecific pollen often induce selfing. Here, we examine patterns of mating in three hybrid zones and four “pure” populations of Helianthus annuus and H. petiolaris, wild, self-incompatible sunflower species that are thought to have parented three homoploid hybrid species. Fourteen to 16 maternal families from each pure population and 44–46 maternal families from each hybrid zone were analyzed for seven polymorphic isozyme loci. Maximum-likelihood (ML) methods were used to estimate multilocus outcrossing rates (Tm) and hybridization frequencies for each maternal family, each phenotypic group within each hybrid zone (annuus-like, hybrid, and petiolaris-like), and each population. As predicted for self-incompatible species, all four parental populations have outcrossing rate ML estimates of 1.0. Within the hybrid zones, outcrossing rates were lowest in the H. annuus–like fraction of the population (0.73, 0.72, and 0.74 in the three hybrid zones, respectively), largely intermediate in the H. petiolaris–like group (0.94, 0.90, and 0.94), and highest in the hybrid group (0.97, 0.93, and 0.97). Although outcrossing rates are lower in hybrid zones than in pure populations, it is unlikely that the observed decrease facilitates hybrid speciation because outcrossing rates in the critical hybrid fraction of the population do not differ significantly from 1.0. Dividing the outcrossed pollen pool into intraspecific and interspecific components revealed that maternal plants are largely fertilized by conspecific pollen, confirming an important role for pollen competition as a reproductive barrier. Highly sterile hybrid plants do not appear to discriminate between parental species pollen, but hybrids with higher fertility tend to be fertilized by pollen from the parental group they resemble genetically. Thus, gametic selection leads to substantial assortative mating in these hybrid zones.  相似文献   

2.
The transition to self-compatibility from self-incompatibility is often associated with high rates of self-fertilization, which can restrict gene flow among populations and cause reproductive isolation of self-compatible (SC) lineages. Secondary contact between SC and self-incompatible (SI) lineages might re-establish gene flow if SC lineages remain capable of outcrossing. By contrast, intrinsic features of SC plants that reinforce high rates of self-fertilization could maintain evolutionary divergence between lineages. Arabidopsis lyrata subsp. lyrata is characterized by multiple origins of self-compatibility and high rates of self-fertilization in SC-dominated populations. It is unclear whether these high rates of selfing by SC plants have intrinsic or extrinsic causes. We estimated outcrossing rates and examined patterns of pollinator movement for 38 SC and 40 SI maternal parents sampled from an admixed array of 1509 plants sourced from six SC and six SI populations grown under uniform density. Although plants from SI populations had higher outcrossing rates (mean tm = 0.78 ± 0.05 SE) than plants from SC populations (mean tm = 0.56 ± 0.06 SE), outcrossing rates among SC plants were substantially higher than previous estimates from natural populations. Patterns of pollinator movement appeared to contribute to lower outcrossing rates for SC plants; we estimated that 40% of floral visits were geitonogamous (between flowers of the same plant). The relatively high rates of outcrossing for SC plants under standardized conditions indicate that selfing rates in natural SC populations of A. lyrata are facultative and driven by extrinsic features of A. lyrata, including patterns of pollinator movement.Subject terms: Plant evolution, Self incompatability, Ecological genetics, Population genetics  相似文献   

3.
Background and AimsThe transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic–alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer.MethodsIn a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece.Key ResultsThe self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories.ConclusionsOur study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.  相似文献   

4.
Self-fertilization and admixture of genotypes from different populations can have major fitness consequences in native species. However, few studies have addressed their potential roles in invasive species. Here, we used plants of Mimulus guttatus from seven native North American, three invasive Scottish and four invasive New Zealand populations to address this. We created seeds from self-fertilization, within-population outcrossing, between-population outcrossing within the same range, and outcrossing between the native and invasive ranges. A greenhouse experiment showed that native and invasive plants of M. guttatus suffered to similar degrees from inbreeding depression, in terms of asexual reproduction and biomass production. After outcrossing with plants from other populations, M. guttatus benefited from heterosis, in terms of asexual and sexual reproduction, and biomass production, particularly when plants from native and invasive populations were crossed. This suggests that, when novel genotypes of M. guttatus from the native North American range will be introduced to the invasive ranges, subsequent outcrossing with M. guttatus plants that are already there might further boost invasiveness of this species.  相似文献   

5.
Transitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are pre-zygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their between-population hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their between-population hybrids through differences in (1) the timing or intensity of flowering; and/or (2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that pre-zygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata.  相似文献   

