首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence has shown that cloned, murine CTL cell lines are resistant to the cytotoxic components of the toxic granules they release upon specific interaction with their target cells. Inasmuch as the resistance might be due to selection in culture over many months by repeated exposure to these cytolytic components (which are released repeatedly as a result of the cultured CTL being periodically stimulated by target cells), we asked whether primary CTL are also resistant. The primary CTL were elicited in vivo by i.p. injection of allogeneic tumor cells or in vitro by 5- to 6-day MLC or by 48-h exposure to the lectin Con A. The responding cells were separated into purified CD8+ (i.e., CD4-, CD8+) and purified CD4+ (i.e., CD4+, CD8-) T cell populations that were analyzed for cytolytic activity and for resistance to lysis by toxic secretory granules derived from cloned CTL cell lines. The CD8+ T cells were highly cytolytic and relatively resistant; they retained their cytolytic activity and were lysed to a minimal extent (0 to 10%) by quantities of isolated granules that lysed 80 to 90% of the P815 tumor cell line (tested as a representative standard cell line). The CD4+ T cells, in contrast, had only minimal cytolytic activity and were far more susceptible to granule-mediated lysis. Although the resistance of primary CD8+ T cells is impressive, it is not as pronounced as the resistance of the cloned CTL cell lines, indicating that during long-term culture there is some selection for increased resistance to granule-mediated lysis. In contrast to T cells (especially CD8+ T cells), Ia+ macrophages, isolated from primary immune peritoneal exudates, were highly susceptible to granule-mediated lysis.  相似文献   

2.

Background

Specific cellular cytotoxic immune responses (CTL) are important in combating viral diseases and a highly desirable feature in the development of targeted HIV vaccines. Adjuvants are key components in vaccines and may assist the HIV immunogens in inducing the desired CTL responses. In search for appropriate adjuvants for CD8+ T cells it is important to measure the necessary immunological features e.g. functional cell killing/lysis in addition to immunological markers that can be monitored by simple immunological laboratory methods.

Methodology/Principal Findings

We tested the ability of a novel two component adjuvant, CAF01, consisting of the immune stimulating synthetic glycolipid TDB (Trehalose-Dibehenate) incorporated into cationic DDA (Dimethyldioctadecylammonium bromide) liposomes to induce CD8+ T-cell restricted cellular immune responses towards subdominant minimal HLA-A0201-restricted CTL epitopes from HIV-1 proteins in HLA-A*0201 transgenic HHD mice. CAF01 has an acceptable safety profile and is used in preclinical development of vaccines against HIV-1, malaria and tuberculosis.

Conclusions/Significance

We found that CAF01 induced cellular immune responses against HIV-1 minimal CTL epitopes in HLA-A*0201 transgenic mice to levels comparable with that of incomplete Freund''s adjuvant.  相似文献   

