首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
用限制性内切酶PstⅠ,SalⅠ,PvuⅡ和BamHⅠ处理CHO细胞后,发现其SCE率升高,与对照相比,前三种酶具有显著性差异。但这些酶诱导SCE的效应与其致染色体畸变效应相比则较弱,提示引起DNA双链断裂的限制性内切酶不是SCE的强刺激物。实验结果表明,BrdU取代胸苷不能消除限制酶对底物DNA的识别及裂解。  相似文献   

2.
Sister Chromatid Exchanges in Tritium-Labeled Chromosomes   总被引:17,自引:0,他引:17       下载免费PDF全文
Taylor JH 《Genetics》1958,43(3):515-529
  相似文献   

3.
A modified fluorescence-plus-Giemsa technique is described that allows differential staining of sister chromatids in root tip cells from cuttings of Tradescantia patudesa. With this staining technique, chromatids with both DNA strands unsubstituted are differentiated from chromatids containing 5-bromouracil in place of thymine in one of the strands of the DNA duplex. The baseline level of sister chromatid exchanges was shown to be dependent on the concentration of 5-bromodeoxyuridine in the treatment solution, the mean frequency being 43.5 sister chromatid exchanges per cell for the experimental protocol suggested.  相似文献   

4.
小麦愈伤组织细胞的姐妹染色单体交换   总被引:2,自引:0,他引:2  
李士生  张玉玲 《遗传学报》1990,17(5):365-368
用BrdU标记,改良的FPG法染色,建立了一种植物愈伤组织细胞姐妹染色单体分染的方法。并对培养基的不同附加成分对SCE的影响进行了研究。所有培养基上愈伤组织细胞的SCE率都显著高于正常根尖分生组织细胞。6-BA,AgNO_3,高浓度的2,4-D,蔗糖均可诱发SCE。  相似文献   

5.
The induction of sister chromatid exchanges (SCE) by chloride and nitrate salts of nickel, cobalt, cadmium and zinc were studied in meristematic root cells of Vicia faba. Salts of nickel, cobalt and cadmium significantly increased the frequency of SCE, whereas chloride and nitrate salts of zinc did not increase the frequency of SCE significantly above the spontaneous level. The reported data demonstrate that the induction of SCE in Vicia faba may represent a valuable bioindicator for detecting the cytogenetic damage of heavy metals.  相似文献   

6.
Sister chromatid exchange (SCE) frequency is a commonly used index of chromosomal stability in response to environmental or genetic mutagens. However, the mechanism generating cytologically detectable SCEs and, therefore, their prognostic value for chromosomal stability in mitotic cells remain unclear. We examined the role of the highly conserved homologous recombination (HR) pathway in SCE by measuring SCE levels in HR-defective vertebrate cells. Spontaneous and mitomycin C-induced SCE levels were significantly reduced for chicken DT40 B cells lacking the key HR genes RAD51 and RAD54 but not for nonhomologous DNA end-joining (NHEJ)-defective KU70(-/-) cells. As measured by targeted integration efficiency, reconstitution of HR activity by expression of a human RAD51 transgene restored SCE levels to normal, confirming that HR is the mechanism responsible for SCE. Our findings show that HR uses the nascent sister chromatid to repair potentially lethal DNA lesions accompanying replication, which might explain the lethality or tumorigenic potential associated with defects in HR or HR-associated proteins.  相似文献   

7.
A simple new method is described for obtaining sequential and a combination of differential sister chromatid staining and G-banding in the same metaphase. Using this method the sister chromatid exchanges and chromosome lesion breakpoints can be precisely localized in particular bands of individual chromosomes.  相似文献   

8.
A simple new method is described for obtaining sequential and a combination of differential sister chromatid staining and G-banding in the same metaphase. Using this method the sister chromatid exchanges and chromosome lesion breakpoints can be precisely localized in particular bands of individual chromosomes.  相似文献   

9.
Carvacrol is a predominant aromatic compound in oil of oregano. It has naturally remarkable antibacterial, antiviral, antifungal and antiparasital effects. In this study, genotoxic and antigenotoxic activities of carvacrol were investigated by the in vitro sister chromatid exchange (SCE) assay on human peripheral blood lymphocytes. The genotoxicity test was performed with carvacrol in two donors. On the other hand, inhibitory effect of carvacrol was tested in the presence of mitomycin C (MMC) in the same assay. According to data, all doses of carvacrol did not increase the formation of SCE, whereas it inhibited the rate of SCE induced by MMC. In conclusion, carvacrol exhibited a significant antigenotoxic activity in mammalian cells, indicating its potential for use as an antigenotoxic agent.  相似文献   

