首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
A key obstacle to understanding neural circuits in the?cerebral cortex is that of unraveling the diversity of GABAergic interneurons. This diversity poses general questions for neural circuit analysis: how are these interneuron cell types generated and assembled into stereotyped local circuits and how do they differentially contribute to circuit operations that underlie cortical functions ranging from perception to cognition? Using genetic engineering in mice, we have generated and characterized approximately 20 Cre and inducible CreER knockin driver lines that reliably target major classes and lineages of GABAergic neurons. More select populations are captured by intersection of Cre and Flp drivers. Genetic targeting allows reliable identification, monitoring, and manipulation of cortical GABAergic neurons, thereby enabling a systematic and comprehensive analysis from cell fate specification, migration, and connectivity, to their functions in network dynamics and behavior. As such, this approach will accelerate the study of GABAergic circuits throughout the mammalian brain.  相似文献   

2.
Inhibition in the mammalian cerebral cortex is mediated by a small population of highly diverse GABAergic interneurons. These largely local neurons are interspersed among excitatory projection neurons and exert pivotal regulation on the formation and function of cortical circuits. We are beginning to understand the extent of GABAergic neuron diversity and how this is generated and shaped during brain development in mice and humans. In this review, we summarise recent findings and discuss how new technologies are being used to further advance our knowledge. Understanding how inhibitory neurons are generated in the embryo is an essential pre-requisite of stem cell therapy, an evolving area of research, aimed at correcting human disorders that result in inhibitory dysfunction.  相似文献   

3.
Tozuka Y  Fukuda S  Namba T  Seki T  Hisatsune T 《Neuron》2005,47(6):803-815
Hippocampal activity influences neurogenesis in the adult dentate gyrus; however, little is known about the involvement of the hippocampal circuitry in this process. In the subgranular zone of the adult dentate gyrus, neurogenesis involves a series of differentiation steps from radial glia-like stem/progenitor (type-1) cells, to transiently amplifying neuronal progenitor (type-2) cells, to postmitotic neurons. In this study, we conducted GFP-targeted recordings of progenitor cells in fresh hippocampal slices from nestin-GFP mice and found that neuronal progenitor (type-2) cells receive active direct neural inputs from the hippocampal circuitry. This input was GABAergic but not glutamatergic. The GABAergic inputs depolarized type-2 cells because of their elevated [Cl(-)](i). This excitation initiated an increase of [Ca(2+)](i) and the expression of NeuroD. A BrdU-pulse labeling study with GABA(A)-R agonists demonstrated the promotion of neuronal differentiation via this GABAergic excitation. Thus, it appears that GABAergic inputs to hippocampal progenitor cells promote activity-dependent neuronal differentiation.  相似文献   

4.
5.
6.
Spike encoding at GABAergic neurons plays an important role in maintaining the homeostasis of brain functions for well-organized behaviors. The rise of intracellular Ca2+ in GABAergic neurons causes synaptic plasticity. It is not clear how intracellular Ca2+ influences their spike encoding. We have investigated this issue at GFP-labeled GABAergic cortical neurons and cerebellar Purkinje cells by whole-cell recording in mouse brain slices. Our results show that an elevation of intracellular Ca2+ by infusing adenophostin-A lowers spike encoding at GABAergic cortical neurons and enhances encoding ability at cerebellar Purkinje cells. These differential effects of cytoplasmic Ca2+ on spike encoding are mechanistically associated with Ca2+-induced changes in the refractory periods and threshold potentials of sequential spikes, as well as with various expression ratios of CaM-KII to calcineurin in GABAergic cortical neurons and cerebellar Purkinje cells.  相似文献   

