首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attitude to morality, reflecting cultural norms and values, is considered unique to human social behavior. Resulting moral behavior in a social environment is controlled by a widespread neural network including the dorsolateral prefrontal cortex (DLPFC), which plays an important role in decision making. In the present study we investigate the influence of neurophysiological modulation of DLPFC reactivity by means of transcranial direct current stimulation (tDCS) on moral reasoning. For that purpose we administered anodal, cathodal, and sham stimulation of the left DLPFC while subjects judged the appropriateness of hard moral personal dilemmas. In contrast to sham and cathodal stimulation, anodal stimulation induced a shift in judgment of personal moral dilemmas towards more non-utilitarian actions. Our results demonstrate that alterations of left DLPFC activity can change moral judgments and, in consequence, provide a causal link between left DLPFC activity and moral reasoning. Most important, the observed shift towards non-utilitarian actions suggests that moral decision making is not a permanent individual trait but can be manipulated; consequently individuals with boundless, uncontrollable, and maladaptive moral behavior, such as found in psychopathy, might benefit from neuromodulation-based approaches.  相似文献   

2.
There is broad consensus that the prefrontal cortex supports goal-directed, model-based decision-making. Consistent with this, we have recently shown that model-based control can be impaired through transcranial magnetic stimulation of right dorsolateral prefrontal cortex in humans. We hypothesized that an enhancement of model-based control might be achieved by anodal transcranial direct current stimulation of the same region. We tested 22 healthy adult human participants in a within-subject, double-blind design in which participants were given Active or Sham stimulation over two sessions. We show Active stimulation had no effect on model-based control or on model-free (‘habitual’) control compared to Sham stimulation. These null effects are substantiated by a power analysis, which suggests that our study had at least 60% power to detect a true effect, and by a Bayesian model comparison, which favors a model of the data that assumes stimulation had no effect over models that assume stimulation had an effect on behavioral control. Although we cannot entirely exclude more trivial explanations for our null effect, for example related to (faults in) our experimental setup, these data suggest that anodal transcranial direct current stimulation over right dorsolateral prefrontal cortex does not improve model-based control, despite existing evidence that transcranial magnetic stimulation can disrupt such control in the same brain region.  相似文献   

3.
Repeated visual processing of an unfamiliar face suppresses neural activity in face-specific areas of the occipito-temporal cortex. This "repetition suppression" (RS) is a primitive mechanism involved in learning of unfamiliar faces, which can be detected through amplitude reduction of the N170 event-related potential (ERP). The dorsolateral prefrontal cortex (DLPFC) exerts top-down influence on early visual processing. However, its contribution to N170 RS and learning of unfamiliar faces remains unclear. Transcranial direct current stimulation (tDCS) transiently increases or decreases cortical excitability, as a function of polarity. We hypothesized that DLPFC excitability modulation by tDCS would cause polarity-dependent modulations of N170 RS during encoding of unfamiliar faces. tDCS-induced N170 RS enhancement would improve long-term recognition reaction time (RT) and/or accuracy rates, whereas N170 RS impairment would compromise recognition ability. Participants underwent three tDCS conditions in random order at ∼72 hour intervals: right anodal/left cathodal, right cathodal/left anodal and sham. Immediately following tDCS conditions, an EEG was recorded during encoding of unfamiliar faces for assessment of P100 and N170 visual ERPs. The P3a component was analyzed to detect prefrontal function modulation. Recognition tasks were administered ∼72 hours following encoding. Results indicate the right anodal/left cathodal condition facilitated N170 RS and induced larger P3a amplitudes, leading to faster recognition RT. Conversely, the right cathodal/left anodal condition caused N170 amplitude and RTs to increase, and a delay in P3a latency. These data demonstrate that DLPFC excitability modulation can influence early visual encoding of unfamiliar faces, highlighting the importance of DLPFC in basic learning mechanisms.  相似文献   

4.
The dorsolateral prefrontal cortex (DLPFC) plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS) over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS) over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load.  相似文献   