10.
11.
Neural ganglia of wild type third-instar larvae of Drosophila melanogaster were incubated for 13 hours at various concentrations of BUdR (1, 3, 9, 27 micrograms/ml). Metaphases were collected with colchicine, stained with Hoechst 33258, and scored under a fluorescence microscope. Metaphases in which the sister chromatids were clearly differentiated were scored for the presence of sister-chromatid exchanges (SCEs). At the lowest concentration of BUdR (1 microgram/ml), no SCEs were observed in either male or female neuroblasts. The SCEs were found at the higher concentrations of BUdR (3, 9, And 27 micrograms/ml) and with a greater frequency in females than in males. Therefore SCEs are not a spontaneous phenomenon in D. melanogaster, but are induced by BUdR incorporated in the DNA. A striking nonrandomness was found in the distribution of SCEs along the chromosomes. More than a third of the SCEs were clustered in the junctions between euchromatin and heterochromatin. The remaining SCEs were preferentially localized within the heterochromatic regions of the X chromosome and the autosomes and primarily on the entirely heterochromatic Y chromosome.--In order to find an alternative way of measuring the frequency of SCEs in the Drosophila neuroblasts, the occurrence of double dicentric rings was studied in two stocks carrying monocentric ring-X chromosomes. One ring chromosome, C(1)TR94--2, shows a rate of dicentric ring formation corresponding to the frequency of SCEs observed in the BUdR-labelled rod chromosomes. The other ring studied, R(1)2, exhibits a frequency of SCEs higher than that observed with both C(1) TR94--2 and rod chromosomes.  相似文献   

12.
During S phase, not only does DNA have to be replicated, but also newly synthesized DNA molecules have to be connected with each other. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic or meiotic spindle, and is thus an essential prerequisite for chromosome segregation. Cohesion is mediated by cohesin complexes that are thought to embrace sister chromatids as large rings. Cohesin binds to DNA dynamically before DNA replication and is converted into a stably DNA-bound form during replication. This conversion requires acetylation of cohesin, which in vertebrates leads to recruitment of sororin. Sororin antagonizes Wapl, a protein that is able to release cohesin from DNA, presumably by opening the cohesin ring. Inhibition of Wapl by sororin therefore “locks” cohesin rings on DNA and allows them to maintain cohesion for long periods of time in mammalian oocytes, possibly for months or even years.DNA replication during the synthesis (S) phase generates identical DNA molecules, which, in their chromatinized form, are called sister chromatids. The pairs of sister chromatids remain united as part of one chromosome during the subsequent gap (G2) phase and during early mitosis, in prophase, prometaphase, and metaphase. During these stages of mitosis chromosomes condense, in most eukaryotes the nuclear envelope breaks down, and in all species chromosomes are ultimately attached to both poles of the mitotic spindle. Only once this biorientation has been achieved for all chromosomes, the sister chromatids are separated from each other in anaphase and transported toward opposite spindle poles of the mother cell, enabling its subsequent division into two genetically identical daughter cells.This series of events critically depends on the fact that sister chromatids remain physically connected with each other from S phase until metaphase. This physical connection, called sister chromatid cohesion, opposes the pulling forces that are generated by microtubules that attach to kinetochores and thereby enables the biorientation of chromosomes on the mitotic spindle (Tanaka et al. 2000b). Without cohesion, sister chromatids could therefore not be segregated symmetrically between the forming daughter cells, resulting in aneuploidy. For the same reasons, cohesion is essential for chromosome segregation in meiosis I and meiosis II. Cohesion defects in human oocytes can lead to aneuploidy, which is thought to be the major cause of spontaneous abortion, because only a few types of aneuploidy are compatible with viability, such as trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 (Patau syndrome) (Hunt and Hassold 2010). Studying the mechanisms of cohesion is therefore essential for understanding how the genome is passed properly from one cell generation to the next.In addition, sister chromatid cohesion facilitates the repair of DNA double-strand breaks in cells that have replicated their DNA, where such breaks can be repaired by a homologous recombination mechanism that uses the undamaged sister chromatid as a template (for review, see Watrin et al. 2006). Furthermore, mutations in the proteins that are required for sister chromatid cohesion can cause defects in chromatin structure and gene regulation, and can in rare cases lead to congenital developmental disorders, called Cornelia de Lange syndrome, Roberts/SC Phocomelia syndrome, and Warsaw Breakage syndrome (for review, see Mannini et al. 2010).  相似文献   