6.
Because transgenic sorghum (Sorghum bicolor L.) is being developed for Africa, we investigated the potential for transgenes to spread to conspecific wild/weedy sorghum populations in Ethiopia, which is considered the centre of origin of cultivated sorghum. In the current study, the extent of outcrossing, and uniparental and biparental inbreeding were investigated in seven wild/weedy sorghum populations collected at elevations ranging from 631 to 1709 m. Based on allele frequency data of 1120 progenies and 140 maternal plants from five polymorphic microsatellite markers, outcrossing rates were estimated using standard procedures. The average multilocus outcrossing rate was 0.51, with a range of 0.31–0.65 among populations, and the family outcrossing rate was in the extreme range of 0 to 100%. The highest outcrossing (t m?=?0.65) was recorded in a weedy population that was intermixed with an improved crop variety in Abuare (Wello region). It was also observed that the inbreeding coefficient of the progenies (F p) tend to be more than the inbreeding coefficient of both their maternal parents (F m) and the level of inbreeding expected at equilibrium (F eq), which is a characteristic of predominantly outbreeding species. Biparental inbreeding was evident in all populations and averaged 0.24 (range = 0.10–0.33). The high outcrossing rates of wild/weedy sorghum populations in Ethiopia indicate a high potential for crop genes (including transgenes) to spread within the wild pool. Therefore, effective risk management strategies may be needed if the introgression of transgenes or other crop genes from improved cultivars into wild or weedy populations is deemed to be undesirable.  相似文献   

7.
The hierarchical mating system among and within fruits of Jatropha curcas was investigated in a base population using five microsatellite loci, employing mixed mating and correlated mating models. Open-pollinated fruits were collected from 15 randomly selected seed trees, sampling seven fruits per tree for a total of 21 seeds from each tree. We detected multilocus genotypes identical to the mother tree in 13 % of offspring, implying the occurrence of apomixis in J. curcas. The presumed apomictic individuals were excluded from the analysis of the remaining results. Evidence of substantial selfing was provided by the average multilocus outcrossing rate (t m?=?0.683), showing that the species exhibits a mixed mating system. The outcrossing rate showed a large variation among seed trees, ranging from 0.21 to 1.0, indicating that the species is not self-incompatible. Significant differences were detected between the multilocus and the single locus outcrossing rates (t m???t s?=?0.347) that suggested mating among related individuals, possibly because of the presence of individuals from the same progeny (sibs) in the base population. The multilocus paternity correlation was extremely high for the population (r p(m)?=?0.999), indicating that the progenies were manly composed of full-sibs. As a consequence of selfing and a high paternity correlation, the co-ancestry coefficient within the progeny was higher (Θ?=?0.369) than expected for panmictic populations. Our results indicated that J. curcas produces seeds asexually by apomixis and sexually by a mixed mating system, combining selfing and outcrossing.  相似文献   

8.
The identity and behavior of pollinators are among the main factors that determine the reproductive success and mating system of plants; however, few studies have directly evaluated the relationship between pollinators and the breeding system of the plants they pollinate. It is important to document this relationship because the global decline in pollinators may significantly affect the breeding systems of many animal-pollinated plants, particularly specialized systems. Ceiba pentandra is a tropical tree that has chiropterophilic flowers and a variable breeding system throughout its distribution, ranging from fully self-incompatible, to a mixed system with different degrees of selfing. To determine if regional differences in pollinators may result in regional differences in the outcrossing rate of this species, we used systematic observations of pollinator behavior in two tropical life zones and high-resolution genetic analysis of the breeding system of populations from these two regions using microsatellites. We found a predominantly self-incompatible system in regions with high pollinator visitation, while in environments with low pollinator visitation rates, C. pentandra changed to a mixed mating system with high levels of self-pollination.  相似文献   

9.
In self-incompatible clonal plants, the spread of individual plants can exacerbate mate limitation to the point that it becomes a serious constraint on long-term population persistence, especially in small, isolated populations. In such species, it may be necessary to introduce new genetic material from other populations to restore seed production, a strategy termed “genetic rescue”. In this study we assess the potential pertinence of such genetic rescue in the clonal perennial plant Convolvulus lineatus L., whose populations are often highly reduced in spatial extent and are currently being fragmented by land development projects in Mediterranean France. To do so, we quantify fruit production in a range of populations of different size over four years and perform a series of hand-pollination experiments in natural populations to assess whether fruit set is limited by mate availability. We found that C. lineatus is a self-incompatible species that shows extremely low values of fruit set in natural populations and that a principal cause of this low fruit set is a lack of compatible pollen. This may be primarily due to clonal spread that causes individual populations to be comprised of patches containing one or very few incompatibility types. In small populations fragmented by human activities and which show an absence of fruit production, we thus argue that genetic rescue represents a promising conservation management strategy to avoid inevitable long-term future population decline. We discuss how best to introduce new genetic material into the study populations.  相似文献   

10.

