首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Tumorigenesis is a complex, multistep process that depends on numerous alterations within the cell and contribution from the surrounding stroma. The ability to model macroscopic tumor evolution with high fidelity may contribute to better predictive tools for designing tumor therapy in the clinic. However, attempts to model tumor growth have mainly been developed and validated using data from xenograft mouse models, which fail to capture important aspects of tumorigenesis including tumor-initiating events and interactions with the immune system. In the present study, we investigate tumor growth and therapy dynamics in a mouse model of de novo carcinogenesis that closely recapitulates tumor initiation, progression and maintenance in vivo. We show that the rate of tumor growth and the effects of therapy are highly variable and mouse specific using a Gompertz model to describe tumor growth and a two-compartment pharmacokinetic/ pharmacodynamic model to describe the effects of therapy in mice treated with 5-FU. We show that inter-mouse growth variability is considerably larger than intra-mouse variability and that there is a correlation between tumor growth and drug kill rates. Our results show that in vivo tumor growth and regression in a double transgenic mouse model are highly variable both within and between subjects and that mathematical models can be used to capture the overall characteristics of this variability. In order for these models to become useful tools in the design of optimal therapy strategies and ultimately in clinical practice, a subject-specific modelling strategy is necessary, rather than approaches that are based on the average behavior of a given subject population which could provide erroneous results.  相似文献   

7.
The molecular mechanism underlying constitutive activation of AKT signaling, which plays essential roles in astrocytoma progression, is not fully characterized. Increasing numbers of studies have reported that microRNAs are involved in the malignant behavior of astrocytoma cells via directly targeting multiple oncogenes or tumor suppressors. Here, we found that microRNA (miR)-542-3p expression was decreased in glioblastoma cell lines and astrocytoma tissues, and reduced levels of miR-542-3p expression correlated with high histopathological grades and poor prognosis of astrocytoma patients. Exogenous miR-542-3p suppressed glioblastoma cell invasion through not only targeting AKT1 itself but also directly down-regulating its two important upstream regulators, namely, integrin-linked kinase and PIK3R1. Notably, overexpressing miR-542-3p decreased AKT1 phosphorylation and directly and indirectly repressed nuclear translocation and transactivation activity of β-catenin to exert its anti-invasive effect. Furthermore, the miR-542-3p expression level negatively correlated with AKT activity as well as levels of integrin-linked kinase and PIK3R1 in human astrocytoma specimens. These findings suggest that miR-542-3p acts as a negative regulator in astrocytoma progression and that miR-542-3p down-regulation contributes to aberrant activation of AKT signaling, leaving open the possibility that miR-542-3p may be a potential therapeutic target for high grade astrocytoma.  相似文献   

8.
The BULT melanoma originated at Brown University as a spontaneous, small black nodule on the tail of an adult female mouse of the LT/Ch strain. Histological examination of a portion of the tumor indicated that it was intradermal and consisted predominantly of heavily melanized, ovoid to fusiform cells with melanin-laden macrophages scattered among them. The BULT melanoma has been maintained in LT/Ch mice for approximately 5 years by periodic transplantation, at first subcutaneously on the flanks and, more recently, intramuscularly in the hind legs. The shift in transplantation site was made following a marked decline in the growth of subcutaneous grafts. The transplants have retained the uniform deep-black melanization and general histology of the primary melanoma. Numerous melanosomes at all stages of development are found within the melanoma cells. DOPA-positive cytoplasmic vesicles are abundant. Occasional autophagic vacuoles containing clusters of melanosomes are also present. A few metastases from the transplanted melanoma have been observed in lymph nodes and on one occasion in the lungs. When grown in vitro, BULT melanoma cells do not require special growth promoting agents (e.g., TPA; cAMP) in order to proliferate. The BULT melanoma differs in one or more respects from each of the other three transplantable spontaneous mouse melanomas widely used in cancer research. In addition, it arose in a strain of mice characterized by the spontaneous death of melanocytes while the latter are engaged in synthesizing eumelanin within hair follicles. Karyotypic analysis of cultured cells showed a modal chromosome number of 68 with a range of 58–72 chromosomes.  相似文献   

