共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Barrie J. Anthony Kylie R. James Geoffrey N. Gobert Grant A. Ramm Donald P. McManus 《PloS one》2013,8(6)
Hepatic fibrosis induced by egg deposition is the most serious pathology associated with chronic schistosomiasis, in which the hepatic stellate cell (HSC) plays a central role. While the effect of Schistosoma mansoni eggs on the fibrogenic phenotype of HSCs has been investigated, studies determining the effect of eggs of
S
. japonicum
on HSCs are lacking. Disease caused by
S
. japonicum
is much more severe than that resulting from S. mansoni infection so it is important to compare the pathologies caused by these two parasites, to determine whether this phenotype is due to the species interacting differently with the mammalian host. Accordingly, we investigated the effect of
S
. japonicum
eggs on the human HSC cell line, LX-2, with and without TGF-β (Transforming Growth Factor beta) co-treatment, so as to determine the impact on genes associated with fibrogenesis, inflammation and matrix re-organisation. Activation status of HSCs was assessed by αSMA (Alpha Smooth Muscle Actin) immunofluorescence, accumulation of Oil Red O-stained lipid droplets and the relative expression of selected genes associated with activation. The fibrogenic phenotype of HSCs was inhibited by the presence of eggs both with or without TGF-β treatment, as evidenced by a lack of αSMA staining and reduced gene expression of αSMA and Col1A1 (Collagen 1A1). Unlike S. mansoni-treated cells, however, expression of the quiescent HSC marker PPAR-γ (Peroxisome Proliferator-Activated Receptor gamma) was not increased, nor was there accumulation of lipid droplets. In contrast,
S
. japonicum
eggs induced the mRNA expression of MMP-9 (Matrix Metalloproteinase 9), CCL2 (Chemokine (C-C motif) Ligand 2) and IL-6 (Interleukin 6) in HSCs indicating that rather than inducing complete HSC quiescence, the eggs induced a proinflammatory phenotype. These results suggest HSCs in close proximity to
S
. japonicum
eggs in the liver may play a role in the proinflammatory regulation of hepatic granuloma formation. 相似文献
3.
The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin’s protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host’s protective response allowing these mites to survive in the skin. 相似文献
4.
5.
Host Cell Invasion by Toxoplasma gondii Is Temporally Regulated by the Host Microtubule Cytoskeleton
Kristin R. Sweeney Naomi S. Morrissette Stephanie LaChapelle Ira J. Blader 《Eukaryotic cell》2010,9(11):1680-1689
Toxoplasma gondii is an obligate intracellular protozoan parasite that invades and replicates within most nucleated cells of warm-blooded animals. The basis for this wide host cell tropism is unknown but could be because parasites invade host cells using distinct pathways and/or repertoires of host factors. Using synchronized parasite invasion assays, we found that host microtubule disruption significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are specifically associated with the moving junction, which is the site of contact between the host cell and the invading parasite. Host microtubules are specifically associated with the moving junction of those parasites invading early after stimulating invasion but not with those invading later. Disruption of host microtubules has no effect on parasite contact, attachment, motility, or rate of penetration. Rather, host microtubules hasten the time before parasites commence invasion. This effect on parasite invasion is distinct from the role that host microtubules play in bacterial and viral infections, where they function to traffic the pathogen or pathogen-derived material from the host cell''s periphery to its interior. These data indicate that the host microtubule cytoskeleton is a structure used by Toxoplasma to rapidly infect its host cell and highlight a novel function for host microtubules in microbial pathogenesis.Toxoplasma gondii is an obligate intracellular protozoan parasite that is capable of causing disease in fetuses and immunocompromised individuals (23). The parasite infects a wide range of nucleated cells of most warm-blooded animals. The mechanisms underlying this wide tropism are not known but could be due to either the parasite infecting cells using a ubiquitously expressed host receptor and associated machinery, inserting its own receptor into the host cell''s plasma membrane, or using multiple host cell receptors/machinery (5).Toxoplasma invasion is a multistep, complex process consisting of parasite contact to host cells, intimate attachment, parasite motility, and then penetration (5). Host cell contact is a loose, low-affinity interaction that is mediated by parasite surface antigens. An unknown signal then triggers the release of proteins from