首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
Paleoparasitological studies using microscopy showed that Ascarisand Trichuris trichiura are the human intestinal parasites most found in archaeological sites. However, in pre-Columbian South American archaeological sites, Ascaris is rare. In this work we standardized a molecular methodology for Ascaris diagnosis directly from ancient DNA retrieved from coprolites. Using cythochrome b gene (142 bp) target, ancient DNA sequences were retrieved from South American samples, negative by microscopy. Moreover, the methodology applied was sensitive enough to detect ancient DNA extracted from 30 Ascaris eggs from an European coprolite. These results revealed a new scenery for the paleodistribution of Ascaris in South America.  相似文献   

2.
Coprolites are fossilized feces that can be used to provide information on the composition of the intestinal microbiota and, as we show, possibly on diet. We analyzed human coprolites from the Huecoid and Saladoid cultures from a settlement on Vieques Island, Puerto Rico. While more is known about the Saladoid culture, it is believed that both societies co-existed on this island approximately from 5 to 1170 AD. By extracting DNA from the coprolites, followed by metagenomic characterization, we show that both cultures can be distinguished from each other on the basis of their bacterial and fungal gut microbiomes. In addition, we show that parasite loads were heavy and also culturally distinct. Huecoid coprolites were characterized by maize and Basidiomycetes sequences, suggesting that these were important components of their diet. Saladoid coprolite samples harbored sequences associated with fish parasites, suggesting that raw fish was a substantial component of their diet. The present study shows that ancient DNA is not entirely degraded in humid, tropical environments, and that dietary and/or host genetic differences in ancient populations may be reflected in the composition of their gut microbiome. This further supports the hypothesis that the two ancient cultures studied were distinct, and that they retained distinct technological/cultural differences during an extended period of close proximity and peaceful co-existence. The two populations seemed to form the later-day Taínos, the Amerindians present at the point of Columbian contact. Importantly, our data suggest that paleomicrobiomics can be a powerful tool to assess cultural differences between ancient populations.  相似文献   

3.
Twenty six coprolites from an archaeological site in the province of Iquique, northern Chile, were examined for parasites. Coprolites were found in two excavation units, I and II (Tiliviche site), dated respectively at 5,900 B.C. to 4,110 B.C. and 4,110 B.C. to 1,950 B.C., and identified as of human origin. Only at the unit II coprolites containing helminth eggs identified as Diphyllobothrium pacificum were found. The presence of this tapeworm, a parasite of the American Sea Lion, in human coprolites, points to a diet which included marine fishes and provides information on the antiquity of infection by Diphyllobothrium pacificum. It is interesting to note that Baer (1969) suggests the presence of this tapeworm in pre-Columbian populations when diagnosing the first human cases in today's population in Peru.  相似文献   

4.
Enterobius vermicularis, pinworm, is one of the most common helminths worldwide, infecting nearly a billion people at all socio-economic levels. In prehistoric populations the paleoparasitological findings show a pinworm homogeneous distribution among hunter-gatherers in North America, intensified with the advent of agriculture. This same increase also occurred in the transition from nomad hunter-gatherers to sedentary farmers in South America, although E. vermicularis infection encompasses only the ancient Andean peoples, with no record among the pre-Colombian populations in the South American lowlands. However, the outline of pinworm paleoepidemiology has been supported by microscopic finding of eggs recovered from coprolites. Since molecular techniques are precise and sensitive in detecting pathogen ancient DNA (aDNA), and also could provide insights into the parasite evolutionary history, in this work we have performed a molecular paleoparasitological study of E. vermicularis. aDNA was recovered and pinworm 5S rRNA spacer sequences were determined from pre-Columbian coprolites (4110 BC-AD 900) from four different North and South American archaeological sites. The sequence analysis confirmed E. vermicularis identity and revealed a similarity among ancient and modern sequences. Moreover, polymorphisms were identified at the relative positions 160, 173 and 180, in independent coprolite samples from Tulán, San Pedro de Atacama, Chile (1080-950 BC). We also verified the presence of peculiarities (Splicing leader (SL1) RNA sequence, spliced donor site, the Sm antigen biding site, and RNA secondary structure) which characterise the SL1 RNA gene. The analysis shows that the SL1 RNA gene of contemporary pinworms was present in pre-Columbian E. vermicularis by 6110 years ago. We were successful in detecting E. vermicularis aDNA even in coprolites without direct microscopic evidence of the eggs, improving the diagnosis of helminth infections in the past and further pinworm paleoepidemiological studies.  相似文献   

