首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much of systems biology aims to predict the behaviour of biological systems on the basis of the set of molecules involved. Understanding the interactions between these molecules is therefore crucial to such efforts. Although many thousands of interactions are known, precise molecular details are available for only a tiny fraction of them. The difficulties that are involved in experimentally determining atomic structures for interacting proteins make predictive methods essential for progress. Structural details can ultimately turn abstract system representations into models that more accurately reflect biological reality.  相似文献   

2.
3.
The relevance of three-dimensional structures of proteins, determined by X-ray crystallography, is an important issue that is becoming even more critical in light of the Structural Genomics Initiative. As a case study, a detailed comparison of functional properties of the T quaternary states of genetically or chemically modified human hemoglobins (Hbs) in solution and in the crystal was performed. Oxygen affinities of Hbs in crystals correlate with the rate constants of their initial combination with carbon monoxide (CO) in solution, indicating that changes in ligand affinity caused by the modifications are similarly observed in both physical states.  相似文献   

4.
5.
Determining the structure of biological macromolecules by X-ray crystallography involves a series of steps: selection of the target molecule; cloning, expression, purification and crystallization; collection of diffraction data and determination of atomic positions. However, even when pure soluble protein is available, producing high-quality crystals remains a major bottleneck in structure determination. Here we present a guide for the non-expert to screen for appropriate crystallization conditions and optimize diffraction-quality crystal growth.  相似文献   

6.
7.
The centrosome, which consists of two centrioles and the surrounding pericentriolar material, is the primary microtubule-organizing center (MTOC) in animal cells. Like chromosomes, centrosomes duplicate once per cell cycle and defects that lead to abnormalities in the number of centrosomes result in genomic instability, a hallmark of most cancer cells. Increasing evidence suggests that the separation of the two centrioles (disengagement) is required for centrosome duplication. After centriole disengagement, a proteinaceous linker is established that still connects the two centrioles. In G2, this linker is resolved (centrosome separation), thereby allowing the centrosomes to separate and form the poles of the bipolar spindle. Recent work has identified new players that regulate these two processes and revealed unexpected mechanisms controlling the centrosome cycle.  相似文献   

8.
Ansocalcin is a novel goose eggshell matrix protein with 132 amino acid residues, which induces the formation of polycrystalline calcite aggregates in in vitro crystallization experiments. The central region of ansocalcin is characterized by the presence of multiplets of charged amino acids. To investigate the specific role of charged amino acid multiplets in the crystal nucleation, three short peptides REWD-16, REWDP-17 (containing charged doublets), and RADA-16 (alternating charged residues) were synthesized and characterized. The aggregation of these peptides in solution was investigated using circular dichroism, intrinsic tryptophan fluorescence, and dynamic light scattering experiments. The peptides REWD-16 and REWDP-17 induced the polycrystalline calcite crystal aggregates, whereas RADA-16 did not induce significant changes in calcite crystal morphology or aggregate formation in in vitro crystallization experiments. The lattice and morphology of the calcite crystals were characterized using X-ray diffraction and scanning electron microscope. The results discussed in this paper reveal the importance of multiplets of charged amino acid residues toward the nucleation of polycrystalline calcite crystal aggregates in solution.  相似文献   

9.
何伟  张同武  林毅 《生物信息学》2009,7(4):320-322,325
通过同源建模得到了抗癌晶体蛋白Parasporin-4的初始三维结构,利用分子动力学的方法对初始三维结构进行优化,同时分析了模建分子的结构,最后利用Ramachandran plot,结构匹配等方法对模型进行评价。结果显示得到的Parasporin-4结构是具有三个结构域,蛋白模型分子中的键长、键角以及二面角的分布合理,与模版蛋白的主链a碳原子的均方根差RMSD值为0.547742,在合理范围之内,表明Parasporin-4蛋白模型良好。研究结果为抗癌晶体蛋白的抗癌的分子机制及其定向改造提供了结构信息。  相似文献   