a specialized secretory organelle called micronemes whose contents include proteins that function as adhesins. This is then followed by parasite gliding motility on the host cell surface. At some point, proteins from a second secretory organelle, named rhoptries, are exocytosed. Among these rhoptry proteins, several (RON2, RON4, RON5, and RON8) are part of a preformed complex that binds the previously secreted AMA1 microneme protein (1, 2, 20, 33). Together, these proteins form the moving junction complex, which defines the parasite entry site on the host cell plasma membrane. Parasite penetration occurs by the parasite propelling itself forward, via acto-myosin-dependent motility, into the host plasma membrane (35). This causes an invagination of the plasma membrane resulting in the formation of the parasitophorous vacuole (PV), which is the compartment that the parasite resides in throughout its time in the host cell. However, host plasma membrane-associated proteins are selectively incorporated into the developing PV such that glycosylphosphatidylinositol (GPI)-linked proteins are included, while single-pass transmembrane proteins are excluded (7, 24).In contrast to parasite molecules that function during invasion, few host cell components involved in this process are known. A notable exception is the finding that host Arp2/3-dependent actin polymerization promotes Toxoplasma invasion (11). Nevertheless, how actin or other host molecules function during invasion remains to be determined. The host microtubule cytoskeleton has been widely studied for its role during receptor-mediated endocytosis, as well as in bacterial and viral infections, where microtubules act to facilitate cargo transport from the host cell periphery to the interior (8, 15, 27, 29, 40). Consistent with this role in cargo transport, host microtubules also promote trafficking of rhoptry proteins secreted into the host cell (12). However, whether this host cell structure functions during parasite invasion per se is unknown.Here, we tested the hypothesis that host microtubules are used by Toxoplasma tachyzoites to penetrate into its host cell. Using synchronized parasite invasion assays, we find that disruption of host microtubules significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are localized to the moving junction but, unlike their previously described role in pathogen invasion, host microtubules promote tachyzoite invasion by hastening the time that parasites initiate invasion. 相似文献
6.
7.
Colin J. Thalhofer Joel W. Graff Laurie Love-Homan Suzanne M. Hickerson Noah Craft Stephen M. Beverley Mary E. Wilson 《Journal of visualized experiments : JoVE》2010,(41)
Distinct species of Leishmania, a protozoan parasite of the family Trypanosomatidae, typically cause different human disease manifestations. The most common forms of disease are visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). Mouse models of leishmaniasis are widely used, but quantification of parasite burdens during murine disease requires mice to be euthanized at various times after infection. Parasite loads are then measured either by microscopy, limiting dilution assay, or qPCR amplification of parasite DNA. The in vivo imaging system (IVIS) has an integrated software package that allows the detection of a bioluminescent signal associated with cells in living organisms. Both to minimize animal usage and to follow infection longitudinally in individuals, in vivo models for imaging Leishmania spp. causing VL or CL were established. Parasites were engineered to express luciferase, and these were introduced into mice either intradermally or intravenously. Quantitative measurements of the luciferase driving bioluminescence of the transgenic Leishmania parasites within the mouse were made using IVIS. Individual mice can be imaged multiple times during longitudinal studies, allowing us to assess the inter-animal variation in the initial experimental parasite inocula, and to assess the multiplication of parasites in mouse tissues. Parasites are detected with high sensitivity in cutaneous locations. Although it is very likely that the signal (photons/second/parasite) is lower in deeper visceral organs than the skin, but quantitative comparisons of signals in superficial versus deep sites have not been done. It is possible that parasite numbers between body sites cannot be directly compared, although parasite loads in the same tissues can be compared between mice. Examples of one visceralizing species (L. infantum chagasi) and one species causing cutaneous leishmaniasis (L. mexicana) are shown. The IVIS procedure can be used for monitoring and analyzing small animal models of a wide variety of Leishmania species causing the different forms of human leishmaniasis.Download video file.(95M, mp4) 相似文献
8.