13.
14.
15.
16.
The clastogenic (chromosome-damaging) effect of many chemical and physical agents is believed to be mediated by reactive oxygen-detived radicals. The interaction of these free radicals with DNA and the significance of the radical-induced DNA lesions in mutagenesis and carcinogenesis have been the subjects of increasing interest during recent years. Sister chromatid exchange (SCE) reflects an interchange between DNA molecules at homologous loci within a replicating chromosome. SCE analysis was found to have increased use for monitoring the exposure of cell to mutagenic carcinogens. The authors found that the induction of SCEs in cells of Hordeum vulgare L. by ascorbic acid, mitomycin C, adriamycin and maleic hydrazid was through the action of free radicals. They also studied the influence of growth temperature on average generation time(AGT) and SCEs. and disclosed a close correlation between AGT and SCEs. The Brdu-Giemsa techniques were used for the detection of SCEs and AGT in cytological preparations of metaphase chromosomes.  相似文献   

17.
本文研究结果表明,亚硫酸氢钠(二氧化硫)能够引起人血淋巴细胞姊妹染色单体互换(SCE)和微核(MN)率的增加,可使淋巴细胞有丝分裂周期延迟及细胞分裂指数下降,且这些作用有显著的剂量效应关系。结果指出,亚硫酸氢钠在低浓度下仅引起细胞染色单体型畸变,在高浓度下既可引起染色单体型畸变,又可引起染色体型畸变。结果还指出,亚硫酸氢钠对染色体畸变(CA)和MN的诱发效应有明显的个体差异。硫酸钠未能引起上述细胞  相似文献   

18.
In vivo cyclophosphamide (CP)-induced sister chromatid exchanges (SCEs) were evaluated in females from five genetic strains of mice (C57BL/6J, C3H/S, 129/ReJ, BALB/c and DBA/2) and their F1 hybrids. Baseline (noninduced) SCE values differ significantly among strains, 129/ReJ having the lowest and DBA/2 having the highest mean SCE per cell values. In general, the baseline SCE of a given F1 is within the range of its corresponding parental strains or near the lower parental value. Furthermore, there is a genotype-dependent increase in mean SCEs per cell with CP dose. Strain differences in SCE induction are noted particularly at the two higher CP doses (4.50 and 45.0 mg/kg). In general, F1 hybrids involving a strain with high induced SCEs and a strain with low induced SCEs exhibit mean SCE values that are closer to the value of the lower strain. F1 s involving two strains with high SCEs or two strains with low SCEs yield SCEs not different from parental strains. The method of diallel cross analysis showed the order of dominance of these strains in SCE induction to be 129/ReJ BALB/c C3H/S DBA/2 C57BL/6J. These results support the involvement of predominantly nonadditive genetic factors as major gene(s) in SCE induction. In addition, involvement of random and independent events in SCE induction is suggested by the distribution of SCEs which follows a Poisson distribution.  相似文献   

19.
Accurate chromosome segregation depends on sister kinetochores making bioriented attachments to microtubules from opposite poles. An essential regulator of biorientation is the Ipl1/Aurora B protein kinase that destabilizes improper microtubule–kinetochore attachments. To identify additional biorientation pathways, we performed a systematic genetic analysis between the ipl1-321 allele and all nonessential budding yeast genes. One of the mutants, mcm21Δ, precociously separates pericentromeres and this is associated with a defect in the binding of the Scc2 cohesin-loading factor at the centromere. Strikingly, Mcm21 becomes essential for biorientation when Ipl1 function is reduced, and this appears to be related to its role in pericentromeric cohesion. When pericentromeres are artificially tethered, Mcm21 is no longer needed for biorientation despite decreased Ipl1 activity. Taken together, these data reveal a specific role for pericentromeric linkage in ensuring kinetochore biorientation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号