3.
To investigate whether the retargeting of resting CTL can benefit from cooperative signaling between the TCR/CD3 complex and various accessory molecules, such as CD2, CD4, CD5, and CD8, we have constructed a series of trispecific F(ab')3 derivatives. Each derivative was designed to engage effector T lymphocytes with two Fab' arms, and tumor cells with a single Fab' arm. They were constructed by selective coupling of three mAb Fab' fragments, primarily via their hinge-region sulfhydryl groups, using the cross-linker o-phenylenedimaleimide. En route to the production of trispecific F(ab')3 antibodies a range of bispecific F(ab')2 derivatives was first prepared which could bind simultaneously to two different receptor molecules on T cells. Bispecific derivatives containing specificities for (CD2 (T11(1)) x CD3), (CD3 x CD4), (CD3 x CD8) or two epitopes on CD2, ((T11(1) x (T11(3)), all yielded two to three times the uptake of [3H]thymidine with fresh PBMC to that seen with intact IgG from anti-CD3 (OKT3). The exception to these findings was a bispecific F(ab')2 derivative with specificities for (CD3 x CD5) which caused slightly less proliferation than the control reagent, OKT3 IgG. When these bispecific antibodies were converted into trispecific antibodies (TsAb) by the addition of a Fab' from anti-CD37 they were then all able to retarget resting, unprimed, T cells from fresh PBMC for lysis of CD37+ tumor cells. However, the cytotoxic activity of these reagents fell into two distinct groups: group one, containing (anti-CD3 x anti-CD4 x anti-CD37), (anti-CD3 x anti-CD5 x anti-CD37), and (anti-CD3 x anti-CD8 x anti-CD37), gave minimal lysis and behaved in a similar way to the BsAb, (anti-CD3 x anti-CD37), i.e., no evidence of cooperative signaling for lysis; and group two, containing (anti-T11(1) x anti-CD3 x anti-CD37) and (anti-T11(1) x anti-T11(3) x anti-CD37), which were highly cytotoxic and gave up to 80% specific 51Cr-release. The failure of group one TsAb, in particular (anti-CD3 x anti-CD8 x anti-CD37) which should recruit CD8+ CTL, to give efficient lysis despite having anti-T cell arms that were mitogenic as a bispecific antibody, indicates that the cooperative signaling for proliferation is probably distinct from the signal(s) provided by group two TsAb that activate for both proliferation and lysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We have approached the challenge of generating a primary T cell response to Epstein-Barr virus (EBV) in vitro by stimulating naive T cells with the autologous EBV-transformed lymphoblastoid cell line (LCL), a rich source of EBV-associated cytotoxic T lymphocyte (CTL) epitopes. Responsive T cells from three EBV-seronegative donors were cloned in agarose, phenotyped for T cell markers by flow cytometry, and their cytotoxic properties analyzed in the 51Cr release assay. Most clones (greater than 95%) expressed the CD4 phenotype and 59% of these clones showed cytotoxic properties. The dominant CTL response was specific for FCS-associated epitopes presented by FCS-grown autologous LCL target cells and was restricted by class II HLA antigens. Other clonal components included: (i) an EBV-specific response by HLA-restricted CD4 CTL clones that did not discriminate between A- and B-type EBV transformants; (ii) an EBV-specific response by an HLA-restricted CD4 CTL clone that discriminated between A- and B-type transformants, and (iii) a nonspecific cytotoxic response by CD3+,4+,8-, CD3+,4-,8-, and CD3-,4-,8- clones that were broadly allotypic or restricted to the lysis of K562 target cells. The EBV-specific CTL clones did not lyse the autologous EBV-negative B or T cell blasts and their specificity patterns of lysis were supported by the cold target competition data. These studies highlight the role of CD4 CTL in the establishment in vitro of a primary immune response to a human virus.  相似文献   

5.
Expression of the receptor tyrosine kinase ephrin receptor A10 (EphA10), which is undetectable in most normal tissues except for the male testis, has been shown to correlate with tumor progression and poor prognosis in several malignancies, including triple-negative breast cancer (TNBC). Therefore, EphA10 could be a potential therapeutic target, likely with minimal adverse effects. However, no effective clinical drugs against EphA10 are currently available. Here, we report high expression levels of EphA10 in tumor regions of breast, lung, and ovarian cancers as well as in immunosuppressive myeloid cells in the tumor microenvironment. Furthermore, we developed anti-EphA10 monoclonal antibodies (mAbs) that specifically recognize cell surface EphA10, but not other EphA family isoforms, and target tumor regions precisely in vivo with no apparent accumulation in other organs. In syngeneic TNBC mouse models, we found that anti-EphA10 mAb clone #4 enhanced tumor regression, therapeutic response rate, and T cell–mediated antitumor immunity. Notably, the chimeric antigen receptor T cells derived from clone #4 significantly inhibited TNBC cell viability in vitro and tumor growth in vivo. Together, our findings suggest that targeting EphA10 via EphA10 mAbs and EphA10-specific chimeric antigen receptor–T cell therapy may represent a promising strategy for patients with EphA10-positive tumors.  相似文献   