10.
Suramin is a hexasulfonated naphthylurea which has been recently characterized as a non-competitive inhibitor of human alpha-thrombin activity over fibrinogen, although its binding site and mode of interaction with the enzyme remain elusive. Here, we determined two X-ray structure of the thrombin:suramin complex, refined at 2.4 Å resolution. While a single thrombin:suramin complex was found in the asymmetric unit cell of the crystal, some of the crystallographic contacts with symmetrically related molecules are mediated by both the enzyme and the ligand. Molecular dynamics simulations with the 1:1 complex demonstrate a large rearrangement of suramin in the complex, but with the protein scaffold and the more extensive protein–ligand regions keep unchanged. Small-angle X-ray scattering measurements at high micromolar concentration demonstrate a suramin-induced dimerization of the enzyme. These data indicating a dissimilar binding mode in the monomeric and oligomeric states, with a monomeric, 1:1 complex to be more likely to exist at the thrombin physiological, nanomolar concentration range. Collectively, close understanding on the structural basis for interaction is given which might establish a basis for design of suramin analogues targeting thrombin.  相似文献   

11.
The advent of amphiphilic copolymers enables integral membrane proteins to be solubilized into stable 10–30 nm native nanodiscs to resolve their multisubunit structures, post-translational modifications, endogenous lipid bilayers, and small molecule ligands. This breakthrough has positioned biological membrane:protein assemblies (memteins) as fundamental functional units of cellular membranes. Herein, we review copolymer design strategies and methods for the characterization of transmembrane proteins within native nanodiscs by cryo-electron microscopy (cryo-EM), transmission electron microscopy, nuclear magnetic resonance spectroscopy, electron paramagnetic resonance, X-ray diffraction, surface plasmon resonance, and mass spectrometry.  相似文献   

12.
13.
The rate of electron transfer by tunnelling decreases exponentially with distance, but is generally not rate limiting for distances up to 14A, enabling the robust design of redox systems. Fast transfer over distances greater than 14A is accomplished using diffusible electron carriers, an array of closely spaced redox centres or large-scale motion of a redox-active domain. Recent advances indicate that all three mechanisms are used in interprotein electron transfer. The classic stratagem, diffusible electron carriers, may be extended with either of the other designs. The use of an array of solvent-exposed, closely spaced redox centres can maximise productive collisions. Also, the use of conformational sampling via domain motion within the electron transfer complex optimises tunnelling probability.  相似文献   

14.
Lipoxygenases form a heterogeneous family of lipid peroxidizing enzymes, which have been implicated in the pathogenesis of diseases with major health political relevance (bronchial asthma, atherosclerosis, cancer, and osteoporosis). The crystal structures of one mammalian lipoxygenase and of two plant isoenzymes have been solved and the structural bases of important enzyme properties (reaction specificity, membrane binding, and suicidal inactivation) have been investigated in the past. This review will briefly summarize our current understanding on the structural biology of the most important mammalian lipoxygenase isoforms and will also address selected mechanistic features of the lipoxygenase reaction.  相似文献   

15.
The chemical structure of lipid A isolated from Porphyromonas gingivalis lipopolysaccharide was elucidated by compositional analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy. The hydrophilic backbone of free lipid A was found to consisted of beta(1,6)-linked D-glucosamine disaccharide 1-phosphate. (R)-3-Hydroxy-15-methylhexadecanoic acid and (R)-3-hydroxyhexadecanoic acid are attached at positions 2 and 3 of the reducing terminal residue, respectively, and positions 2' and 3' of the nonreducing terminal unit are acylated with (R)-3-O-(hexadecanoyl)-15-methylhexadecanoic acid and (R)-3-hydroxy-13-methyltetradecanoic acid, respectively. The hydroxyl group at position 4' is partially replaced by another phosphate group, and the hydroxyl groups at positions 4 and 6' are unsubstituted. Considerable heterogeneity in the fatty acid chain length and the degree of acylation and phosphorylation was detected by liquid secondary ion-mass spectrometry (LSI-MS). A significant pseudomolecular ion of lipid A at m/z 1,769.6 [M-H]- corresponding to a diphosphorylated GlcN backbone bearing five acyl groups described above was detected in the negative mode of LSI-MS. Predominant ions, however, were observed at m/z 1,434.9 [M-H]- and m/z 1,449.0 [M-H]-, each representing monophosphoryl lipid A lacking (R)-3-hydroxyhexadecanoic and (R)-3-hydroxy-13-methyltetradecanoic acids, respectively. The presence of mono- and diphosphorylated lipid A species was also confirmed by LSI-MS of de-O-acylated lipid A (m/z 955.3 and 1,035.2, respectively).  相似文献   