5.
6.
7.
Humans incur considerable costs to punish unfairness directed towards themselves or others. Recent studies using repetitive transcranial magnetic stimulation (rTMS) suggest that the right dorsolateral prefrontal cortex (DLPFC) is causally involved in such strategic decisions. Presently, two partly divergent hypotheses are discussed, suggesting either that the right DLPFC is necessary to control selfish motives by implementing culturally transmitted social norms, or is involved in suppressing emotion-driven prepotent responses to perceived unfairness. Accordingly, we studied the role of the DLPFC in costly (i.e. third party) punishment by applying rTMS to the left and right DLPFC before playing a Dictator Game with the option to punish observed unfair behavior (DG-P). In addition, sham stimulation took place. Individual differences in empathy were assessed with the German version of the Interpersonal Reactivity Index. Costly punishment increased (non-significantly) upon disruption of the right – but not the left – DLPFC as compared to sham stimulation. However, empathy emerged as a highly significant moderator variable of the effect of rTMS over the right, but not left, DLPFC, suggesting that the right DLPFC is involved in controlling prepotent emotional responses to observed unfairness, depending on individual differences in empathy.  相似文献   

8.
People with anxiety disorders show an attentional bias for threat (AB), and Attention Bias Modification (ABM) procedures have been found to reduce this bias. However, the underlying processes accounting for this effect remain poorly understood. One explanation suggests that ABM requires the modification of attention control, driven by the recruitment of the dorsolateral prefrontal cortex (DLPFC). In the present double-blind study, we examined whether modifying left DLPFC activation influences the effect of ABM on AB. We used transcranial direct current stimulation (tDCS) to directly modulate cortical excitability of the left DLPFC during an ABM procedure designed to reduce AB to threat. Anodal tDCS increases excitability, whereas cathodal tDCS decreases it. We randomly assigned highly trait-anxious individuals to one of three conditions: 1) ABM combined with cathodal tDCS, 2) ABM combined with anodal tDCS, or 3) ABM combined with sham tDCS. We assessed the effects of these manipulations on both reaction times and eye-movements on a task indexing AB. Results indicate that combining ABM and anodal tDCS over the left DLPFC reduces the total duration that participants’ gaze remains fixated on threat, as assessed using eye-tracking measurement. However, in contrast to previous studies, there were no changes in AB from baseline to post-training for participants that received ABM without tDCS. As the tendency to maintain attention to threat is known to play an important role in the maintenance of anxiety, the present findings suggest that anodal tDCS over the left DLPFC may be considered as a promising tool to reduce the maintenance of gaze to threat. Implications for future translational research combining ABM and tDCS are discussed.  相似文献   

9.
Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex (DLPFC). To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task), and on one cognitive task assessing the ability to adopt another person’s visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal) applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants’ tendency to adopt another’s point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males’ responses to threatening faces whereas it interferes with the ability to adopt another’s viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing.  相似文献   

10.
Numerous studies have emerged recently that demonstrate the possibility of modulating, and in some cases enhancing, cognitive processes by exciting brain regions involved in working memory and attention using transcranial electrical brain stimulation. Some researchers now believe the cerebellum supports cognition, possibly via a remote neuromodulatory effect on the prefrontal cortex. This paper describes a procedure for investigating a role for the cerebellum in cognition using transcranial direct current stimulation (tDCS), and a selection of information-processing tasks of varying task difficulty, which have previously been shown to involve working memory, attention and cerebellar functioning. One task is called the Paced Auditory Serial Addition Task (PASAT) and the other a novel variant of this task called the Paced Auditory Serial Subtraction Task (PASST). A verb generation task and its two controls (noun and verb reading) were also investigated. All five tasks were performed by three separate groups of participants, before and after the modulation of cortico-cerebellar connectivity using anodal, cathodal or sham tDCS over the right cerebellar cortex. The procedure demonstrates how performance (accuracy, verbal response latency and variability) could be selectively improved after cathodal stimulation, but only during tasks that the participants rated as difficult, and not easy. Performance was unchanged by anodal or sham stimulation. These findings demonstrate a role for the cerebellum in cognition, whereby activity in the left prefrontal cortex is likely dis-inhibited by cathodal tDCS over the right cerebellar cortex. Transcranial brain stimulation is growing in popularity in various labs and clinics. However, the after-effects of tDCS are inconsistent between individuals and not always polarity-specific, and may even be task- or load-specific, all of which requires further study. Future efforts might also be guided towards neuro-enhancement in cerebellar patients presenting with cognitive impairment once a better understanding of brain stimulation mechanisms has emerged.  相似文献   