7.
The Drosophila antenna has a diversity of chemosensory organs within a single epidermal field. We have some idea from recent studies of how the three broad categories of sense-organs are specified at the level of progenitor choice. However, little is known about how cell fates within single sense-organs are specified. Selection of individual primary olfactory progenitors is followed by organization of groups of secondary progenitors, which divide in a specific order to form a differentiated sensillum. The combinatorial expression of Prospero Elav, and Seven-up allows us to distinguish three secondary progenitor fates. The lineages of these cells have been established by clonal analysis and marker distribution following mitosis. High Notch signaling and the exclusion of these markers identifies PIIa; this cell gives rise to the shaft and socket. The sheath/neuron lineage progenitor PIIb, expresses all three markers; upon division, Prospero asymmetrically segregates to the sheath cell. In the coeloconica, PIIb undergoes an additional division to produce glia. PIIc is present in multiinnervated sense-organs and divides to form neurons. An understanding of the lineage and development of olfactory sense-organs provides a handle for the analysis of how olfactory neurons acquire distinct terminal fates.  相似文献   

8.
GABAergic neurons in the ventral mesodiencephalic region are highly important for the function of dopaminergic pathways that regulate multiple aspects of behavior. However, development of these neurons is poorly understood. We recently showed that molecular regulation of differentiation of the GABAergic neurons associated with the dopaminergic nuclei in the ventral midbrain (VTA and SNpr) is distinct from the rest of midbrain, but the reason for this difference remained elusive. Here, we have analyzed the developmental origin of the VTA and SNpr GABAergic neurons by genetic fate mapping. We demonstrate that the majority of these GABAergic neurons originate outside the midbrain, from rhombomere 1, and move into the ventral midbrain only as postmitotic neuronal precursors. We further show that Gata2, Gata3 and Tal1 define a subpopulation of GABAergic precursors in ventral rhombomere 1. A failure in GABAergic neuron differentiation in this region correlates with loss of VTA and SNpr GABAergic neurons in Tal1 mutant mice. In contrast to midbrain, GABAergic neurons of the anterior SNpr in the diencephalon are not derived from the rhombomere 1. These results suggest unique migratory pathways for the precursors of important GABAergic neuron subpopulations, and provide the basis for understanding diversity within midbrain GABAergic neurons.  相似文献   

9.
GABAergic neurons and oligodendrocytes originate from progenitors within the ventral telencephalon. However, the molecular mechanisms that control neuron-glial cell-fate segregation, especially how extrinsic factors regulate cell-fate changes, are poorly understood. We have discovered that the Wnt receptor Ryk promotes GABAergic neuron production while repressing oligodendrocyte formation in the ventral telencephalon. We demonstrate that Ryk controls the cell-fate switch by negatively regulating expression of the intrinsic oligodendrogenic factor Olig2 while inducing expression of the interneuron fate determinant Dlx2. In addition, we demonstrate that Ryk is required for GABAergic neuron induction and oligodendrogenesis inhibition caused by Wnt3a stimulation. Furthermore, we showed that the cleaved intracellular domain of Ryk is sufficient to regulate the cell-fate switch by regulating the expression of intrinsic cell-fate determinants. These results identify Ryk as a multi-functional receptor that is able to transduce extrinsic cues into progenitor cells, promote GABAergic neuron formation, and inhibit oligodendrogenesis during ventral embryonic brain development.  相似文献   

10.
11.
Recent findings indicate that VTA and SN dopaminergic (DA) and GABAergic neurons form subpopulations that are divergent in their electrophysiological features, vulnerability to neurodegeneration, and regulation by neuropeptides. This diversity can be correlated with the anatomical organization of the VTA and SN and their inputs and outputs. In this review we describe the heterogeneity in ion channels and firing patterns, especially burst firing, in subpopulations of dopamine neurons. We go on to describe variations in vulnerability to neurotoxic damage in models of Parkinson’s disease in subgroups of DA neurons and its possible relationship to developmental gene regulation, the expression of different ion channels, and the expression of different protein markers, such as the neuroprotective marker calbindin. The electrophysiological properties of subgroups of GABAergic midbrain neurons, patterns of expression of protein markers and receptors, possible involvement of GABAergic neurons in a number of processes that are usually attributed exclusively to dopaminergic neurons, and the characteristics of a subgroup of neurons that contains both dopamine and GABA are also discussed.  相似文献   

