首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xstir is a repetitive DNA sequence element that is extremely amplified as a common component of two different structures: a tandem repeat (Xstir array) and a MITE (miniature inverted-repeat transposable element) in the genome of Xenopus laevis. To elucidate the origin and evolutionary history of Xstir-related sequences, we investigated their species specificity among three Xenopus species (X. laevis, X. borealis, and X. tropicalis). Analyses by sequence alignment and digestion with restriction enzymes of genomic Xstir-related sequences revealed that the MITE (Xmix MITE) was well conserved among the three Xenopus species, with small lineage-specific differences. On the other hand, the tandem repeat element (tropXstir) in X. tropicalis was different from the Xstir that X. laevis and X. borealis have in common. Both sequences of Xstir and tropXstir were, however, different segments of the Xmix MITE. The results suggest that these tandem repeats were formed by partial tandem duplication of the MITE internal sequence in each lineage of X. tropicalis and of X. borealis/X. laevis after their branching. A molecular mechanism for creating and elongating the tandem repeats from the MITE is proposed.Reviewing Editor: Dr. Jerzy Jurka  相似文献   

2.
Beck CW  Slack JM 《Genome biology》2001,2(10):reviews1029.1-reviews10295
Much of our knowledge about the mechanisms of vertebrate early development comes from studies using Xenopus laevis. The recent development of a remarkably efficient method for generating transgenic embryos is now allowing study of late development and organogenesis in Xenopus embryos. Possibilities are also emerging for genomic studies using the closely related diploid frog Xenopus tropicalis.  相似文献   

3.
Y Uno  C Nishida  C Takagi  N Ueno  Y Matsuda 《Heredity》2013,111(5):430-436
It has been suggested that whole-genome duplication (WGD) occurred twice during the evolutionary process of vertebrates around 450 and 500 million years ago, which contributed to an increase in the genomic and phenotypic complexities of vertebrates. However, little is still known about the evolutionary process of homoeologous chromosomes after WGD because many duplicate genes have been lost. Therefore, Xenopus laevis (2n=36) and Xenopus (Silurana) tropicalis (2n=20) are good animal models for studying the process of genomic and chromosomal reorganization after WGD because X. laevis is an allotetraploid species that resulted from WGD after the interspecific hybridization of diploid species closely related to X. tropicalis. We constructed a comparative cytogenetic map of X. laevis using 60 complimentary DNA clones that covered the entire chromosomal regions of 10 pairs of X. tropicalis chromosomes. We consequently identified all nine homoeologous chromosome groups of X. laevis. Hybridization signals on two pairs of X. laevis homoeologous chromosomes were detected for 50 of 60 (83%) genes, and the genetic linkage is highly conserved between X. tropicalis and X. laevis chromosomes except for one fusion and one inversion and also between X. laevis homoeologous chromosomes except for two inversions. These results indicate that the loss of duplicated genes and inter- and/or intrachromosomal rearrangements occurred much less frequently in this lineage, suggesting that these events were not essential for diploidization of the allotetraploid genome in X. laevis after WGD.  相似文献   

4.
Chromosome complements of the genus Xenopus   总被引:2,自引:1,他引:1  
The oytogenetic analysis of the genus Xenopus shows that X. laevis laevis, X. laevis petersi, X. laevis victorianus, X. (laevis) borealis, X. gilli, X. muelleri, and X. fraseri have chromosome numbers 2n=36; X. tropicalis has 20 (2n), X. (laevis) bunyoniensis 72 and X. ruwenzoriensis 108. This heterogeneity of the chromosome numbers is interesting as it represents new examples of polyploidy among Anurans. There are no big morphological differences among the karyotypes of the divers species, only the chromosomes with secondary constrictions vary considerably.  相似文献   