11.
Nelson and Narens have proposed a metacognition model that dissociates the objective processing of information (object-level) and the subjective evaluation of the performance (i.e., the metalevel). Neurophysiological evidence also indicates that the prefrontal cortices (PFC) are the brain areas which perform the metalevel function [1][3]. A corresponding neural mechanism of Nelson and Narens’s model, called dynamic filtering theory [4], [5], indicates that object-level processing is distributed in the posterior cortices and regulated by the prefrontal cortices with a filtering or gating mechanism to select appropriate signals and suppress inappropriate signals and noise. Based on this model, a hypothesis can be developed that, in the case of uncertainty or overloading of object-level processing, the prefrontal cortices will become more active in order to modulate signals and noise. This hypothesis is supported by a recent fMRI study [6] showing that the PFC (Brodmann area 9, BA9) was activated when subjects were overloaded in a bimodal attentional task, compared to a unimodal task. Here, we report a study showing that applying repetitive transmagnetic stimulation (rTMS) over the BA9 in order to interfere with its functional activity resulted in significant increas in guessed responses, compared to three other control conditions (i.e., no-TMS, sham TMS on BA9, and rTMS on Cz). The results are compatible with the dynamic filtering theory and suggest that a malfunction of the PFC would weaken the quality of meta-cognitive percepts and increase the number of guessed responses.  相似文献   

12.
13.
Alterations in GABAergic neurotransmission are implicated in several psychiatric illnesses, including schizophrenia. The Na-K-Cl and K-Cl cotransporters regulate intracellular chloride levels. Abnormalities in cotransporter expression levels could shift the chloride electrochemical gradient and impair GABAergic transmission. In this study, we performed Western blot analysis to investigate whether the Na-K-Cl and K-Cl cotransporter protein is abnormally expressed in the dorsal lateral prefrontal cortex and the anterior cingulate cortex in patients with schizophrenia versus a control group. We found decreased K-Cl cotransporter protein expression in the dorsal lateral prefrontal cortex, but not the anterior cingulate cortex, in subjects with schizophrenia, supporting the hypothesis of region level abnormal GABAergic function in the pathophysiology of schizophrenia. Subjects with schizophrenia off antipsychotic medication at the time of death had decreased K-Cl cotransporter protein expression compared to both normal controls and subjects with schizophrenia on antipsychotics. Our results provide evidence for KCC2 protein abnormalities in schizophrenia and suggest that antipsychotic medications might reverse deficits of this protein in the illness.  相似文献   

14.
The effect of transcranial magnetic stimulation (TMS) of the right and the left frontotemporal areas on the short- and long-term verbal memory was studied in healthy subjects and patients with Parkinson’s disease. TMS with a magnetic induction of more than 1.2 T at 10 Hz was found to affect the short-term memory when applied to the left frontotemporal area and to have no significant effect on this type of memory when applied to the right frontotemporal area. In healthy subjects, TMS applied to the left or the right hemisphere did not affect the long-term memory. However, in patients with Parkinson’s disease, significant changes in the long-term memory were observed upon TMS of either the left or the right hemisphere. The effect was more evident on TMS of the right hemisphere.__________Translated from Fiziologiya Cheloveka, Vol. 31, No. 4, 2005, pp. 33–36.Original Russian Text Copyright © 2005 by Gimranov, Mal’tseva.  相似文献   