Anita A. Koshy Hans K. Dietrich David A. Christian Jason H. Melehani Anjali J. Shastri Christopher A. Hunter John C. Boothroyd 《PLoS pathogens》2012,8(7)
Like many intracellular microbes, the protozoan parasite Toxoplasma gondii injects effector proteins into cells it invades. One group of these effector proteins is injected from specialized organelles called the rhoptries, which have previously been described to discharge their contents only during successful invasion of a host cell. In this report, using several reporter systems, we show that in vitro the parasite injects rhoptry proteins into cells it does not productively invade and that the rhoptry effector proteins can manipulate the uninfected cell in a similar manner to infected cells. In addition, as one of the reporter systems uses a rhoptry:Cre recombinase fusion protein, we show that in Cre-reporter mice infected with an encysting Toxoplasma-Cre strain, uninfected-injected cells, which could be derived from aborted invasion or cell-intrinsic killing after invasion, are actually more common than infected-injected cells, especially in the mouse brain, where Toxoplasma encysts and persists. This phenomenon has important implications for how Toxoplasma globally affects its host and opens a new avenue for how other intracellular microbes may similarly manipulate the host environment at large. 相似文献
9.
Maria De Angelis Francesca Bottacini Bruno Fosso Philip Kelleher Maria Calasso Raffaella Di Cagno Marco Ventura Ernesto Picardi Douwe van Sinderen Marco Gobbetti 《PloS one》2014,9(9)
Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814T, showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain''s ability to populate different niches. 相似文献
10.
11.
Background
Colonization with bacterial species from the Burkholderia cepacia complex (Bcc) is associated with fast health decline among individuals with cystic fibrosis. In order to investigate the virulence of the Bcc, several alternative infection models have been developed. To this end, the fruit fly is increasingly used as surrogate host, and its validity to enhance our understanding of host-pathogen relationships has been demonstrated with a variety of microorganisms. Moreover, its relevance as a suitable alternative to mammalian hosts has been confirmed with vertebrate organisms.Methodology/Principal Findings
The aim of this study was to establish Drosophila melanogaster as a surrogate host for species from the Bcc. While the feeding method proved unsuccessful at killing the flies, the pricking technique did generate mortality within the populations. Results obtained with the fruit fly model are comparable with results obtained using mammalian infection models. Furthermore, validity of the Drosophila infection model was confirmed with B. cenocepacia K56-2 mutants known to be less virulent in murine hosts or in other alternative models. Competitive index (CI) analyses were also performed using the fruit fly as host. Results of CI experiments agree with those obtained with mammalian models.Conclusions/Significance
We conclude that Drosophila is a useful alternative infection model for Bcc and that fly pricking assays and competition indices are two complementary methods for virulence testing. Moreover, CI results indicate that this method is more sensitive than mortality tests. 相似文献12.
Wolbachia pipientis is a ubiquitous, maternally transmitted bacterium that infects the germline of insect hosts. Estimates are that Wolbachia infect nearly 40% of insect species on the planet, making it the most prevalent infection on Earth. The bacterium, infamous for the reproductive phenotypes it induces in arthropod hosts, has risen to recent prominence due to its use in vector control. Wolbachia infection prevents the colonization of vectors by RNA viruses, including Drosophila C virus and important human pathogens such as Dengue and Chikungunya. Here we present data indicating that Wolbachia utilize the host actin cytoskeleton during oogenesis for persistence within and transmission between Drosophila melanogaster generations. We show that phenotypically wild type flies heterozygous for cytoskeletal mutations in Drosophila profilin (chic221/+ and chic1320/+) or villin (qua6-396/+) either clear a Wolbachia infection, or result in significantly reduced infection levels. This reduction of Wolbachia is supported by PCR evidence, Western blot results and cytological examination. This phenotype is unlikely to be the result of maternal loading defects, defects in oocyte polarization, or germline stem cell proliferation, as the flies are phenotypically wild type in egg size, shape, and number. Importantly, however, heterozygous mutant flies exhibit decreased total G-actin in the ovary, compared to control flies and chic221 heterozygous mutants exhibit decreased expression of profilin. Additionally, RNAi knockdown of profilin during development decreases Wolbachia titers. We analyze evidence in support of alternative theories to explain this Wolbachia phenotype and conclude that our results support the hypothesis that Wolbachia utilize the actin skeleton for efficient transmission and maintenance within Drosophila. 相似文献
13.