9.
The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM), and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors, and both EGFR and Rictor are associated with increased proliferation, invasion, metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines, including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing, tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan, temozolomide and vincristine. In LN229, co-silencing of EGFR and Rictor resulted in reduced cell migration, and increased sensitivity to vincristine and temozolomide. In U118MG, silencing of Rictor alone was sufficient to increase this line’s sensitivity to vincristine and temozolomide. In vivo, while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth, silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective means of treating GBM.  相似文献   

10.
There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1–2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50–60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.  相似文献   

11.
The Cre/loxP system is a powerful tool for generating conditional genomic recombination and is often used to examine the mechanistic role of specific genes in tumorigenesis. However, Cre toxicity due to its non-specific endonuclease activity has been a concern. Here, we report that tamoxifen-mediated Cre activation in vivo induced the regression of primary lymphomas in p53−/− mice. Our findings illustrate that Cre activation alone can induce the regression of established tumors.  相似文献   

12.
13.

Background

Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains unclear what overall reduction in transmission is achievable using currently available tools.

Methods and Findings

We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus) with parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the effect of the switch to artemisinin-combination therapy (ACT) and increasing coverage of long-lasting insecticide treated nets (LLINs) from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs, additional rounds of indoor residual spraying (IRS), mass screening and treatment (MSAT), and a future RTS,S/AS01 vaccine in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs), vector–species combinations, and patterns of seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting (EIR∼3 ibppy [infectious bites per person per year]), LLINs have the potential to reduce malaria transmission to low levels (<1% parasite prevalence in all age-groups) provided usage levels are high and sustained. In two of the moderate-transmission settings (EIR∼43 and 81 ibppy), additional rounds of IRS with DDT coupled with MSAT could drive parasite prevalence below a 1% threshold. However, in the third (EIR = 46) with An. arabiensis prevailing, these interventions are insufficient to reach this threshold. In both high-transmission settings (EIR∼586 and 675 ibppy), either unrealistically high coverage levels (>90%) or novel tools and/or substantial social improvements will be required, although considerable reductions in prevalence can be achieved with existing tools and realistic coverage levels.

Conclusions

Interventions using current tools can result in major reductions in P. falciparum malaria transmission and the associated disease burden in Africa. Reduction to the 1% parasite prevalence threshold is possible in low- to moderate-transmission settings when vectors are primarily endophilic (indoor-resting), provided a comprehensive and sustained intervention program is achieved through roll-out of interventions. In high-transmission settings and those in which vectors are mainly exophilic (outdoor-resting), additional new tools that target exophagic (outdoor-biting), exophilic, and partly zoophagic mosquitoes will be required. Please see later in the article for the Editors'' Summary  相似文献   

14.
小鼠自主活动实验中的评价指标   总被引:2,自引:2,他引:2  
目的为神经精神药物研究中动物自主活动评价提供科学客观、规范灵敏的指标评价体系。方法选用经典的镇静药物力月西、兴奋药咖啡因,以及镇静安神临床疗效肯定的中药远志及人参,研究对小鼠水平自主活动指标,包括周边区、中央区及总区域的运动、静息状态等评价指标的影响。结果总路程、平均速度、运动总时间、周边区运动路程、周边区运动时间与小鼠的兴奋状态成同向变化,静息总时间、周边区静息时间与小鼠的兴奋状态成反向变化。以上7个指标能准确、有效的评价小鼠的行为学改变。结论总路程、平均速度、运动总时间、周边区运动路程、周边区运动时间、静息总时间、周边区静息时间为评价小鼠自主活动客观灵敏的有效指标。  相似文献   