6.
Tumor patients' blood lymphocytes have the capacity to recognize autologous tumor cells in vitro. A consequence of this recognition is the proliferation of small-size, high-density, resting T cells. Both helper (CD4+) and cytotoxic/suppressor (CD8+) T lymphocytes proliferate in the mixed lymphocyte-tumor cell cultures. In contrast to the autologous mixed lymphocyte cultures, both the auto-erythrocyte rosetting and non-rosetting (AE+ and AE-) T cells participate in the auto-tumor response. In contrast to stimulation by virus-infected or hapten-modified cells, DR antigen expression is not essential for stimulation by autologous tumor cells. In a proportion of cancer patients, blood lymphocytes have the capacity to lyse the patients' own tumor cells in vitro. There are two populations of lymphocytes with auto-tumor cytotoxic function. The first is characterized by low buoyant density and by non-adaptive cytotoxicity. In contrast to the recognition of hapten-modified or virus-infected target cells by the CTL, recognition of autologous tumor cells by the cytotoxic LD cells occurs even when the MHC class I antigens are blocked by mAb. The CD3 complex is also not involved in LD-mediated lysis. The other population with auto-tumor cytotoxic function comprises high-density, resting T cells. Recognition of autologous tumor cells by cytotoxic HD lymphocytes shares the characteristics of CTLs, i.e., their function is abrogated by pretreatment of the effectors with mAbs directed to the T3 receptor complex and by preincubation of the targets with mAb to the MHC class I antigens. Cytotoxicity of HD cells is restricted to the autologous tumor cells. This selectivity and the characteristics shared with CTL suggest that the auto-tumor reactivity of HD lymphocytes reflects an immune response against the autologous tumor.  相似文献   

7.
The influence of a human CD4(+) T cell response in anti-carcinoma immune reactions remains largely uncharacterized. Here, we made use of a major histocompatibility complex (MHC) class-II-restricted, anti-ras oncogene-specific CD4(+) T cell line produced previously in vivo from a patient with metastatic carcinoma in a peptide-based phase I trial. Using this patient-derived T cell line as a potentially relevant cell type, we examined the consequences of the anti-carcinoma CD4(+) T cell response, with emphasis on specific lymphokines potentially important for the regulation of Fas/Fas ligand (FasL) interactions. Antigen (Ag)-specific CD4(+) T cells produced substantial amounts of IFN-gamma following recognition of MHC class-II-matched Ag-presenting cells expressing the cognate peptide. The IFN-gamma promoted significant upregulation of Fas on the surface of colon carcinoma cells and sensitized these targets to Fas-mediated apoptosis and Ag-specific CD8(+) cytotoxic T lymphocyte (CTL)-mediated lysis involving a Fas-based effector mechanism. Moreover, Ag-stimulated CD4(+) T cells secreted soluble FasL (sFasL), which induced the death of TNF-resistant/refractory colon, breast, and ovarian carcinoma cells. Interestingly, although CD4(+)-derived sFasL expressed cytotoxic activity, the recovery of carcinoma cells which resisted Fas-mediated lysis displayed enhanced metastatic ability in vivo, compared with the unselected parental population, in an athymic mouse model. Thus, a tumor-specific CD4(+) T cell response may have both positive and negative consequences in human carcinoma via the production of proinflammatory cytokines such as IFN-gamma and/or sFasL that may (1) improve or facilitate CTL-target engagement, contact-independent effector mechanisms, and the overall lytic outcome and (2) potentially select for Fas-resistant tumor cells that escape immune destruction, which may thus impact the metastatic process.  相似文献   

8.
Zhou Y  Gou LT  Mu B  Liao WC  He J  Ma C  Yao YQ  Yang JL 《Biotechnology letters》2012,34(7):1183-1191
The use of a bi-specific antibody (BsAb) is an attractive and specific approach to cancer therapy. We have constructed a fully human recombinant single chain Fv BsAb against CD19 and CD3 that was an effective treatment in an animal model of non-Hodgkin's lymphoma (NHL). The CD19/CD3 BsAb was expressed in CHO cells and purified by Ni-column chromatography. Flow cytometry revealed that the CD19/CD3 BsAb specifically bound to both CD19 and CD3-positive cells. In vitro, the CD19/CD3 BsAb could stimulate T cell proliferation and induce the lysis of cultured Raji cells in the presence of unstimulated T lymphocytes. In vivo, the CD19/CD3 BsAb efficiently inhibited tumour growth in SCID mice of NHL, and the survival time of the mice was significantly prolonged. Therefore, our CD19/CD3 BsAb is a useful tool that could be a suitable candidate for treatment of NHL.  相似文献   