St. Augustinegrass (Stenotaphrum secundatum) cv FX-313 was used as a model laboratory host for monitoring population growth of the sting nematode, Belonolaimus longicaudatus, and for quantifying the effects of sting nematode parasitism on host performance in two samples of autoclaved native Margate fine sand with contrasting amounts of organic matter (OM = 7.9% and 3.8%). Following inoculation with 50 Belonolaimus longicaudatus per pot, nematodes peaked at a mean of 2,139 nematodes per pot 84 days after inoculation, remained stable through 168 days at 2,064 nematodes per pot, and declined at 210 days. The relative numbers of juveniles and adults demonstrated senescence after 84 days. Root dry weight of nematode-inoculated plants increased briefly to an apparent equilibrium 84 days after inoculation, whereas root weights of uninoculated controls continued to increase, exceeding those of inoculated plants from 84 to 210 days (P < 0.01). At 210 days, uninoculated plants had 227% the root dry weight of inoculated plants. Transpiration of FX-313 was reduced by nematodes (P < 0.0001) at 84 and 126 days after inoculation; reduction was first observed at 42 days and last observed 168 days after inoculation (P < 0.05). OM content affected all plant performance variables at multiple dates, and generally there were no inoculation x OM content interactions. OM content had no effect on nematode numbers per pot, although there was a slight (P < 0.05) increase in the number of nematodes per gram root dry weight in the low-OM soil compared with the high-OM soil. 相似文献
14.
Mar��a Alejandra Mussi Adriana S. Limansky Ver��nica Relling Pablo Ravasi Adri��n Arakaki Luis A. Actis Alejandro M. Viale 《Journal of bacteriology》2011,193(18):4736-4748
We described previously the presence in Acinetobacter baumannii of a novel outer membrane (OM) protein, CarO, which functions as an l-ornithine OM channel and whose loss was concomitant with increased carbapenem resistance among clonally related nosocomial isolates of this opportunistic pathogen. Here, we describe the existence of extensive genetic diversity at the carO gene within the A. baumannii clinical population. The systematic analysis of carO sequences from A. baumannii isolates obtained from public hospitals in Argentina revealed the existence of four highly polymorphic carO variants among them. Sequence polymorphism between the different A. baumannii CarO variants was concentrated in three well-defined protein regions that superimposed mostly to predicted surface-exposed loops. Polymorphism among A. baumannii CarO variants was manifested in differential electrophoretic mobilities, antigenic properties, abilities to form stable oligomeric structures, and l-ornithine influx abilities through the A. baumannii OM under in vivo conditions. Incongruence between the phylogenies of the clinical A. baumannii isolates analyzed and those of the carO variants they harbor suggests the existence of assortative (entire-gene) carO recombinational exchange within the A. baumannii population. Exchange of carO variants possessing differential characteristics mediated by horizontal gene transfer may constitute an A. baumannii population strategy to survive radically changing environmental conditions, such as the leap from inanimate sources to human hosts and vice versa, persistence in a compromised host, and/or survival in health care facilities. 相似文献
15.
Tina R. Clark Amanda M. Lackey Betsy Kleba Lonnie O. Driskell Erika I. Lutter Craig Martens David O. Wood Ted Hackstadt 《Journal of bacteriology》2011,193(18):4993-4995
Transformation frequencies of a mariner-based transposon system in Rickettsia rickettsii were determined using a plaque assay system for enumeration and isolation of mutants. Sequence analysis of insertion sites in both R. rickettsii and R. prowazekii indicated that insertions were random. Transposon mutagenesis provides a useful tool for rickettsial research. 相似文献
16.