15.
目的 检测在星形胶质细胞瘤中一氧化氮(nitric oxide,NO)的表达及促进炎性水肿带相关肿瘤微环境的作用。方法 收集27例星形胶质细胞瘤患者的临床资料和肿瘤标本(WHO II级10例、II-III级7例、IV级10例),磁共振成像确认水肿带及手术取材部位;格里斯试剂比色法检测亚硝酸盐含量;质谱分析不同级别星形胶质细胞瘤(不同级别各5例)水肿带炎性分子含量;通过ClusterProfiler包以及Proteomaps和Metascape网页工具进行富集分析预测肿瘤分泌的NO与微环境中互作的蛋白质。结果 星形胶质细胞瘤组织及水肿带中存在NO,胶质瘤组织中的NO高于水肿带中的NO。在WHO II-III级和WHO IV级胶质瘤的水肿带中,有大量超氧化物歧化酶、细胞色素C氧化酶、热休克蛋白、CD44抗原,白介素-8、白介素-24、凝溶胶蛋白、应激诱导磷酸蛋白1、丝裂原活化蛋白激酶、硫氧还蛋白过氧化物酶、S100蛋白等炎症相关蛋白质的表达。信号通路分析提示,与II-III级别星形胶质细胞瘤相比,Ⅳ级胶质母细胞瘤水肿带中的基因更多地参与无氧代谢,如糖酵解。更重要的是,这些目标基因显著参与多种氧化还原反应,如氧化还原酶活性和过氧化物酶活性。其中,诱导性一氧化氮合酶(inducible NOS,iNOS)、NO、过氧亚硝酸阴离子(ONOO-)、铜/锌超氧化物歧化酶(Cu/Zn superoxide dismutase,SOD-1)在氧化还原反应中发挥重要作用。结论 星形胶质细胞瘤周围水肿带的形成是炎症反应的结果,胶质瘤细胞通过分泌NO调控SOD-1等炎性分子促进侵袭性炎性肿瘤微环境的形成。  相似文献   

16.
Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells. In this investigation, the cytotolytic properties of NDV strain AF2240 were evaluated on brain tumor cell line, anaplastic astrocytoma (U-87MG), by using MTT assay. Cytological observations were studied using fluorescence microscopy and transmission electron microscopy to show the apoptogenic features of NDV on U-87MG. DNA laddering in agarose gel electrophoresis and terminal deoxyribonucleotide transferase-mediated dUTP-X nick end-labeling staining assay confirmed that the mode of cell death was by apoptosis. However, analysis of the cellular DNA content by flowcytometery showed that there was a loss of treated U-87MG cells in all cell cycle phases (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Early apoptosis was observed 6 h post-inoculation by annexin-V flow-cytometry method. It could be concluded that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing of time and virus titer.  相似文献   

17.

Background

Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor that carries a 5-y survival rate of 5%. Attempts at eliciting a clinically relevant anti-GBM immune response in brain tumor patients have met with limited success, which is due to brain immune privilege, tumor immune evasion, and a paucity of dendritic cells (DCs) within the central nervous system. Herein we uncovered a novel pathway for the activation of an effective anti-GBM immune response mediated by high-mobility-group box 1 (HMGB1), an alarmin protein released from dying tumor cells, which acts as an endogenous ligand for Toll-like receptor 2 (TLR2) signaling on bone marrow-derived GBM-infiltrating DCs.