Background and Aims

Selection may favour a partial or complete loss of self-incompatibility (SI) if it increases the reproductive output of individuals in the presence of low mate availability. The reproductive output of individuals varying in their strength of SI may also be affected by population density via its affect on the spatial structuring and number of S-alleles in populations. Modifiers increasing levels of self-compatibility can be selected when self-compatible individuals receive reproductive compensation by, for example, increasing seed set and/or when they become associated with high fitness genotypes.

Methods

The effect of variation in the strength of SI and scrub density (low versus high) on seed set, seed germination and inbreeding depression in seed germination (δgerm) was investigated in the partially self-incompatible species Flourensia cernua by analysing data from self-, cross- and open-pollinated florets.

Key Results

Examination of 100 plants in both high and low scrub densities revealed that 51% of plants were strongly self-incompatible and 49 % varied from being self-incompatible to self-compatible. Seed set after hand cross-pollination was higher than after open-pollination for self-incompatible, partially self-incompatible and self-compatible plants but was uniformly low for strongly self-incompatible plants. Strongly self-incompatible and self-incompatible plants exhibited lower seed set, seed germination and multiplicative female fitness (floral display × seed set × seed germination) in open-pollinated florets compared with partially self-incompatible and self-compatible plants. Scrub density also had an effect on seed set and inbreeding depression: in low-density scrubs seed set was higher after open-pollination and δgerm was lower.

Conclusions

These data suggest that (a) plants suffered outcross pollen limitation, (b) female fitness in partially self-incompatible and self-compatible plants is enhanced by increased mate-compatibility and (c) plants in low-density scrubs received higher quality pollen via open-pollination than plants in high-density scrubs.Key words: Flourensia cernua, population density, seed set, seed germination, female fitness, partial self-incompatibility, Mapimí Biosphere Reserve  相似文献   

11.
It has been hypothesized that populations at the margins of the distributional range of a species show reduced genetic diversity and increased inter-population differentiation compared to central populations. Here, we test this hypothesis by examining the structure of genetic diversity in marginal populations of black poplar, Populus nigra L. (Salicaceae). This species occurs mainly in Europe but its range extends to central Asia. We collected 117 individuals from 10 populations at the edge of the distributional range of the species in central Asia to examine the structure of genetic diversity based on genetic polymorphisms at 20 microsatellite markers. As expected, the genetic diversity within these marginal populations is relatively low, with an average observed heterozygosity Ho of 0.337 and an average expected heterozygosity He of 0.466, compared to the genetic diversity of populations from central distributions. However, we recovered very low genetic differentiation between populations, with an average Fst of 0.0745, a value similar to those reported for central populations. AMOVA analyses confirmed this result, showing that only 9.2% of the total variation could be attributed to between-population variance (P < 0.001). Our findings do not fully support hypotheses about the structure of genetic diversity in marginal populations formed from observations on other species. We suggest that a high rate of outcrossing and possible postglacial colonization at the edge of the distributional range of this long-lived poplar may explain the observed structure of the genetic diversity.  相似文献   

12.
Newly formed selfing lineages may express recessive genetic load and suffer inbreeding depression. This can have a genome-wide genetic basis, or be due to loci linked to genes under balancing selection. Understanding the genetic architecture of inbreeding depression is important in the context of the maintenance of self-incompatibility and understanding the evolutionary dynamics of S-alleles. We addressed this using North-American subspecies of Arabidopsis lyrata. This species is normally self-incompatible and outcrossing, but some populations have undergone a transition to selfing. The goals of this study were to: (1) quantify the strength of inbreeding depression in North-American populations of A. lyrata; and (2) disentangle the relative contribution of S-linked genetic load compared with overall inbreeding depression. We enforced selfing in self-incompatible plants with known S-locus genotype by treatment with CO2, and compared the performance of selfed vs outcrossed progeny. We found significant inbreeding depression for germination rate (δ=0.33), survival rate to 4 weeks (δ=0.45) and early growth (δ=0.07), but not for flowering rate. For two out of four S-alleles in our design, we detected significant S-linked load reflected by an under-representation of S-locus homozygotes in selfed progeny. The presence or absence of S-linked load could not be explained by the dominance level of S-alleles. Instead, the random nature of the mutation process may explain differences in the recessive deleterious load among lineages.  相似文献   