5.
Comparative genome analysis of non-avian reptiles and amphibians provides important clues about the process of genome evolution in tetrapods. However, there is still only limited information available on the genome structures of these organisms. Consequently, the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes in tetrapods remain poorly understood. We constructed chromosome maps of functional genes for the Chinese soft-shelled turtle (Pelodiscus sinensis), the Siamese crocodile (Crocodylus siamensis), and the Western clawed frog (Xenopus tropicalis) and compared them with genome and/or chromosome maps of other tetrapod species (salamander, lizard, snake, chicken, and human). This is the first report on the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes inferred from comparative genomic analysis of vertebrates, which cover all major non-avian reptilian taxa (Squamata, Crocodilia, Testudines). The eight largest macrochromosomes of the turtle and chicken were equivalent, and 11 linkage groups had also remained intact in the crocodile. Linkage groups of the chicken macrochromosomes were also highly conserved in X. tropicalis, two squamates, and the salamander, but not in human. Chicken microchromosomal linkages were conserved in the squamates, which have fewer microchromosomes than chicken, and also in Xenopus and the salamander, which both lack microchromosomes; in the latter, the chicken microchromosomal segments have been integrated into macrochromosomes. Our present findings open up the possibility that the ancestral amniotes and tetrapods had at least 10 large genetic linkage groups and many microchromosomes, which corresponded to the chicken macro- and microchromosomes, respectively. The turtle and chicken might retain the microchromosomes of the amniote protokaryotype almost intact. The decrease in number and/or disappearance of microchromosomes by repeated chromosomal fusions probably occurred independently in the amphibian, squamate, crocodilian, and mammalian lineages.  相似文献   

6.
Extinctions and declines of large marine vertebrates have major ecological impacts and are of critical concern in marine environments. The Caribbean monk seal, Monachus tropicalis, last definitively reported in 1952, was one of the few marine mammal species to become extinct in historical times. Despite its importance for understanding the evolutionary biogeography of southern phocids, the relationships of M. tropicalis to the two living species of critically endangered monk seals have not been resolved. In this study we present the first molecular data for M. tropicalis, derived from museum skins. Phylogenetic analysis of cytochrome b sequences indicates that M. tropicalis was more closely related to the Hawaiian rather than the Mediterranean monk seal. Divergence time estimation implicates the formation of the Panamanian Isthmus in the speciation of Caribbean and Hawaiian monk seals. Molecular, morphological and temporal divergence between the Mediterranean and “New World monk seals” (Hawaiian and Caribbean) is profound, equivalent to or greater than between sister genera of phocids. As a result, we classify the Caribbean and Hawaiian monk seals together in a newly erected genus, Neomonachus. The two genera of extant monk seals (Monachus and Neomonachus) represent old evolutionary lineages each represented by a single critically endangered species, both warranting continuing and concerted conservation attention and investment if they are to avoid the fate of their Caribbean relative.  相似文献   

7.
The spindle segregates chromosomes in dividing eukaryotic cells, and its assembly pathway and morphology vary across organisms and cell types. We investigated mechanisms underlying differences between meiotic spindles formed in egg extracts of two frog species. Small Xenopus tropicalis spindles resisted inhibition of two factors essential for assembly of the larger Xenopus laevis spindles: RanGTP, which functions in chromatin-driven spindle assembly, and the kinesin-5 motor Eg5, which drives antiparallel microtubule (MT) sliding. This suggested a role for the MT-associated protein TPX2 (targeting factor for Xenopus kinesin-like protein 2), which is regulated by Ran and binds Eg5. Indeed, TPX2 was threefold more abundant in X. tropicalis extracts, and elevated TPX2 levels in X. laevis extracts reduced spindle length and sensitivity to Ran and Eg5 inhibition. Higher TPX2 levels recruited Eg5 to the poles, where MT density increased. We propose that TPX2 levels modulate spindle architecture through Eg5, partitioning MTs between a tiled, antiparallel array that promotes spindle expansion and a cross-linked, parallel architecture that concentrates MTs at spindle poles.  相似文献   

8.
Summary Globin mRNAs ofXenopus borealis andXenopus tropicalis have been cloned and sequenced. The nucleotide and derived amino acid sequences were compared with each other and with already available data fromXenopus laevis. This analysis rendered clear evidence that the common ancestor ofX. laevis andX. borealis, but not ofX. tropicalis, had lost one amino acid of the -globins prior to a genome duplication event that preceded the segregation of the former two species. Replacement-site substitutions were used to calculate a rough time scale of genome duplication and species segregation. The results suggest an ancient separation between theX. laevis and theX. tropicalis groups occurring approximately 110–120 million years ago. Analysis of the amino acid chains demonstrated various alterations. However, some functional domains, like heme-binding sites and12 contact sites, were subject to a high degree of conservation, indicating the existence of functional constraints on them also in the genusXenopus.  相似文献   