Methods and Findings

Using a combined immunotherapy/conditional cytotoxic approach that utilizes adenoviral vectors (Ad) expressing Fms-like tyrosine kinase 3 ligand (Flt3L) and thymidine kinase (TK) delivered into the tumor mass, we demonstrated that CD4+ and CD8+ T cells were required for tumor regression and immunological memory. Increased numbers of bone marrow-derived, tumor-infiltrating myeloid DCs (mDCs) were observed in response to the therapy. Infiltration of mDCs into the GBM, clonal expansion of antitumor T cells, and induction of an effective anti-GBM immune response were TLR2 dependent. We then proceeded to identify the endogenous ligand responsible for TLR2 signaling on tumor-infiltrating mDCs. We demonstrated that HMGB1 was released from dying tumor cells, in response to Ad-TK (+ gancyclovir [GCV]) treatment. Increased levels of HMGB1 were also detected in the serum of tumor-bearing Ad-Flt3L/Ad-TK (+GCV)-treated mice. Specific activation of TLR2 signaling was induced by supernatants from Ad-TK (+GCV)-treated GBM cells; this activation was blocked by glycyrrhizin (a specific HMGB1 inhibitor) or with antibodies to HMGB1. HMGB1 was also released from melanoma, small cell lung carcinoma, and glioma cells treated with radiation or temozolomide. Administration of either glycyrrhizin or anti-HMGB1 immunoglobulins to tumor-bearing Ad-Flt3L and Ad-TK treated mice, abolished therapeutic efficacy, highlighting the critical role played by HMGB1-mediated TLR2 signaling to elicit tumor regression. Therapeutic efficacy of Ad-Flt3L and Ad-TK (+GCV) treatment was demonstrated in a second glioma model and in an intracranial melanoma model with concomitant increases in the levels of circulating HMGB1.

Conclusions

Our data provide evidence for the molecular and cellular mechanisms that support the rationale for the clinical implementation of antibrain cancer immunotherapies in combination with tumor killing approaches in order to elicit effective antitumor immune responses, and thus, will impact clinical neuro-oncology practice.  相似文献   

18.
Suppression of dengue and malaria through releases of genetically engineered mosquitoes might soon become feasible. Aedes aegypti mosquitoes carrying a conditionally lethal transgene have recently been used to suppress local vector populations in small-scale field releases. Prior to releases of transgenic insects on a wider scale, however, most regulatory authorities will require additional evidence that suppression will be effective in natural heterogeneous habitats. We use a spatially explicit stochastic model of an Ae. aegypti population in Iquitos, Peru, along with an uncertainty analysis of its predictions, to quantitatively assess the outcome of varied operational approaches for releases of transgenic strains with conditional death of females. We show that population elimination might be an unrealistic objective in heterogeneous populations. We demonstrate that substantial suppression can nonetheless be achieved if releases are deployed in a uniform spatial pattern using strains combining multiple lethal elements, illustrating the importance of detailed spatial models for guiding genetic mosquito control strategies.  相似文献   

19.
Evaluation of Tempol Radioprotection in a Murine Tumor Model   总被引:7,自引:0,他引:7  
Tempol, a stable nitroxide free radical compound, is an in vitro and in vivo radioprotector. Previous studies have shown that Tempol protects C3H mice against whole-body radiation-induced bone marrow failure. In this study, the radioprotection of tumor tissue was evaluated. RIF-1 tumor cells were implanted in female C3H mice 10 d prior to radiation. Groups of mice were injected intraperitoneally with Tempol (275 mg/kg) or PBS followed 10 min later by a single dose of radiation to the tumor bed. Tumor growth curves generated after 10 and 33.3 Gy doses of radiation showed no difference in growth between the Tempol- and PBS-treated animals. A full radiation dose-response experiment revealed a tumor control dose in 50% of the animals in 30 d (TCD50/30) value of 36.7 Gy for Tempol-treated mice and 41.8 Gy for saline-treated mice suggesting no protection of the RIF-1 tumor by Tempol. Tumor pharmacokinetics were done to determine why Tempol differentially protected bone marrow and not tumor cells. Differential reduction of Tempol in the RIF-1 tumor and bone marrow was evaluated with EPR spectroscopy 10, 20, and 30 min after injection. Bioreduction of Tempol to its corresponding hydroxylamine (which is not a radioprotector) occurred to a greater extent in RIF-1 tumor cells compared to bone marrow. We conclude that the differences in radioprotection may result from enhanced intratumor bioreduction of Tempol to its nonradioprotective hydroxylamine analogue. The nitroxides as a class of compounds may provide a means to exploit the redox differences between normal tissues and tumors. © 1997 Elsevier Science Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号