13.
Agricultural intensification has resulted in drastic regression of several arable land-dependent weeds. This decrease, along with reduced pollinator abundance, could lead to population-level extinction of self-incompatible species. Alternatively, it could drive adaptation to self-compatibility through selection on standing genetic variation. We investigated whether pseudo-self-compatible (PSC) or self-compatible (SC) plants are present in populations of the rarified weed Centaurea cyanus in the species’ extreme western distribution limits in Europe. We compared seed production of isolated plants and of pairs of plants in cages with or without pollinators. We showed that pollinators are necessary for self-fertilization. The majority of plants were self-incompatible (SI), but about 12% were PSC, and one was SC. Reproductive traits of PSC plants were not different from those of other plants. There was no difference between plants from two regions that differed in C. cyanus abundance. We conclude that the genetic variation necessary to transition to selfing is present in C. cyanus; this could help to maintain endangered populations, but the transition to selfing does not appear to have happened in nature yet.  相似文献   

14.
Acacia visco is a native South American tree species that has been extensively used for ornamental purposes and in carpentry, bodywork and parquet due to the hardness and durability of its wood. Little is known about genetic diversity and mating system of A. visco. The main aims of this study were to (1) estimate outcrossing rates in natural Argentinean populations using AFLP markers, (2) test for any difference in mating patterns among a large a patchy and relict population, and (3) compare the mating system of A. visco with other Acacia species. The three primer pairs used in the AFLP analysis revealed a total of 569 variable loci. Most genetic variation was observed among individuals within families (61.2 %). The estimate of multilocus outcrossing rate (t m) was high (≥0.971) in all populations. Average pairwise coancestry between progenies within families for each population ranged from 0.082 to 0.105 or from 0.125 to 0.136, depending on the method θ was estimated. In the three populations studied, the progenies of open pollination were constituted mainly for half-sibs (94.3 %). This work shows a similar mating system in all populations of A. visco in spite of their size differences, hypothesizing that the entire species has a similar mating system of outcrossing preferential. Considering the results obtained here where a high percentage of individuals were half-sibs, sampling large numbers of pods from individual trees for ex situ conservation will result in a genetically diverse sample as a consequence of high outcrossing rates.  相似文献   

15.
Genetic data are often crucial for designing management strategies for rare and endangered species. Ziziphus celata is an endangered sandhill shrub endemic to the Lake Wales Ridge of central Florida. This self-incompatible clonal species is known from only 14 wild populations, most of which are small (under 100 plants). Focusing on the five populations discovered in 2007, we evaluate the level of genetic diversity and identify clonal lineages within the wild populations of the species with a set of microsatellite loci. To account for somatic mutations and genotyping errors, we identified clonal lineages using a threshold cutoff for pair-wise genetic distances among samples. The microsatellites had up to 18 alleles/locus, and, consistent with outcrossing, samples were highly heterozygous (average population level H o  = 0.69). Most populations of Z. celata consist of a single clone, and the most diverse population has only 10 clones. Overall Z. celata comprises 41 multi-locus genotypes, and 30 clonal lineages. With nearly 1,000 recorded plants (595 genotyped) and only 30 clonal lineages, Ziziphus celata is highly clonal: clonal richness, R = 0.049. The pair-wise distance method facilitates identification of clonal lineages, avoiding overestimation of clonal diversity. In most cases, the samples that grouped into a lineage were one to four plants differing from a surrounding genotype by a single microsatellite repeat insertion/deletion mutation, consistent with these having arisen via somatic mutations. Our data will enable managers to incorporate extant diversity from wild populations into ex situ collections. Additionally, our research demonstrates the utility of microsatellites for conservation of imperiled species, identifying genotypes of high priority for preservation.  相似文献   