9.
Summary Large numbers of cytotoxic T lymphocytes (CTL) could be generated from tumor-draining lymph nodes (DLN) from mice bearing PHS-5 tumor by culturing at low density with autologous tumor cell stimulators and 20 U/ml recombinant interleukin-2 (IL-2). Outgrowth of metastatic tumor cells in culture was prevented by use of this hypoxanthine/aminopterin/thymidine-sensitive mutant of P815, PHS-5. After 9 days in culture, lymphoid cells demonstrated specific cytotoxicity against autologous tumor target cells. Lymph node cells could be expanded continuously in culture with repeated tumor stimulation with up to 7500-fold increase in cell number by 6 weeks; although CTL could be activated from tumor-bearing host spleen cells in short-term culture, they showed no significant growth in long-term cultures. Phenotypically, DLN cells were a mixture of CD8+ and CD4+ cells immediately after harvest but after 2 weeks in culture they were predominantly CD8+ CD4. CTL could be generated from tumor-bearing mice 10–14 days after i.d. tumor inoculation into the abdominal wall, but the immune response declined both in spleen and DLN by 21 days. Much greater CTL activity could be generated from axillary DLN that contained metastases than from non-draining popliteal nodes that were free of metastatic tumor cells. Some CTL activity could be generated from DLN with the addition of IL-2 alone but was further increased by the addition of more tumor cells as stimulators. When adoptively transferred to a host with 3-day P815 liver metastases, lymphocytes from DLN activated in vitro were able to reduce or eliminate metastases with very little or no IL-2 administered concomitantly. As few as 106 cells were therapeutically effective, and in vivo efficacy was tumor-specific, since L5178Y liver metastases were not affected.This work was supported in part by grants CA42443, CA48075 and T32-CA09210 from the National Cancer Institute, Department of Health and Human ServicesRecipient of the Canadian Cancer Society McEachern Fellowship.  相似文献   

10.
In adenocarcinomas of the breast and pancreas, underglycosylation of the glycoprotein MUC1, also expressed by normal breast and pancreatic ductal epithelial cells, results in new protein epitopes to which the immune system mounts a cytotoxic T cell response. This cytotoxic immune response is directed primarily against epitopes on the tandem repeat domain of MUC1, and is unconventional in that it is major histocompatibility complex (MHC)-unrestricted. It is therefore necessary to investigate the molecular basis of this immune response in order to enhance and optimize it for immune therapy purposes. In the present study, we characterize new MUC1 transfected human lymphoblastoid cell lines C1R and T2, and a pig kidney epithelial line LLC-PK1, that express MUC1 with either two repeats (MUC1–2R) or 22 repeats (MUC1–22R), and use them as stimulators and targets for cytotoxic T cells (CTL)in vitro. We show that MUC1–2R is processed and glycosylated similarly to MUC1–22R. In contrast to MUC1–22R, MUC1–2R is not recognized by CTL on T2 and C1R cells known for no or low MHC class I expression. It is however recognized when expressed at high density on xenogeneic LLC-PK1 cells. We propose that in MHC-unrestricted recognition, a large number of MUC1 epitopes is necessary to effectively engage the T cell receptor, and that in the presence of a low number of epitopes, engagement of the CD8 co-receptor by MHC class I molecules may be required for completing the signal through the T cell receptor.  相似文献   

11.
The T lymphocytes are the most important effector cells in immunotherapy of cancer. The conceptual objective for developing the tumor targeted superantigen (TTS) ABR-217620 (naptumomab estafenatox, 5T4Fab-SEA/E-120), now in phase 3 studies for advanced renal cell cancer, was to selectively coat tumor cells with cytotoxic T lymphocytes (CTL) target structures functionally similar to natural CTL pMHC target molecules. Here we present data showing that the molecular basis for the anti-tumor activity by ABR-217620 resides in the distinct interaction between the T cell receptor β variable (TRBV) 7-9 and the engineered superantigen (Sag) SEA/E-120 in the fusion protein bound to the 5T4 antigen on tumor cells. Multimeric but not monomeric ABR-217620 selectively stains TRBV7-9 expressing T lymphocytes from human peripheral blood similar to antigen specific staining of T cells with pMHC tetramers. SEA/E-120 selectively activates TRBV7-9 expressing T lymphocytes resulting in expansion of the subset. ABR-217620 selectively triggers TRBV7-9 expressing cytotoxic T lymphocytes to kill 5T4 positive tumor cells. Furthermore, ABR-217620 activates TRBV7-9 expressing T cell line cells in the presence of cell- and bead-bound 5T4 tumor antigen. Surface plasmon resonance analysis revealed that ABR-217620 binds to 5T4 with high affinity, to TRBV7-9 with low affinity and to MHC class II with very low affinity. The T lymphocyte engagement by ABR-217620 is constituted by displaying high affinity binding to the tumor cells (KD approximately 1 nM) and with the mimicry of natural productive immune TCR-pMHC contact using affinities of around 1 µM. This difference in kinetics between the two components of the ABR-217620 fusion protein will bias the binding towards the 5T4 target antigen, efficiently activating T-cells via SEA/E-120 only when presented by the tumor cells.  相似文献   