12.
13.
Cortical GABAergic interneurons originate from ganglionic eminences and tangentially migrate into the cortical plate at early developmental stages. To elucidate the characteristics of this migration of GABAergic interneurons in living animals, we established an experimental design specialized for in vivo time-lapse imaging of the neocortex of neonate mice with two-photon laser-scanning microscopy. In vesicular GABA/glycine transporter (VGAT)-Venus transgenic mice from birth (P0) through P3, we observed multidirectional tangential migration of genetically-defined GABAergic interneurons in the neocortical marginal zone. The properties of this migration, such as the motility rate (distance/hr), the direction moved, and the proportion of migrating neurons to stationary neurons, did not change through P0 to P3, although the density of GABAergic neurons at the marginal zone decreased with age. Thus, the characteristics of the tangential motility of individual GABAergic neurons remained constant in development. Pharmacological block of GABAA receptors and of the Na+-K+-Cl cotransporters, and chelating intracellular Ca2+, all significantly reduced the motility rate in vivo. The motility rate and GABA content within the cortex of neonatal VGAT-Venus transgenic mice were significantly greater than those of GAD67-GFP knock-in mice, suggesting that extracellular GABA concentration could facilitate the multidirectional tangential migration. Indeed, diazepam applied to GAD67-GFP mice increased the motility rate substantially. In an in vitro neocortical slice preparation, we confirmed that GABA induced a NKCC sensitive depolarization of GABAergic interneurons in VGAT-Venus mice at P0-P3. Thus, activation of GABAAR by ambient GABA depolarizes GABAergic interneurons, leading to an acceleration of their multidirectional motility in vivo.  相似文献   

14.
Vong L  Ye C  Yang Z  Choi B  Chua S  Lowell BB 《Neuron》2011,71(1):142-154
Leptin acts in the brain to prevent obesity. The underlying neurocircuitry responsible for this is poorly understood, in part because of incomplete knowledge regarding first-order, leptin-responsive neurons. To address this, we and others have been removing leptin receptors from candidate first-order neurons. While functionally relevant neurons have been identified, the observed effects have been small, suggesting that most first-order neurons remain unidentified. Here we take an alternative approach and test whether first-order neurons are inhibitory (GABAergic, VGAT?) or excitatory (glutamatergic, VGLUT2?). Remarkably, the vast majority of leptin's antiobesity effects are mediated by GABAergic neurons; glutamatergic neurons play only a minor role. Leptin, working directly on presynaptic GABAergic neurons, many of which appear not to express AgRP, reduces inhibitory tone to postsynaptic POMC neurons. As POMC neurons prevent obesity, their disinhibition by leptin action on presynaptic GABAergic neurons probably mediates, at least in part, leptin's antiobesity effects.  相似文献   

15.
Neurogenesis is known to persist in the adult mammalian central nervous system (CNS). The identity of the cells that generate new neurons in the postnatal CNS has become a crucial but elusive issue. Using a transgenic mouse, we show that NG2 proteoglycan-positive progenitor cells that express the 2',3'-cyclic nucleotide 3'-phosphodiesterase gene display a multipotent phenotype in vitro and generate electrically excitable neurons, as well as astrocytes and oligodendrocytes. The fast kinetics and the high rate of multipotent fate of these NG2+ progenitors in vitro reflect an intrinsic property, rather than reprogramming. We demonstrate in the hippocampus in vivo that a sizeable fraction of postnatal NG2+ progenitor cells are proliferative precursors whose progeny appears to differentiate into GABAergic neurons capable of propagating action potentials and displaying functional synaptic inputs. These data show that at least a subpopulation of postnatal NG2-expressing cells are CNS multipotent precursors that may underlie adult hippocampal neurogenesis.  相似文献   