5.
The study of coprolites from earlier cultures represents a great opportunity to study an “unaltered” composition of the intestinal microbiota. To test this, pre-Columbian coprolites from two cultures, the Huecoid and Saladoid, were evaluated for the presence of DNA, proteins and lipids by cytochemical staining, human and/or dog-specific Bacteroides spp. by PCR, as well as bacteria, fungi and archaea using Terminal Restriction Fragment analyses. DNA, proteins and lipids, and human-specific Bacteroides DNA were detected in all coprolites. Multidimensional scaling analyses resulted in spatial arrangements of microbial profiles by culture, further supported by cluster analysis and ANOSIM. Differences between the microbial communities were positively correlated with culture, and SIMPER analysis indicated 68.8% dissimilarity between the Huecoid and Saladoid. Proteobacteria, Bacteroidetes and methanogens were found in all coprolite samples. Propionebacteria, Shewanella and lactic acid bacteria dominated in the Huecoid samples, while Acidobacteria, and peptococci were dominant in Saladoid samples. Yeasts, including Candida albicans and Crypotococcus spp. were found in all samples. Basidiomycetes were the most notable fungi in Huecoid samples while Ascomycetes predominated in Saladoid samples, suggesting differences in dietary habits. Our study provides an approach for the study of the microbial communities of coprolite samples from various cultures.  相似文献   

6.
The aim of this work was to determine approaches that would improve the quality of ancient DNA (aDNA) present in coprolites to enhance the possibility of success in retrieving specific sequence targets. We worked with coprolites from South American archaeological sites in Brazil and Chile dating up to 7,000 years ago. Using established protocols for aDNA extraction we obtained samples showing high degradation as usually happens with this kind of material. The reconstructive polymerization pretreatment was essential to overcome the DNA degradation and the serial dilutions helped with to prevent polymerase chain reaction (PCR) inhibitors. Moreover, the random amplified polymorphic DNA-PCR has been shown to be a reliable technique for further experiments to recover specific aDNA sequences.  相似文献   

7.
We performed high-throughput sequencing of DNA from fossilized faeces to evaluate this material as a source of information on the genome and diet of Pleistocene carnivores. We analysed coprolites derived from the extinct cave hyena (Crocuta crocuta spelaea), and sequenced 90 million DNA fragments from two specimens. The DNA reads enabled a reconstruction of the cave hyena mitochondrial genome with up to a 158-fold coverage. This genome, and those sequenced from extant spotted (Crocuta crocuta) and striped (Hyaena hyaena) hyena specimens, allows for the establishment of a robust phylogeny that supports a close relationship between the cave and the spotted hyena. We also demonstrate that high-throughput sequencing yields data for cave hyena multi-copy and single-copy nuclear genes, and that about 50 per cent of the coprolite DNA can be ascribed to this species. Analysing the data for additional species to indicate the cave hyena diet, we retrieved abundant sequences for the red deer (Cervus elaphus), and characterized its mitochondrial genome with up to a 3.8-fold coverage. In conclusion, we have demonstrated the presence of abundant ancient DNA in the coprolites surveyed. Shotgun sequencing of this material yielded a wealth of DNA sequences for a Pleistocene carnivore and allowed unbiased identification of diet.  相似文献   