12.
Mouse cytotoxic T lymphocytes (CTL) reactive with a H-2Db-presented 9-mer peptide of the human papillomavirus type 16 protein E749-57 (RAHYNIVTF) were generated from the spleen cells of wild-type C57BL/6 (B6) or B6 perforin-deficient (B6.P0) mice. CD8+ B6 CTL displayed peptide-specific perforin- and Fas-mediated lysis of E7-transfected mouse RMA lymphoma cells (RMA-E7), while CD8+ CTL from B6.P0 mice lysed RMA-E7 cells via Fas ligand (FasL) exclusively. Rapid and efficient lysis of syngeneic bystander B6 blasts or RMA cells by either B6 or B6.P0 Ag-activated CTL was mediated by a FasL-Fas mechanism. Fas-resistant bystanders were not lysed, nor were allogeneic Fas-sensitive C3H/HeJ (H-2k) or BALB/c (H-2d) bystander blasts. Interestingly, however, phorbol myristate acetate-ionomycin preactivation of B6.P0 effectors enabled lysis of allogeneic H-2k and H-2d bystanders even in the absence of antigenic stimulation. Lysis of syngeneic bystander cells was always FasL-Fas dependent and required effector-bystander contact and, in particular, an interaction between CTL LFA-1 and bystander ICAM-1. Thus, in the context of major histocompatibility complex class I molecule-peptide ligation of the T-cell receptors of CD8+ CTL, neighboring bystander cells that are syngeneic and Fas sensitive and express the adhesion molecule ICAM-1 are potential targets of CTL attack.With the dissection of two basic cytolytic mechanisms of cytotoxic T lymphocytes (CTL) (10, 14, 20, 34), it has become possible to delineate the important criteria that determine direct (Ag-restricted) and bystander cytotoxicity. CTL use complementary cytotoxic mechanisms, one based on the granule exocytosis of a calcium-dependent pore-forming protein, perforin (8, 26), and granzymes (35) and another that depends on a calcium-independent interaction of effector T-cell tumor necrosis factor or Fas ligand (TNF or FasL) and target cell TNF receptor (TNFR) or Fas (22, 33). The function of the granule exocytosis pathway appears to be largely in non-major histocompatibility complex (MHC)-restricted NK lysis of class I molecule-defective tumor cells and in direct CTL-mediated immunity against tumor cells (37) or virus-infected cells (11, 19, 39). By contrast, the FasL-Fas and TNF-TNFR interactions are important for the maintenance of T-cell homeostasis following exposure to foreign Ag (5, 42) and Th-1 FasL-mediated B-cell apoptosis (27, 28). Blockage of both TNF and FasL is required to abrogate T-cell death: TNF mediates the death of most CD8+ T cells, whereas FasL mediates the death of most CD4+ T cells (42). While FasL-dependent lysis appears to be the primary mechanism used by CD4+ Th-1 effectors, CD8+ CTL use FasL or TNF secondarily in the absence of perforin-mediated lysis (10, 14, 20).After T-cell activation, a functional role for FasL is not apparent for several days until the T cell becomes Fas sensitive and hence susceptible to autocrine T-cell suicide (1, 5, 38). However, by using alloreactive CTL cultures or clones, it has recently become apparent that in the presence of Ag-bearing target cells (i.e., upon T-cell receptor [TCR] activation) CTL can also lyse Ag-free bystander cells via a FasL-Fas interaction (13, 34). While the specificity of CTL toward Ag-bearing target cells has been considered a hallmark of an efficient immune response, CTL do not appear to spare Ag-free bystander cells during lysis of specific Ag-bearing target cells. In this study, we have generated CD8+ CTL from both wild-type and perforin-deficient (P0) mice reactive with a high-affinity H-2Db-binding peptide of human papillomavirus type 16 protein E7. These peptide-specific CTL have been employed to demonstrate the requirements for CD8+ CTL-mediated lysis of Ag-free bystander cells and in particular the different properties of CTL activated by antigen versus a nonspecific stimulus.  相似文献   