16.
Brain function is based on an exquisite balance between excitatory and inhibitory neurotransmission. GABAergic neurons provide the major inhibitory control. By controlling spike timing and sculpting neuronal rhythms they play a key role in regulating behavior. GABAergic neurons are highly diverse and operate with a corresponding diversity of GABAA receptor subtypes. In this article, the contribution of GABAA receptor deficits to central nervous system disorders, in particular anxiety disorders, epilepsy, schizophrenia and insomnia, is reviewed.  相似文献   

17.
The cerebral cortex is composed of a large variety of distinct cell‐types including projection neurons, interneurons, and glial cells which emerge from distinct neural stem cell lineages. The vast majority of cortical projection neurons and certain classes of glial cells are generated by radial glial progenitor cells in a highly orchestrated manner. Recent studies employing single cell analysis and clonal lineage tracing suggest that neural stem cell and radial glial progenitor lineage progression are regulated in a profound deterministic manner. In this review we focus on recent advances based mainly on correlative phenotypic data emerging from functional genetic studies in mice. We establish hypotheses to test in future research and outline a conceptual framework how epigenetic cues modulate the generation of cell‐type diversity during cortical development.  相似文献   

18.
19.
GABAergic pathways in the brainstem play an essential role in respiratory rhythmogenesis and interactions between the respiratory and cardiovascular neuronal control networks. However, little is known about the identity and function of these GABAergic inhibitory neurons and what determines their activity. In this study we have identified a population of GABAergic neurons in the ventrolateral medulla that receive increased excitatory post-synaptic potentials during inspiration, but also have spontaneous firing in the absence of synaptic input. Using transgenic mice that express GFP under the control of the Gad1 (GAD67) gene promoter, we determined that this population of GABAergic neurons is in close apposition to cardioinhibitory parasympathetic cardiac neurons in the nucleus ambiguus (NA). These neurons fire in synchronization with inspiratory activity. Although they receive excitatory glutamatergic synaptic inputs during inspiration, this excitatory neurotransmission was not altered by blocking nicotinic receptors, and many of these GABAergic neurons continue to fire after synaptic blockade. The spontaneous firing in these GABAergic neurons was not altered by the voltage-gated calcium channel blocker cadmium chloride that blocks both neurotransmission to these neurons and voltage-gated Ca(2+) currents, but spontaneous firing was diminished by riluzole, demonstrating a role of persistent sodium channels in the spontaneous firing in these cardiorespiratory GABAergic neurons that possess a pacemaker phenotype. The spontaneously firing GABAergic neurons identified in this study that increase their activity during inspiration would support respiratory rhythm generation if they acted primarily to inhibit post-inspiratory neurons and thereby release inspiration neurons to increase their activity. This population of inspiratory-modulated GABAergic neurons could also play a role in inhibiting neurons that are most active during expiration and provide a framework for respiratory sinus arrhythmia as there is an increase in heart rate during inspiration that occurs via inhibition of premotor parasympathetic cardioinhibitory neurons in the NA during inspiration.  相似文献   

20.
Fast-spiking (FS) cells in the neocortex are interconnected both by inhibitory chemical synapses and by electrical synapses, or gap-junctions. Synchronized firing of FS neurons is important in the generation of gamma oscillations, at frequencies between 30 and 80 Hz. To understand how these synaptic interactions control synchronization, artificial synaptic conductances were injected in FS cells, and the synaptic phase-resetting function (SPRF), describing how the compound synaptic input perturbs the phase of gamma-frequency spiking as a function of the phase at which it is applied, was measured. GABAergic and gap junctional conductances made distinct contributions to the SPRF, which had a surprisingly simple piecewise linear form, with a sharp midcycle break between phase delay and advance. Analysis of the SPRF showed how the intrinsic biophysical properties of FS neurons and their interconnections allow entrainment of firing over a wide gamma frequency band, whose upper and lower frequency limits are controlled by electrical synapses and GABAergic inhibition respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号