8.
The analysis of the DNA of ancient micro-organisms in archaeological and palaeontological human remains can contribute to the understanding of issues as different as the spreading of a new disease, a mummification process or the effect of diets on historical human populations. The quest for this type of DNA, however, can represent a particularly demanding task. This is mainly due to the abundance and diffusion of bacteria, fungi, yeasts, algae and protozoans in the most diverse environments of the present-day biosphere and the resulting difficulty in distinguishing between ancient and modern DNA. Nevertheless, at least under some special circumstances, by using rigorous protocols, which include an archaeometric survey of the specimens and evaluation of the palaeoecological consistency of the results of DNA sequence analysis, glimpses of the composition of the original microbial flora (e.g. colonic flora) can be caught in ancient human remains. Potentials and pitfalls of this research field are illustrated by the results of research works performed on prehistoric, pre-Columbian and Renaissance human mummies.  相似文献   

9.
The identification of parasites from ancient cultures expands our list of parasites infective to extant humans. A partially mummified human body from the archeological site of Lapa do Boquete, Minas Gerais State, Brazil, was recently discovered. It was interred between 600 and 1,200 yr ago. Dietary analysis showed that the mummified body was from a society that had a mixed subsistence of agriculture and gathering of wild foods. Coprolites from the body contained numerous helminth eggs. The eggs were identified as those of Echinostoma sp. and hookworm. Hookworm infection in pre-Columbian populations is already established, but this is the first evidence of Echinostoma sp. eggs found in human coprolites. The diagnosis of a true infection, as opposed to false parasitism, is discussed. The possibility of Echinostoma ilocanum infection is discussed, as this is a common species found in humans in the Asiatic region, which could have been introduced in South America in the pre-Columbian period. Alternative possibilities are also considered, including indigenous Brazilian Echinostoma species.  相似文献   

10.
The process of natural mummification is a rare and unique process from which little is known about the resulting microbial community structure. In the present study, we characterized the microbiome of paleofeces, and ascending, transverse and descending colon of an 11th century A.D. pre-Columbian Andean mummy by 16S rRNA gene high-throughput sequencing and metagenomics. Firmicutes were the most abundant bacterial group, with Clostridium spp. comprising up to 96.2% of the mummified gut, while Turicibacter spp. represented 89.2% of the bacteria identified in the paleofeces. Microbiome profile of the paleofeces was unique when compared to previously characterized coprolites that did not undergo natural mummification. We identified DNA sequences homologous to Clostridium botulinum, Trypanosoma cruzi and human papillomaviruses (HPVs). Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified. The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures. Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.  相似文献   

11.
A molecular paleoparasitological diagnostic approach was developed for Enterobius vermicularis. Ancient DNA was extracted from 27 coprolites from archaeological sites in Chile and USA. Enzymatic amplification of human mtDNA sequences confirmed the human origin. We designed primers specific to the E. vermicularis 5S ribosomal RNA spacer region and they allowed reproducible polymerase chain reaction identification of ancient material. We suggested that the paleoparasitological microscopic identification could accompany molecular diagnosis, which also opens the possibility of sequence analysis to understand parasite-host evolution.  相似文献   