13.
The purpose of this study was to investigate the anti-tumor effect and potential mechanisms of i.p. hyperthermia in combination with α-galactosylceramide (α-GalCer) for the treatment of ovarian cancer. In this study, immuno-competent tumor models were established using murine ovarian cancer cell lines and treated with i.p. hyperthermia combining α-GalCer. Th1/Th2 cytokine expression profiles in the serum, NK cell cytotoxicity and phagocytic activities of dendritic cells (DCs) were assayed. We also analyzed the number of CD8+/IFN-γ+ tumor specific cytotoxic T cells, as well as the tumor growth based on depletion of lymphocyte sub-population. Therapeutic effect on those ovarian tumors was monitored by a non-invasive luminescent imaging system. Intra-peritoneal hyperthermia induced significant pro-inflammatory cytokines expression, and sustained the response of NK and DCs induced by α-GalCer treatment. The combination treatment enhanced the cytotoxic T lymphocyte (CTL) immune response in two mouse ovarian cancer models. This novel treatment modality by combination of hyperthermia and glycolipid provides a pronounced anti-tumor immune response and better survival. In conclusion, intra-peritoneal hyperthermia enhanced the pro-inflammatory cytokine secretion and phagocytic activity of DCs stimulated by α-GalCer. The subsequent CTL immune response induced by α-GalCer was further strengthened by combining with i.p. hyperthermia. Both innate and adaptive immunities were involved and resulted in a superior therapeutic effect in treating the ovarian cancer.  相似文献   

14.
We investigated the lysis of fresh human solid tumor cells by peripheral blood T lymphocytes in the presence of lectins and anti-CD3 monoclonal antibodies (mAb). Addition of certain lectins (Con A, PHA, or WGA) directly into the 4-hr 51Cr-release assay caused significant lysis of (P less than 0.001) noncultured solid tumor targets by enriched populations of granular lymphocytes (GL). Significant levels (P at least less than 0.001) of Con A- or PHA-dependent solid tumor lysis by GL-enriched lymphocytes were observed in 32 of 39 donors (82%) and 14 of 20 donors (70%), respectively. In contrast, the addition of other lectins (PNA, PWM, or LPS) or anti-CD3 mAb did not cause cytotoxicity. The levels of Con A-dependent lysis were comparable to those of interleukin 2 (IL-2)-induced lysis by Leu 11b+ natural killer (NK) cells. The presence of lectins at the effector phase, but not of recombinant IL-2 (rIL-2), was required for the lysis of solid tumor targets. Both Con A-dependent and rIL-2-induced lysis were totally inhibited by treatment of the effector cells with the lysosomotropic agent L-leucine methyl ester (LeuOMe). Effector cells responsible for Con A-dependent lysis of solid tumors expressed T3 (CD3), T8 (CD8), and Leu 7 antigens, but lacked T4 (CD4) and Leu 11 (CD16) antigens as determined by both negative and positive cell selection studies. Con A-dependent lysis was inhibited at the effector phase by anti-CD3 (OKT3 or anti-Leu 4) or anti-CD2 (OKT11) mAb. On the basis of their phenotype (Leu 7+ CD3+ CD8+ CD16-), we hypothesize that these effector cells may contain a population of cytotoxic T cells (CTL) generated in vivo against autologous modified cells that can lyse fresh solid tumor target cells under conditions where the recognition requirements for the CTL are bypassed by lectin approximation.  相似文献   