15.
The dorsolateral prefrontal and posterior parietal cortex play critical roles in mediating attention, working memory, and executive function. Despite proposed dynamic modulation of connectivity strength within each area according to task demands, scant empirical data exist about the time course of the strength of effective connectivity, particularly in tasks requiring information to be sustained in working memory. We investigated this question by performing time-resolved cross-correlation analysis for pairs of neurons recorded simultaneously at distances of 0.2–1.5 mm apart of each other while monkeys were engaged in working memory tasks. The strength of effective connectivity determined in this manner was higher throughout the trial in the posterior parietal cortex than the dorsolateral prefrontal cortex. Significantly higher levels of parietal effective connectivity were observed specifically during the delay period of the task. These differences could not be accounted for by differences in firing rate, or electrode distance in the samples recorded in the posterior parietal and prefrontal cortex. Differences were present when we restricted our analysis to only neurons with significant delay period activity and overlapping receptive fields. Our results indicate that dynamic changes in connectivity strength are present but area-specific intrinsic organization is the predominant factor that determines the strength of connections between neurons in each of the two areas.  相似文献   

16.
Hirakawa  Y.  Takeda  K.  Tanabe  S.  Koyama  S.  Ueda  T.  Morishima  K  Iwai  M.  Kuno  S.  Motoya  I.  Sakurai  H.  Kanada  Y. 《Neurophysiology》2019,51(1):51-56
Neurophysiology - This study aimed at the effects of anodal transcranial direct current stimulation (tDCS) over the right posterior parietal cortex on the control of visual attention during walking...  相似文献   

17.
Transcranial direct current stimulation (tDCS) is a technique that has been intensively investigated in the past decade as this method offers a non-invasive and safe alternative to change cortical excitability2. The effects of one session of tDCS can last for several minutes, and its effects depend on polarity of stimulation, such as that cathodal stimulation induces a decrease in cortical excitability, and anodal stimulation induces an increase in cortical excitability that may last beyond the duration of stimulation6. These effects have been explored in cognitive neuroscience and also clinically in a variety of neuropsychiatric disorders – especially when applied over several consecutive sessions4. One area that has been attracting attention of neuroscientists and clinicians is the use of tDCS for modulation of pain-related neural networks3,5. Modulation of two main cortical areas in pain research has been explored: primary motor cortex and dorsolateral prefrontal cortex7. Due to the critical role of electrode montage, in this article, we show different alternatives for electrode placement for tDCS clinical trials on pain; discussing advantages and disadvantages of each method of stimulation.  相似文献   

18.
The central nervous system seems to have an important role in fatigue and exercise tolerance. Novel noninvasive techniques of neuromodulation can provide insights on the relationship between brain function and exercise performance. The purpose of this study was to determine the effects of transcranial direct current stimulation (tDCS) on physical performance and physiological and perceptual variables with regard to fatigue and exercise tolerance. Eleven physically active subjects participated in an incremental test on a cycle simulator to define peak power output. During 3 visits, the subjects experienced 3 stimulation conditions (anodal, cathodal, or sham tDCS—with an interval of at least 48 h between conditions) in a randomized, counterbalanced order to measure the effects of tDCS on time to exhaustion at 80% of peak power. Stimulation was administered before each test over 13 min at a current intensity of 2.0 mA. In each session, the Brunel Mood State questionnaire was given twice: after stimulation and after the time-to-exhaustion test. Further, during the tests, the electromyographic activity of the vastus lateralis and rectus femoris muscles, perceived exertion, and heart rate were recorded. RM-ANOVA showed that the subjects performed better during anodal primary motor cortex stimulation (491 ± 100 s) compared with cathodal stimulation (443 ± 11 s) and sham (407 ± 69 s). No significant difference was observed between the cathodal and sham conditions. The effect sizes confirmed the greater effect of anodal M1 tDCS (anodal x cathodal = 0.47; anodal x sham = 0.77; and cathodal x sham = 0.29). Magnitude-based inference suggested the anodal condition to be positive versus the cathodal and sham conditions. There were no differences among the three stimulation conditions in RPE (p = 0.07) or heart rate (p = 0.73). However, as hypothesized, RM- ANOVA revealed a main effect of time for the two variables (RPE and HR: p < 0.001). EMG activity also did not differ during the test accross the different conditions. We conclude that anodal tDCS increases exercise tolerance in a cycling-based, constant-load exercise test, performed at 80% of peak power. Performance was enhanced in the absence of changes in physiological and perceptual variables.  相似文献   

19.
20.

Background

Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson''s disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA).

Methodology/Principal Findings

Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [11C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [11C]FLB 457 BP following right DLPFC rTMS.

Conclusions/Significance

To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号