16.
Levels of neutral genetic diversity within and between populations were compared between outcrossing (self-incompatible) and inbreeding populations in the annual plant genus Leavenworthia. Two taxonomically independent comparisons are possible, since self-incompatibility has been lost twice in the group of species studied. Within inbred populations of L.uniflora and L.crassa, no DNA sequence variants were seen among the alleles sampled, but high diversity was seen in alleles from populations of the outcrosser L. stylosa, and in self-incompatible L. crassa populations. Diversity between populations was seen in all species. Although total diversity values were lower in the sets of inbreeding populations, between-population values were as high or higher, than those in the outcrossing taxa. Possible reasons for these diversity patterns are discussed. As the effect of inbreeding appears to be a greater than twofold reduction in diversity, we argue that some process such as selection for advantageous mutations, or against deleterious mutations, or bottlenecks occurring predominantly in the inbreeders, appears necessary to account for the findings. If selection for advantageous mutations is responsible, it appears that it must be some form of local adaptive selection, rather than substitution of alleles that are advantageous throughout the species. This is consistent with the finding of high between-population diversity in the inbreeding taxa.  相似文献   

17.
BackgroundSelf-incompatibility (SI) systems prevent self-fertilization in several species of Poaceae, many of which are economically important forage, bioenergy and turf grasses. Self-incompatibility ensures cross-pollination and genetic diversity but restricts the ability to fix useful genetic variation. In most inbred crops it is possible to develop high-performing homozygous parental lines by self-pollination, which then enables the creation of F1 hybrid varieties with higher performance, a phenomenon known as heterosis. The inability to fully exploit heterosis in outcrossing grasses is partially responsible for lower levels of improvement in breeding programmes compared with inbred crops. However, SI can be overcome in forage grasses to create self-compatible populations. This is generating interest in understanding the genetical basis of self-compatibility (SC), its significance for reproductive strategies and its exploitation for crop improvement, especially in the context of F1 hybrid breeding.ScopeWe review the literature on SI and SC in outcrossing grass species. We review the currently available genomic tools and approaches used to discover and characterize novel SC sources. We discuss opportunities barely explored for outcrossing grasses that SC facilitates. Specifically, we discuss strategies for wide SC introgression in the context of the LoliumFestuca complex and the use of SC to develop immortalized mapping populations for the dissection of a wide range of agronomically important traits. The germplasm available is a valuable practical resource and will aid understanding the basis of inbreeding depression and hybrid vigour in key temperate forage grass species.ConclusionsA better understanding of the genetic control of additional SC loci offers new insight into SI systems, their evolutionary origins and their reproductive significance. Heterozygous outcrossing grass species that can be readily selfed facilitate studies of heterosis. Moreover, SC introduction into a range of grass species will enable heterosis to be exploited in innovative ways in genetic improvement programmes.  相似文献   

18.
Invasive plants can impact biodiversity and ecosystem functioning by displacing native plants and crop species due to competition for space, nutrients, water and light. The presence of co-flowering invasives has also been shown to affect some native plants through the reduction in pollinator visitation or through the deposition of heterospecific pollen on the native’s stigmas leading to stigma clogging. We examined the impact of the invasive plant Solanum elaeagnifolium Cavanilles (silver-leafed nightshade), native to South and Central America and South-western parts of North America, on the seed set of the native Glaucium flavum Crantz (yellow-horned poppy) on Lesvos Island, Greece. To do this we measured seed set and visitation rates to G. flavum before and after the placement of potted individuals of the invasive near the native plants. In addition, we hand-crossed G. flavum flowers with super-optimal amounts of conspecific pollen, bagged flowers to measure the rate of spontaneous selfing, and applied self-pollen to measure self-compatibility of G. flavum. The hand-selfing treatment resulted in very low seed set, which indicates that G. flavum is to a large degree self-incompatible and highlights the plant’s need for insect-mediated outcrossing. We show that the presence of the invasive significantly enhanced pollen limitation, although the overall visitation rates were not reduced and that this increase is due to a reduction in honeybee visitation in the presence of the invasive resulting in reduced pollination.  相似文献   

19.
Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations.  相似文献   

20.
The arctic skua (Stercorarius parasiticus) is one of the most long‐lived bird species. In 2010, we captured in Finland an adult, female arctic skua which had been ringed as a nestling in 1987. We tagged it also with a color ring. The bird has last been seen in July 2020 at the age of 33 years, making it most likely the oldest known arctic skua of the world. In 2010–2011 the bird carried a light‐level measuring geolocator, the data of which revealed that the bird had spent the nonbreeding season in the Canary Current area on the west coast of Africa. Breeding populations of arctic skuas have declined recently especially in British Isles, thus it is useful to get longevity data of this species with a high breeding site fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号