首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere–centrosome contact instead of telomere–centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindle-generating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks.  相似文献   

2.
The source of symmetry breaking in vertebrate oocytes is unknown. Animal—vegetal oocyte polarity is established by the Balbiani body (Bb), a conserved structure found in all animals examined that contains an aggregate of specific mRNAs, proteins, and organelles. The Bb specifies the oocyte vegetal pole, which is key to forming the embryonic body axes as well as the germline in most vertebrates. How Bb formation is regulated and how its asymmetric position is established are unknown. Using quantitative image analysis, we trace oocyte symmetry breaking in zebrafish to a nuclear asymmetry at the onset of meiosis called the chromosomal bouquet. The bouquet is a universal feature of meiosis where all telomeres cluster to one pole on the nuclear envelope, facilitating chromosomal pairing and meiotic recombination. We show that Bb precursor components first localize with the centrosome to the cytoplasm adjacent to the telomere cluster of the bouquet. They then aggregate around the centrosome in a specialized nuclear cleft that we identified, assembling the early Bb. We show that the bouquet nuclear events and the cytoplasmic Bb precursor localization are mechanistically coordinated by microtubules. Thus the animal—vegetal axis of the oocyte is aligned to the nuclear axis of the bouquet. We further show that the symmetry breaking events lay upstream to the only known regulator of Bb formation, the Bucky ball protein. Our findings link two universal features of oogenesis, the Bb and the chromosomal bouquet, to oocyte polarization. We propose that a meiotic—vegetal center couples meiosis and oocyte patterning. Our findings reveal a novel mode of cellular polarization in meiotic cells whereby cellular and nuclear polarity are aligned. We further reveal that in zygotene nests, intercellular cytoplasmic bridges remain between oocytes and that the position of the cytoplasmic bridge coincides with the location of the centrosome meiotic—vegetal organizing center. These results suggest that centrosome positioning is set by the last mitotic oogonial division plane. Thus, oocytes are polarized in two steps: first, mitotic divisions preset the centrosome with no obvious polarization yet, then the meiotic—vegetal center forms at zygotene bouquet stages, when symmetry is, in effect, broken.  相似文献   

3.
Centrosomes and cancer.   总被引:6,自引:0,他引:6  
The centrosome functions as the major microtubule organizing center (MTOC) of the cell and as such it determines the number, polarity, and organization of interphase and mitotic microtubules. Cytoplasmic organization, cell polarity and the equal partition of chromosomes into daughter cells at the time of cell division are all dependent on the normal function of the centrosome and on its orderly duplication, once and only once, in each cell cycle. Malignant tumor cells show characteristic defects in cell and tissue architecture and in chromosome number that can be attributed to inappropriate centrosome behavior during tumor progression. In this review, we will summarize recent observations linking centrosome defects to disruption of normal cell and tissue organization and to chromosomal instability found in malignant tumors.  相似文献   

4.
During meiosis, the rapid movement of telomeres along the nuclear envelope (NE) facilitates pairing/synapsis of homologous chromosomes. In mammals, the mechanical properties of chromosome movement and the cytoskeletal structures responsible for it remain poorly understood. Here, applying an in vivo electroporation (EP) technique in live mouse testis, we achieved the quick visualization of telomere, chromosome axis and microtubule organizing center (MTOC) movements. For the first time, we defined prophase sub-stages of live spermatocytes morphologically according to GFP-TRF1 and GFP-SCP3 signals. We show that rapid telomere movement and subsequent nuclear rotation persist from leptotene/zygotene to pachytene, and then decline in diplotene stage concomitant with the liberation of SUN1 from telomeres. Further, during bouquet stage, telomeres are constrained near the MTOC, resulting in the transient suppression of telomere mobility and nuclear rotation. MTs are responsible for these movements by forming cable-like structures on the NE, and, probably, by facilitating the rail-tacking movements of telomeres on the MT cables. In contrast, actin regulates the oscillatory changes in nuclear shape. Our data provide the mechanical scheme for meiotic chromosome movement throughout prophase I in mammals.  相似文献   

5.
The clustering of telomeres on the nuclear envelope (NE) during meiotic prophase to form the bouquet arrangement of chromosomes may facilitate homologous chromosome synapsis. The pam1 (plural abnormalities of meiosis 1) gene is the first maize gene that appears to be required for telomere clustering, and homologous synapsis is impaired in pam1. Telomere clustering on the NE is arrested or delayed at an intermediate stage in pam1. Telomeres associate with the NE during the leptotene-zygotene transition but cluster slowly if at all as meiosis proceeds. Intermediate stages in telomere clustering including miniclusters are observed in pam1 but not in wild-type meiocytes. The tight bouquet normally seen at zygotene is a rare event. In contrast, the polarization of centromeres vs. telomeres in the nucleus at the leptotene-zygotene transition is the same in mutant and wild-type cells. Defects in homologous chromosome synapsis include incomplete synapsis, nonhomologous synapsis, and unresolved interlocks. However, the number of RAD51 foci on chromosomes in pam1 is similar to that of wild type. We suggest that the defects in homologous synapsis and the retardation of prophase I arise from the irregularity of telomere clustering and propose that pam1 is involved in the control of bouquet formation and downstream meiotic prophase I events.  相似文献   