9.
Representatives of the genus Camallanus Railliet & Henry, 1915 occur mainly in teleost fishes, although a significant number of species have also been recorded from anuran amphibians. The taxonomy, host range, geographical distribution and phylogenetic relationships of Camallanus spp. from African clawed toads (Xenopus spp.) are reviewed. Besides C. kaapstaadi Southwell & Kirshner, 1937, which shows a widespread distribution in sub-Saharan Africa and occurs in X. laevis subspecies, X. wittei, X. fraseri-like toads, X. borealis and X. muelleri, three new species were found: C. siluranae n. sp. from X. tropicalis in west Africa, C. macrocephalus n. sp. from X. borealis in Kenya, and C. xenopodis n. sp. from X. laevis laevis in South Africa and X. borealis in Kenya. C. johni Yeh, 1960 described from Xenopus sp. in Tanzania is considered a species inquirenda. C. kaapstaadi and C. macrocephalus are very closely related and both occur in the oesophagus of their hosts, unlike other Camallanus spp. which are found in the intestine or more rarely the stomach. Some of the unusual morphological features of these species may be an adaptation to attachment in the oesophagus. The host of C. siluranae, X. tropicalis, belongs to a separate species group (as has been established by recent molecular and cytological studies) to those of C. kaapstaadi, C. macrocephalus and C. xenopodis. Morphological affinities suggest that Camallanus spp. from clawed toads are not monophyletic with those from other amphibians and that C. siluranae is distantly related to, and probably not monophyletic with the remaining species from clawed toads. The Camallanus fauna of Xenopus spp. may thus be derived from at least two independent colonisations, of different host clades, by parasite lineages occurring in teleost fishes.  相似文献   

10.
11.
Neurons make long-distance connections via their axons, and the accuracy and stability of these connections are crucial for brain function. Research using various animal models showed that the molecular and cellular mechanisms underlying the assembly and maintenance of neuronal circuitry are highly conserved in vertebrates. Therefore, to gain a deeper understanding of brain development and maintenance, an efficient vertebrate model is required, where the axons of a defined neuronal cell type can be genetically manipulated and selectively visualized in vivo. Placental mammals pose an experimental challenge, as time-consuming breeding of genetically modified animals is required due to their in utero development. Xenopus laevis, the most commonly used amphibian model, offers comparative advantages, since their embryos ex utero during which embryological manipulations can be performed. However, the tetraploidy of the X. laevis genome makes them not ideal for genetic studies. Here, we use Xenopus tropicalis, a diploid amphibian species, to visualize axonal pathfinding and degeneration of a single central nervous system neuronal cell type, the retinal ganglion cell (RGC). First, we show that RGC axons follow the developmental trajectory previously described in X. laevis with a slightly different timeline. Second, we demonstrate that co-electroporation of DNA and/or oligonucleotides enables the visualization of gene function-altered RGC axons in an intact brain. Finally, using this method, we show that the axon-autonomous, Sarm1-dependent axon destruction program operates in X. tropicalis. Taken together, the present study demonstrates that the visual system of X. tropicalis is a highly efficient model to identify new molecular mechanisms underlying axon guidance and survival.  相似文献   

12.
Aim Amphibian chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), is associated with global amphibian population declines and species extinctions. Current evidence indicates that the pathogen has recently spread globally from an enzootic focus, with Xenopus spp. (family Pipidae) in South Africa having been identified as a likely source. The aim of this study was to investigate further the likelihood of African Xenopus spp. as the original source of Bd. Location We examined 665 museum specimens of 20 species of African and South American pipid frogs collected between 1844 and 1994 and held in the collection of the Natural History Museum, London. Methods Skin brushings taken from adult amphibians and brushings from the mouthparts, lips and developing hind limbs of larval pipid frogs were examined for the presence of Bd using real‐time PCR. Results We found six cases of Bd infection in three Xenopus spp. (from Africa), but none of the South American pipids was positive, although only 45 South American frogs were available for examination. The earliest case of Bd infection was in a specimen of Xenopus fraseri collected from Cameroon in 1933. A consistently low prevalence of infection over time indicates that a historical equilibrium existed between Xenopus spp. and Bd infection in Africa. Main conclusions Our results suggest that Bd infection was present in Xenopus spp. across sub‐Saharan Africa by the 1930s, providing additional support for the ‘out of Africa’ hypothesis. If this hypothesis is correct, it strengthens the argument for stringent control of human‐assisted movements of amphibians and other wildlife world‐wide to minimize the likelihood of pathogen introduction and disease emergence that can threaten species globally. Our findings help inform species selection for conservation in the face of the current Bd pandemic and also guide future research directions for selecting Bd isolates for sequencing and virulence testing.  相似文献   