Chunxue Lu Lei Lei Bo Peng Lingli Tang Honglei Ding Siqi Gong Zhongyu Li Yimou Wu Guangming Zhong 《PloS one》2013,8(7)
Glycogen has been localized both inside and outside Chlamydia trachomatis organisms. We now report that C. trachomatis glycogen synthase (GlgA) was detected in both chlamydial organism-associated and -free forms. The organism-free GlgA molecules were localized both in the lumen of chlamydial inclusions and in the cytosol of host cells. The cytosolic GlgA displayed a distribution pattern similar to that of a known C. trachomatis-secreted protease, CPAF. The detection of GlgA was specific since the anti-GlgA antibody labeling was only removed by preabsorption with GlgA but not CPAF fusion proteins. GlgA was detectable at 12h and its localization into host cell cytosol only became apparent at 24h after infection. The cytosolic localization of GlgA was conserved among all C. trachomatis serovars. However, the significance of the GlgA secretion into host cell cytoplasm remains unclear since, while expression of chlamydial GlgA in HeLa cells increased glycogen stores, it did not affect a subsequent infection with C. trachomatis. Similar to several other C. trachomatis-secreted proteins, GlgA is immunogenic in women urogenitally infected with C. trachomatis, suggesting that GlgA is expressed and may be secreted into host cell cytosol during C. trachomatis infection in humans. These findings have provided important information for further understanding C. trachomatis pathogenic mechanisms. 相似文献
17.
J. L. Starr E. K. Tomaszewski M. Mundo-Ocampo J. G. Baldwin 《Journal of nematology》1996,28(4):565-568
Meloidogyne sp. from five pecan (Carya illinoensis) orchards in Texas were distinctive in host range and iszoyme profiles from common species of Meloidogyne but were morphologically congruent with Meloidogyne partityla Kleynhans, a species previously known only in South Africa. In addition to pecan, species of walnut (Juglans hindsii and J. regia) and hickory (C. ovata) also were hosts. No reproduction was observed on 15 other plant species from nine families, including several common hosts of other Meloidogyne spp. Three esterase phenotypes and two malate dehydrogenase phenotypes of M. partityla were identified by polyacrylamide gel electrophoresis. Each of these isozyme phenotypes was distinct from those of the more common species M. arenaria, M. hapla, M. incognita, and M. javanica. 相似文献
18.
Entry of Staphylococcus aureus into the bloodstream can lead to metastatic abscess formation and infective endocarditis. Crucial to the development of both these conditions is the interaction of S. aureus with endothelial cells. In vivo and in vitro studies have shown that the staphylococcal invasin FnBPA triggers bacterial invasion of endothelial cells via a process that involves fibronectin (Fn) bridging to α5β1 integrins. The Fn-binding region of FnBPA usually contains 11 non-identical repeats (FnBRs) with differing affinities for Fn, which facilitate the binding of multiple Fn molecules and may promote integrin clustering. We thus hypothesized that multiple repeats are necessary to trigger the invasion of endothelial cells by S. aureus. To test this we constructed variants of fnbA containing various combinations of FnBRs. In vitro assays revealed that endothelial cell invasion can be facilitated by a single high-affinity, but not low-affinity FnBR. Studies using a nisin-inducible system that controlled surface expression of FnBPA revealed that variants encoding fewer FnBRs required higher levels of surface expression to mediate invasion. High expression levels of FnBPA bearing a single low affinity FnBR bound Fn but did not invade, suggesting that FnBPA affinity for Fn is crucial for triggering internalization. In addition, multiple FnBRs increased the speed of internalization, as did higher expression levels of FnBPA, without altering the uptake mechanism. The relevance of these findings to pathogenesis was demonstrated using a murine sepsis model, which showed that multiple FnBRs were required for virulence. In conclusion, multiple FnBRs within FnBPA facilitate efficient Fn adhesion, trigger rapid bacterial uptake and are required for pathogenesis. 相似文献
19.
20.
Eighteen soybean fields, six each with race 3, race 4, or Bedford population of Heterodera glycines, were selected for testing of host variability. Each field was divided into three sections, and a bulk soil sample was taken from each section. The 54 bulk soil populations (BSP) and 270 single cyst populations (SCP) were subjected to race determination tests. Tests of the 18 BSP and 90 SCP from the race 3 fields revealed that race 3 was the predominant race; however, 68 of the populations tested were other races. Tests of the 18-BSP and 90 SCP from race 4 fields demonstrated that races 2 and 4 were predominant, with 38 and 39 populations; respectively. Tests of the 18 BSP and 90 SCP from the Bedford population fields revealed tremendous variability. Races 2, 4, and 6 were the predominant races, with 32, 31, and 28 populations, respectively. These results indicate that of the three races studied, the Bedford population is the most variable, race 3 shows considerable variability, and race 4 shows very little. 相似文献