6.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immunostained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

7.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immuno-stained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

8.
Oocyte maturation is an important process required to achieve optimal oocyte quality, and later affects fertilization potential and subsequent embryo development. The maturation process includes synchronized nuclear and cytoplasmic remodeling, in which cytoskeletal and centrosome dynamics play an important role and significantly participate in cellular signaling. Centrosome remodeling within the maturing oocyte is essential for accurate meioisis I and II spindle formation, specifically to separate chromosomes accurately during the two successive, highly asymmetric meiotic cell divisions. Centrosomal abnormalities result in inaccurate microtubule organization and inaccurate chromosome alignment, with failures in chromosome segregation leading to aneuploidy and chromosomal abnormalities. The present review is focused on cytoskeletal and centrosome remodeling during oocyte maturation, with specific attention to γ-tubulin, pericentrin, the Nuclear Mitotic Apparatus (NuMA) protein, and microtubule organization. Species-specific differences will be discussed for rodent (mouse) and non-rodent (bovine, porcine) species, and for human oocytes.  相似文献   

9.
Koszul R  Kim KP  Prentiss M  Kleckner N  Kameoka S 《Cell》2008,133(7):1188-1201
Chromosome movement is prominent during meiosis. Here, using a combination of in vitro and in vivo approaches, we elucidate the basis for dynamic mid-prophase telomere-led chromosome motion in budding yeast. Diverse findings reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope (NE) ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network. Other chromosomes move in concert with lead chromosome(s). The same process, in modulated form, explains the zygotene "bouquet" configuration in which, immediately preceding pachytene, chromosome ends colocalize dynamically in a restricted region of the NE. Mechanical properties of the system and biological roles of mid-prophase movement for meiosis, including recombination, are discussed.  相似文献   

10.
Alternative ends: telomeres and meiosis   总被引:1,自引:0,他引:1  
Meiosis is a specialized type of cell division that halves the diploid number of chromosomes, yielding four haploid nuclei. Dramatic changes in chromosomal organization occur within the nucleus at the beginning of meiosis which are followed by the separation of homologous chromosomes at the first meiotic division. This is the case for telomeres that display a meiotic-specific behavior with gathering in a limited sector of the nuclear periphery. This leads to a characteristic polarized chromosomal configuration, called the "bouquet" arrangement. The widespread phenomenon of bouquet formation among eukaryotes has led to the hypothesis that it is functionally linked to the process of interactions between homologous chromosomes that are a unique feature of meiosis and are essential for proper chromosome segregation. Various studies in different model organisms have questioned the role of the telomere bouquet in chromosome pairing and recombination, and very recently in meiotic spindle formation, and have provided some clues about the molecular mechanisms that carry out this specific clustering of telomeres.  相似文献   

11.
Chlamydiae traffic along microtubules to the microtubule organizing center (MTOC) to establish an intracellular niche within the host cell. Trafficking to the MTOC is dynein dependent although the activating and cargo-linking function of the dynactin complex is supplanted by unknown chlamydial protein(s). We demonstrate that once localized to the MTOC, the chlamydial inclusion maintains a tight association with cellular centrosomes. This association is sustained through mitosis and leads to a significant increase in supernumerary centrosomes, abnormal spindle poles, and chromosomal segregation defects. Chlamydial infection thus can lead to chromosome instability in cells that recover from infection.  相似文献   

12.
Germline cysts are conserved structures in which cells initiating meiosis are interconnected by ring canals. In many species, the cyst phase is of limited duration, but the chordate, Oikopleura, maintains it throughout prophase I as a unique cell, the coenocyst. We show that despite sharing one common cytoplasm with meiotic and nurse nuclei evenly distributed in a 1:1 ratio, both entry into meiosis and subsequent endocycles of nurse nuclei were asynchronous. Coenocyst cytoskeletal elements played central roles as oogenesis progressed from a syncytial state of indistinguishable germ nuclei, to a final arrangement where the common cytoplasm had been equally partitioned into resolved, mature oocytes. During chromosomal bouquet formation in zygotene, nuclear pore complexes clustered and anchored meiotic nuclei to the coenocyst F-actin network opposite ring canals, polarizing oocytes early in prophase I. F-actin synthesis was required for oocyte growth but movement of cytoplasmic organelles into oocytes did not require cargo transport along colchicine-sensitive microtubules. Instead, microtubules maintained nurse nuclei on the F-actin scaffold and prevented their entry into growing oocytes. Finally, it was possible to both decouple meiotic progression from cellular mechanisms governing oocyte growth, and to advance the timing of oocyte growth in response to external cues.  相似文献   