12.
Knowledge about the diet and ecology of extinct herbivores has important implications for understanding the evolution of plant defence structures, establishing the influences of herbivory on past plant community structure and composition, and identifying pollination and seed dispersal syndromes. The flightless ratite moa (Aves: Dinornithiformes) were New Zealand's largest herbivores prior to their extinction soon after initial human settlement. Here we contribute to the knowledge of moa diet and ecology by reporting the results of a multidisciplinary study of 35 coprolites from a subalpine cave (Euphrates Cave) on the South Island of New Zealand. Ancient DNA analysis and radiocarbon dating revealed the coprolites were deposited by the extinct upland moa (Megalapteryx didinus), and span from at least 6,368±31 until 694±30 (14)C years BP; the approximate time of their extinction. Using pollen, plant macrofossil, and ancient DNA analyses, we identified at least 67 plant taxa from the coprolites, including the first evidence that moa fed on the nectar-rich flowers of New Zealand flax (Phormium) and tree fuchsia (Fuchsia excorticata). The plant assemblage from the coprolites reflects a highly-generalist feeding ecology for upland moa, including browsing and grazing across the full range of locally available habitats (spanning southern beech (Nothofagus) forest to tussock (Chionochloa) grassland). Intact seeds in the coprolites indicate that upland moa may have been important dispersal agents for several plant taxa. Plant taxa with putative anti-browse adaptations were also identified in the coprolites. Clusters of coprolites (based on pollen assemblages, moa haplotypes, and radiocarbon dates), probably reflect specimens deposited at the same time by individual birds, and reveal the necessity of suitably large sample sizes in coprolite studies to overcome potential biases in diet interpretation.  相似文献   

13.
Ancient human DNA has been treated cautiously ever since the problems related to this type of material were exposed in the early 1990s, but as sequential genetic data from ancient specimens have been key components in several evolutionary and ecological studies, interest in ancient human DNA is on the increase again. It is especially tempting to approach archaeological and anthropological questions through this type of material, but DNA from ancient human tissue is notoriously complicated to work with due to the risk of contamination with modern human DNA. Various ways of authenticating results based on ancient human DNA have been developed to circumvent the problems. One commonly used method is to predict what the contamination is expected to look like and then test whether the ancient human DNA fulfils this prediction. If it does, the results are rejected as contamination, while if it does not, they are often considered authentic. We show here that human contamination in ancient material may well deviate from local allele frequencies or the distributions to be found among the laboratory workers and archaeologists. We conclude that it is not reliable to authenticate ancient human DNA solely by showing that it is different from what would be expected from people who have handled the material.  相似文献   

14.
An important point in paleoparasitology is the correct diagnosis of the origin of coprolites found in archaeological sites. The identification of human and animal coprolites, through the study of the shape, size, characteristics after rehydration, alimentary contents, and the presence of parasites, has proved to be accurate for human coprolites. For non-human ones we compared coprolites with recent faeces of animals collected near the archaeological sites, following the methodology above mentioned. In this paper anteaters coprolites (Tamandua tetradactyla; Myrmecophaga tridactyla) with eggs of Gigantorhynchus echinodiscus (Archiancanthocephala; Gigantorynchidae) were identified.  相似文献   

15.
Nucleic acids fractions were isolated from pre-Columbian maize seeds and characterized using different approaches such as polyacrylamide gel electrophoresis, anti-DNA antibody binding, HPLC fractionation, molecular hybridization with cloned genes, and DNA amplification by the polymerase chain reaction. The nucleic acids were found to be very depolymerized (less than or equal to 140 base pairs in length) and composed mainly of ribosomal RNA. Despite the very low amount and degree of polymerization of seed DNA, specific maize nuclear Mu1, Mu4, Mu8 and, possibly, Mu5 element components could be detected, thanks to the use of amplification systems as short as 90 bp. The results suggest that evaluation of the relative proportions of Mu-type element components and, possibly, other maize genomic components in single mummified kernels, may offer a new key to the study of ancient maize populations.  相似文献   