15.
Kidney cancer is a devastating disease; however, biological therapies have achieved some limited success. The murine renal cancer Renca has been used as a model for developing new preclinical approaches to the treatment of renal cell carcinoma. Successful cytokine-based approaches require CD8(+) T cells, but the exact mechanisms by which T cells mediate therapeutic benefit have not been completely identified. After successful biological therapy of Renca in BALB/c mice, we generated CTLs in vitro using mixed lymphocyte tumor cultures. These CTL mediated tumor-specific H-2K(d)-restricted lysis and production of IFN-gamma, TNF-alpha, and Fas ligand (FasL) in response to Renca. CTL used both granule- and FasL-mediated mechanisms to lyse Renca, although granule-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha increased the sensitivity of Renca cells to CTL lysis by both granule- and FasL-mediated death pathways. Adoptive transfer of these anti-Renca CTL into tumor-bearing mice cured most mice of established experimental pulmonary metastases, and successfully treated mice were immune to tumor rechallenge. Interestingly, we were able to establish Renca-specific CTL from mice gene targeted for perforin (pfp(-/-)) mice. Although these pfp(-/-) CTL showed reduced cytotoxic activity against Renca, their IFN-gamma production in the presence of Renca targets was equivalent to that of wild-type CTL, and adoptive transfer of pfp(-/-) CTL was as efficient as wild-type CTL in causing regression of established Renca pulmonary metastases. Therefore, although granule-mediated killing is of paramount importance for CTL-mediated lysis in vitro, some major in vivo effector mechanisms clearly are independent of perforin.  相似文献   

16.
The epidermal growth factor receptor (EGFR) mutant of EGFRvIII is highly expressed on glioma cells and has been thought to be an excellent target molecule for immunotherapy. IP-10 is a potent chemokine and can recruit CXCR3+ T cells, including CD8+ T cells that are important for the control of tumor growth. This study is aimed at investigating the therapeutic efficacy of a novel fusion protein of IP10-EGFRvIIIscFv (IP10-scFv) in combination with glioma lysate-pulsed DCs-activated CD8+ cytotoxic T lymphocytes (CTLs) in a mouse model of glioma. A plasmid of pET-IP10-scFv was generated by linking mouse IP-10 gene with the DNA fragment for anti-EGFRvIIIscFv, a (Gly4Ser)3 flexible linker and a His-tag. The recombinant IP10-scFv in E. coli was purified by affinity chromatography and characterized for its anti-EGFRvIII immunoreactivity and chemotactic activity. C57BL/6 mice were inoculated with mouse glioma GL261 cells in the brain and treated intracranially with IP10-scFv and/or intravenously with CTL for evaluating the therapeutic effect. The glioma-specific immune responses were examined. The IP10-scFv retained anti-EGFRvIII immunoreactivity and IP-10-like chemotactic activity. Treatment with both IP10-scFv and CTL synergistically inhibited the growth of glioma and prolonged the survival of tumor-bearing mice, accompanied by increasing the numbers of brain-infiltrating lymphocytes (BILs) and the frequency of CXCR3+CD8+ T cells, enhancing glioma-specific IFN-γ responses and cytotoxicity, and promoting glioma cell apoptosis in mice. Our novel data indicate that IP10-scFv and CTL have synergistic therapeutic effects on inhibiting the growth of mouse glioma in vivo.  相似文献   

17.
18.
To evaluate the capability of NK cells and cytotoxic T lymphocytes to interact with normal hematopoietic progenitor cells (HPC), as compared to neoplastic lymphohematopoietic cells, we investigated inhibition of colony growth of these cell populations in semi-solid culture systems, after incubation with cloned cytotoxic effector cells. Three different types of cloned effector cells were investigated: TCR-/CD3- NK cells, TCR-gamma delta+/CD3+ cells, and TCR-alpha beta+/CD3+ cytotoxic T lymphocytes. Effector cells showed differential levels of tumor cell colony inhibition, but no MHC-non-restricted lysis of normal HPC was observed. Pre-stimulation of normal HPC by culturing on established stromal layers had no effect. Cell-mediated lysis of HPC only occurred by Ag-specific MHC-restricted lysis by CTL, or by antibody-dependent cellular cytotoxicity. In cell mixing experiments, irradiated tumor cells, but not normal bone marrow cells inhibited tumor cell lysis. Furthermore, cloned effector lymphocytes were able to specifically eliminate malignant cells from tumor contaminated bone marrow without damaging normal HPC. When fresh leukemic cells were used as targets, growth of acute myeloblastic leukemia colonies was inhibited after incubation with several cytotoxic effector clones, whereas chronic myeloid leukemia precursor cells showed limited sensitivity to MHC-non-restricted cytolysis. These results indicate that MHC-non-restricted cytolysis by NK cells is selectively directed against neoplastic cells and not against normal HPC.  相似文献   