13.
Rapid chromosome movement during prophase of the first meiotic division has been observed in many organisms. It is generally concomitant with formation of the “meiotic chromosome bouquet,” a special chromosome configuration in which one or both chromosome ends attach to the nuclear envelope and become concentrated within a limited area. The precise function of the chromosomal bouquet is still not fully understood. Chromosome mobility is implicated in homologous chromosome pairing, synaptonemal complex formation, recombination, and resolution of chromosome entanglements. The basic mechanistic module through which forces are exerted on chromosomes is widely conserved; however, phenotypic differences have been reported among various model organisms once movement is abrogated. Movements are transmitted to the chromosome ends by the nuclear membrane-bridging SUN/KASH complex and are dependent on cytoskeletal filaments and motor proteins located in the cytoplasm. Here we review the recent findings on chromosome mobility during meiosis in an animal model system: the Caenorhabditis elegans nematode.  相似文献   

14.
Analyses of correspondent meiotic abnormalities is a good tool for studying cytoskeletal rearrangements during plant cell division. The paper reports on the wheat x wheatgrass F1 hybrids, showing various abnormalities during organization of the prophase perinuclear band of microtubules (PNB) in male meiosis. Based on these data, it may be concluded that the perinuclear system of microtubules (MT) in higher plant meiosis is formed from fibrils of the radial system as a result of their translocation in the cell cytoplasm space. According to our data, at this stage the radial MT arrays pass through the following consequence of events: separating from the nuclear envelope, 2) approaching, 3) tangential orientation to the nuclear surface, 4) bending, 5) co-orientation, lateral interaction. As a result, a flat ring of well organized concentric bent MT bundles encircling the nucleus meridionally is organized.  相似文献   

15.
Niwa O  Shimanuki M  Miki F 《The EMBO journal》2000,19(14):3831-3840
A polarized chromosomal arrangement with clustered telomeres in a meiotic prophase nucleus is often called bouquet and is thought to be important for the pairing of homologous chromosomes. Fluorescence in situ hybridization in fission yeast indicated that chromosomal loci are positioned in an ordered manner as anticipated from the bouquet arrangement. Blocking the formation of the telomere cluster with the kms1 mutation created a disorganized chromosomal arrangement, not only for the regions proximal to the telomere but also for interstitial regions. The kms1 mutation also affected the positioning of a linear minichromosome. Consistent with this cytological observation, the frequency of ectopic homologous recombination between a linear minichromosome and a normal chromosome increased in the kms1 background. Intragenic recombination between allelic loci is reduced in the kms1 mutant, but those between non-allelic loci are unaffected or slightly increased. Thus, telomere-led chromosome organization facilitates homologous pairing and also restricts irregular chromosome pairing during meiosis.  相似文献   

16.
During meiosis, chromosomes undergo large-scale reorganization to allow pairing between homologues, which is necessary for recombination and segregation. In many organisms, pairing of homologous chromosomes is accompanied, and possibly facilitated, by the bouquet, the clustering of telomeres in a small region of the nuclear periphery. Taking advantage of the cytological accessibility of meiosis in maize, we have characterized the organization of centromeres and telomeres throughout meiotic prophase. Our results demonstrate that meiotic centromeres are polarized prior to the bouquet stage, but that this polarization does not contribute to bouquet formation. By examining telocentric and ring chromosomes, we have tested the cis-acting requirements for participation in the bouquet. We find that: (a) the healed ends of broken chromosomes, which contain telomere repeats, can enter the bouquet; (b) ring chromosomes enter the bouquet, indicating that terminal position on a chromosome is not necessary for telomere sequences to localize to the bouquet; and (c) beginning at zygotene, the behavior of telomeres is dominant over any centromere-mediated chromosome behavior. The results of this study indicate that specific chromosome regions are acted upon to determine the organization of meiotic chromosomes, enabling the bouquet to form despite large-scale changes in chromosome architecture.  相似文献   

17.
This article is the fruit of reflections on the comparative study of centrosomal structures of various protists, and on recent data on the organization and composition of the centrosome of multicellular organisms. On the basis of a few significant situations encountered in protists, a model is proposed in which the metazoan centrosome represents a complex of three types of specialized microtubule-organizing centers (MTOCs) of different origin and function, designated MTOC1, MTOC2, MTOC3. MTOCs1, presumably the most primitive, drive the mitosis. Associated with the chromosomes, they would be primitively included in the nuclear matrix acting as polar bodies in closed mitosis which characterizes many protists. MTOCs2 correspond to the centrioles, relics of basal bodies, whose primitive function was to engender a motor organelle. They differ from other cytoskeletal organizing centers only by their ubiquity and their 9+0 organization. MTOCs3, which may form stable structures of specific shape in some protists, control cellular morphology and intracellular traffic. The relationships between the various components and the nucleus are considered. Using a speculative scheme, we attempt to understand how this ensemble has diversified over the evolution of protists.  相似文献   