16.
This paper deals with the extraction, amplification and sequencing of ancient DNA (aDNA) from spikelets of wild cereals dated at ca. 9000 cal yr BP, representing the most ancient plants with preserved genetic material from the Sahara desert. The sub-fossil records were collected from the archaeological excavation carried out at Takarkori, an archaeological site located in south-western Libya. Morphological and genetic analyses were made on 100 well preserved dried spikelets. Ten DNA extraction protocols were performed to evaluate nucleic acid recovery in terms of DNA yield, purity and amplification success of the chloroplast barcode region matK. The extraction protocol that returned the most suitable DNA to be amplified is the Kistler and Shapiro (2011: J Archaeol Sci 38: 3549-3554) modified protocol. In our study, the results from matK amplification suggested that four specimens are the most appropriate number of spikelets for these analyses. DNA was then used for PCR amplifications of four chloroplast barcode genes: rbcL, matK, trnH-psbA and trnL. A phylogenetic analysis shows the strict relation between the archaeological specimens and modern Panicoideae, supporting the morphological identification. The results indicate that spikelets have a close relation to Panicum laetum Kunth, a wild cereal still collected in tropical Africa.  相似文献   

17.
Host-specific parasites of humans are used to track ancient migrations. Based on archaeoparasitology, it is clear that humans entered the New World at least twice in ancient times. The archaeoparasitology of some intestinal parasites in the New World points to migration routes other than the Bering Land Bridge. Helminths have been found in mummies and coprolites in North and South America. Hookworms (Necator and Ancylostoma), whipworms (Trichuris trichiura) and other helminths require specific conditions for life-cycle completion. They could not survive in the cold climate of the northern region of the Americas. Therefore, humans would have lost some intestinal parasites while crossing Beringia. Evidence is provided here from published data of pre-Columbian sites for the peopling of the Americas through trans-oceanic or costal migrations.  相似文献   

18.
A comparative analysis of the genetic diversity of ancient and modern sheep can shed light on the origin of these animals and their distribution as well as help to evaluate the role of humans at each formation stage of different sheep breeds. Here we isolated ancient DNA and performed sequencing of the mitochondrial DNA D‐loop from 17 sheep bone remains (~4000–1000 years old) found in the archaeological complexes in the south of Altai (Western Siberia). The length of the sequences obtained ranged between 318 and 586 bp. The haplotype diversity and nucleotide diversity were 0.801 ± 0.081 and 0.0096 ± 0.0014 respectively. The average number of nucleotide differences was ~3.1. Nucleotide sequence analysis revealed that 15 specimens were nested within previously described A,B,C,D and E lineages and that two specimens had a basal position relative to the rest of the analyzed samples. A relatively high diversity of sheep haplotypes, including the presence of two basal haplotypes, indicates that the Altai region may have been a transport route of human migration. Further ancient DNA analysis of other specimens and deeper genome sequencing of samples with novel haplotypes is needed to better understand the demographic history of sheep in Southern Siberia.  相似文献   

19.
Analyses of human coprolites from Dryden Cave, Nevada, indicated that the prehistoric population that inhabited the rockshelter included locally available herbs in their diet. Plant epidermal tissue remains have been identified as fragments from roots ofSagittaria (Alismataceae), a genus of semi-aquatic monocots. Other remains from the coprolites included fish bones, freshwater diatoms, seeds, and pollen. This assemblage supports the hypothesis that this prehistoric population principally exploited the available lacustrine resources of the area; comparisons with other archaeological sites suggests that this pattern had an extremely long history of development in the Great Basin.  相似文献   

20.
Blood samples to be tested for the presence of parasite DNA by using specific DNA probes are routinely stored in our laboratory as high-salt lysates (HSL). To safeguard against the risk of accidental infection with etiological agents such as the human immunodeficiency virus type 1 (HIV-1) while manipulating large numbers of blood samples in preparation for DNA probing, we determined the residual infectivity of HIV-1 after exposure to HSL components. Both high-titer virus stocks or provirus-carrying cells, suspended either in tissue culture medium or freshly drawn blood, were completely inactivated upon contact with the HSL components. This was verified by the absence of any detectable HIV-1-specific antigen in the supernatants of long-term cultures and the absence of virus-specific DNA fragments after amplification by polymerase chain reaction with DNA from such cultures as target DNA. These results support the conclusion that the virus is in fact completely inactivated by contact with the HSL components, rendering blood specimens stored as HSL noninfectious in regard to HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号