19.
The inability of certain neoplastic populations to undergo Fas-mediated death by immune effector mechanisms may confer a selective survival advantage, which may contribute to tumor escape. In this study, we examined the role of Fas-mediated lysis in a human-antigen (Ag)-specific cytotoxic T lymphocyte (CTL)/colon carcinoma cell model, and the regulation of the lytic phenotype by interferon γ (IFNγ). Previously, we have identified mutated ras peptides reflecting the valine-for-glycine substitution at position 12 as unique HLA-A2-restricted, CD8+ CTL neo-epitopes. Peptide-specific CTL, established from both normal and carcinoma-bearing individuals, lysed in vitro a HLA-A2+ primary colon adenocarcinoma cell line, SW480, harboring the naturally occurring ras mutation. Pretreatment of SW480 cells with IFNγ was necessary to promote efficient Ag-specific CTL killing, although the mechanisms by which IFNγ influenced the lytic outcome remains to be elucidated. Here, we show, by phenotypic analysis of SW480 cells, a significant up-regulation of HLA-A2, ICAM-1 and Fas molecules after IFNγ pretreatment, which paralleled their sensitivity to lysis with anti-Fas stimuli. Moreover, nearly half of the lytic response to IFNγ-treated SW480 cells was inhibited by neutralizing anti-Fas or anti-Fasligand (FasL) mAb, revealing for the first time an important functional role for Fas/FasL interactions in carcinoma cell killing by human Ag-specific CTL. mAb against HLA-A2, ICAM-1, the αβ T cell receptor (TCR) and Fas molecules inhibited lysis; however, if these CTL were preactivated to express functional FasL and then used as effectors, only anti-Fas mAb efficiently blocked lysis. IFNγ also increased pro-caspase-3 protein expression and its subsequent activation in SW480 cells following Ag-specific CTL attack. Peptide-based caspase inhibitors blocked both caspase-3 activation and CTL-mediated lysis. Overall, these data suggested that IFNγ (a) facilitated both Ag-dependent and Ag-independent events as a prerequisite for efficient CTL/target interactions, FasL up-regulation and triggering of Fas-dependent, as well as Fas-independent lysis (perforin); and (b) enhanced or restored a Fas-sensitive phenotype in SW480 cells, reflecting modulation of cell-surface and intracellular elements of the Fas pathway. Thus, IFNγ may play an important role in the regulation of a human neoplastic cell death phenotype, which may have implications for our understanding of the processes of both tumor evasion and tumor regression following Ag-specific CTL attack. Received: 20 December 1999 / Accepted: 1 February 2000  相似文献   

20.
Summary Augmented tumor-specific T cell responses were observed against the high metastatic murine lymphoma variant ESb when using as immunogen ESb tumor cells that had been modified by infection with a low dose of Newcastle disease virus (NDV). Such virus-modified inactivated tumor cells (ESb-NDV) were potent tumor vaccines when applied postoperatively for active specific immunotherapy of ESb metastases. We demonstrate here that immune spleen cells from mice immunized with ESb-NDV contain enhanced immune capacity in both the CD4+, CD8 and the CD4, CD8+ T cell compartments to mount a secondary-tumor-specific cytotoxic T cell response in comparison with immune cells from mice immunized with ESb. ESb-NDV immune CD4+, CD8 helper T cells also produced more interleukin 2 after antigen stimulation than the corresponding ESb immune cells. There was no participation of either CD4+ or CD8+ virus-specific cells in the augmented response. The specificity of the T cells for the tumor-associated antigen remaind unchanged. Thus, there is the paradox that the virus-mediated augmentation of the tumor-specific T cell response in this system involves increased T helper activity but does not involve the recognition of viral epitopes as potential new helper determinants.Abbreviations CTL cytolytic T lymphocytes - IL-2 interleukin 2 - rIL-2 recombinant IL-2 - mAb monoclonal antibody - NDV Newcastle disease virus - SSC syngeneic spleen cell  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号