18.
To examine the possible role of the cytoskeleton in exocytosis of Weibel-Palade bodies (WPBs), we used double immunofluorescence and electron microscopy to study the spatial relationships between WPBs and main cytoskeletal elements in endothelial cells treated with secretagogue, such as thrombin, or cytoskeleton-damaging agents. Unexpectedly, we have found that WPBs undergo rapid translocation towards the centrosome both in cells treated with thrombin and in those treated with cytochalasin B or calyculin A. Typically, 3 or 5 min after agent addition compact cluster of WPBs became visible near the microtubule-organizing center (MTOC) in most endothelial cells in which a fivefold increase in WPBs localized in close proximity to the mother centriole had been detected. In both thrombin- and cytochalasin-treated cells that exhibit a noticeable depletion in WPBs compared to control cells, WPBs located at the cell periphery were found to colocalize with vimentin intermediate filaments, but not with microtubules. In contrast, there was precise colocalization observed between WPBs and microtubules in calyculin-treated cells in which all WPBs undergo centrosome-directed translocation within 15 min after the agent addition. When vimentin filaments were induced to collapse to a perinuclear location by the microtubule-disrupting agent demecolcine, WPBs also translocated to the perinuclear region, where numerous WPBs were found to be localized within the bundles of intermediate-sized filaments. The data provide the first direct evidence that secretory granules utilize microtubule-based transport system to move in retrograde direction, i.e., away from the plasma membrane, towards the centrosome. We suggest that anterograde movement of WPBs is primarily dependent on their interaction with vimentin intermediate filaments.  相似文献   

19.
In brown algal cells, the centrosome, consisting of a pair of centrioles and the pericentriolar material, is primarily involved in the organization of microtubules (MTs) throughout the cell cycle. In motile cells, the centrioles participate in the formation of flagellar axoneme as flagellar basal bodies, and in somatic cells they play a crucial role in many cellular activities as a part of the centrosome. With respect to the role of the centrosome as a microtubule organizing center (MTOC), brown algal cells resemble animal cells. In most animal fertilization processes, the sperm cell introduces centrioles, the core of the centrosome, into the egg cytoplasm. In this study, the behavior of centrioles from gametogenesis and fertilization to the first cell division of the zygote was examined in the three sexual reproduction patterns occurring in brown algae, i.e., oogamy, anisogamy and isogamy, by electron- and immunofluorescence-microscopy. The pair of centrioles contained in somatic cells was shown to be derived from the male gamete, irrespective of the sexual reproductive pattern. The paternally derived centrioles were duplicated before mitosis and were involved in spindle pole formation. Moreover, MTs from the centrosome play a crucial role in the process of cytokinesis, as the position of centrosomes accompanying daughter nuclei seems to determine the cytokinetic plane. A new approach to clarifying the mode of cytokinesis in brown algae is presented in this study.Chikako Nagasato was the recipient of the Botanical Society of Japan Award for Young Scientist, 2004.  相似文献   

20.
To better understand the differences in cytoskeletal organization between in vivo (IVO) and in vitro (IVM) matured oocytes, we analyzed remodeling of the centrosome-microtubule complex in IVO and IVM mouse oocytes. Fluorescence imaging revealed dramatic differences in meiotic spindle assembly and organization between these two populations. Metaphase spindles at both meiosis I (M-I) and meiosis II (M-II) in IVO oocytes were compact, displayed focused spindle poles with distinct gamma-tubulin foci, and were composed of acetylated microtubules. In contrast, IVM oocytes exhibited barrel-shaped spindles with fewer acetylated microtubules and gamma-tubulin diffusely distributed throughout the spindle proper. With respect to meiotic progression, IVO oocytes were more synchronous in the rate and extent of anaphase to telophase of M-I and first polar body emission than were IVM counterparts. Furthermore, IVO oocytes showed a twofold increase in cytoplasmic microtubule organizing centers (MTOCs), and constitutive MTOC proteins (gamma-tubulin and pericentrin) were excluded from the first polar body. Inclusion of MTOC constitutive proteins in the polar body and diminished number of cytoplasmic MTOCs was observed in IVM oocytes. These findings were corroborated in IVO oocytes obtained from naturally ovulated and spontaneously cycling mice and highlight a fundamental distinction in the spatial and temporal regulation of microtubule dynamics between IVO and IVM oocytes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号