16.
Remyelination in the CNS: from biology to therapy   总被引:1,自引:0,他引:1  
Remyelination involves reinvesting demyelinated axons with new myelin sheaths. In stark contrast to the situation that follows loss of neurons or axonal damage, remyelination in the CNS can be a highly effective regenerative process. It is mediated by a population of precursor cells called oligodendrocyte precursor cells (OPCs), which are widely distributed throughout the adult CNS. However, despite its efficiency in experimental models and in some clinical diseases, remyelination is often inadequate in demyelinating diseases such as multiple sclerosis (MS), the most common demyelinating disease and a cause of neurological disability in young adults. The failure of remyelination has profound consequences for the health of axons, the progressive and irreversible loss of which accounts for the progressive nature of these diseases. The mechanisms of remyelination therefore provide critical clues for regeneration biologists that help them to determine why remyelination fails in MS and in other demyelinating diseases and how it might be enhanced therapeutically.  相似文献   

17.
18.
19.
H Gouda  H Torigoe  A Saito  M Sato  Y Arata  I Shimada 《Biochemistry》1992,31(40):9665-9672
The three-dimensional solution structure of the recombinant B domain (FB) of staphylococcal protein A, which specifically binds to the Fc portion of immunoglobulin G, was determined by NMR spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. On the basis of 692 experimental constraints including 587 distance constraints obtained from the nuclear Overhauser effect (NOE), 57 torsion angle (phi, chi 1) constraints, and 48 constraints associated with 24 hydrogen bonds, a total of 10 converged structures of FB were obtained. The atomic root mean square difference among the 10 converged structures is 0.52 +/- 0.10 A for the backbone atoms and 0.98 +/- 0.08 A for all heavy atoms (excluding the N-terminal segment from Thr1 to Glu9 and the C-terminal segment from Gln56 to Ala60, which are partially disordered). FB is composed of a bundle of three alpha-helices, i.e., helix I (Gln10-His19), helix II (Glu25-Asp37), and helix III (Ser42-Ala55). Helix II and helix III are antiparallel to each other, whereas the long axis of helix I is tilted at an angle of about 30 degrees with respect to those of helix II and helix III. Most of the hydrophobic residues of FB are buried in the interior of the bundle of the three helices. It is suggested that the buried hydrophobic residues form a hydrophobic core, contributing to the stability of FB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Crystal structures have shown that the HIV-1 protease flaps, domains that control access to the active site, are closed when the active site is occupied by a ligand. Although flap structures ranging from closed to semi-open are observed in the free protease, crystal structures reveal that even the semi-open flaps block access to the active site, indicating that the flaps are mobile in solution. The goals of this paper are to characterize the secondary structure and fast (sub-ns) dynamics of the flaps of the free protease in solution, to relate these results to X-ray structures and to compare them with predictions of dynamics calculations. To this end we have obtained nearly complete backbone and many sidechain signal assignments of a fully active free-protease construct that is stabilized against autoproteolysis by three point mutations. The secondary structure of this protein was characterized using the chemical shift index, measurements of (3h)J(NC') couplings across hydrogen bonds, and NOESY connectivities. Analysis of these measurements indicates that the protease secondary structure becomes irregular near the flap tips, residues 49-53. Model-free analysis of (15)N relaxation parameters, T(1), T(2) (T(1rho)) and (15)N-[(1)H] NOE, shows that residues in the flap tips are flexible on the sub-ns time scale, in contrast with previous observations on the inhibitor-bound protease. These results are compared with theoretical predictions of flap dynamics and the possible biological significance of the sub-ns time scale dynamics of the flap tips is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号