13.
Candida tropicalis is a human pathogen that primarily infects the immunocompromised. Whereas the genome of one isolate, C. tropicalis MYA-3404, was originally sequenced in 2009, there have been no large-scale, multi-isolate studies of the genetic and phenotypic diversity of this species. Here, we used whole genome sequencing and phenotyping to characterize 77 isolates of C. tropicalis from clinical and environmental sources from a variety of locations. We show that most C. tropicalis isolates are diploids with approximately 2–6 heterozygous variants per kilobase. The genomes are relatively stable, with few aneuploidies. However, we identified one highly homozygous isolate and six isolates of C. tropicalis with much higher heterozygosity levels ranging from 36–49 heterozygous variants per kilobase. Our analyses show that the heterozygous isolates represent two different hybrid lineages, where the hybrids share one parent (A) with most other C. tropicalis isolates, but the second parent (B or C) differs by at least 4% at the genome level. Four of the sequenced isolates descend from an AB hybridization, and two from an AC hybridization. The hybrids are MTLa/α heterozygotes. Hybridization, or mating, between different parents is therefore common in the evolutionary history of C. tropicalis. The new hybrids were predominantly found in environmental niches, including from soil. Hybridization is therefore unlikely to be associated with virulence. In addition, we used genotype-phenotype correlation and CRISPR-Cas9 editing to identify a genome variant that results in the inability of one isolate to utilize certain branched-chain amino acids as a sole nitrogen source.  相似文献   

14.
Antibody diversity, as measured by isoelectric focusing of dinitrophenol-specific antibodies, was compared in different polyploid species of the clawed toad Xenopus. Antibody heterogeneity increased with chromosome number and DNA content from Xenopus tropicalis (2n=20 chromosomes) to Xenopus ruwenzoriensis (2n=108 chromosomes). Laboratory allopolyploids made by hybridization between two species showing different antibody diversities and different chromosome numbers gave antibody patterns intermediate between the two parents. On the other hand, autopolyploid individuals showed no increase in antibody diversity, showing that increased polyploidy alone cannot be responsible for increased heterogeneity. In contrast to the increase in antibody diversity following polyploidization, the number of expressed major histocompatibility complex alleles, as measured by a mixed lymphocyte reaction, did not increase. This locus appeared to be diploid or in the process of rediploidization in all the Xenopus species studied. Selection has thus operated differentially on the polyploid immunoglobulin and major histocompatibility loci. It apparently preserved the additional heterogeneity acquired for immunoglobulins favoring the expression of an expanded antibody repertoire in polyploid species.  相似文献   

15.
16.
17.
18.
Antigen-binding studies have been used to determine the specificity of immunized splenocytes of adult representatives in three groups of Amphibia, the American common newt, Triturus viridescens, the South African clawed toad, Xenopus laevis, and the American leopard frog, Rana pipiens. At question is the basis for organismal response diversity available to lower vertebrates. In vivo immunization with horse erythrocytes (HRBC) followed by trinitrophenylated (TNP) HRBC was effected. Dissociated splenic lymphocytes capable of binding TNP-HRBC and HRBC were counted after preincubation with glycine or TNP-glycine. Since TNP-glycine blocked Triturus immunocytes from binding TNP-HRBC and HRBC equally, while only binding to TNP-HRBC was blocked in the other two species, we have concluded that immunized cells from Triturus, but not Xenopus or Rana, appear to bear surface receptor molecules capable of binding TNP and a determinant of HRBC.  相似文献   

19.
The origin of hominins found on the remote Indonesian island of Flores remains highly contentious. These specimens may represent a new hominin species, Homo floresiensis, descended from a local population of Homo erectus or from an earlier (pre-H. erectus) migration of a small-bodied and small-brained hominin out of Africa. Alternatively, some workers suggest that some or all of the specimens recovered from Liang Bua are pathological members of a small-bodied modern human population. Pathological conditions proposed to explain their documented anatomical features include microcephaly, myxoedematous endemic hypothyroidism (“cretinism”) and Laron syndrome (primary growth hormone insensitivity). This study evaluates evolutionary and pathological hypotheses through comparative analysis of cranial morphology. Geometric morphometric analyses of landmark data show that the sole Flores cranium (LB1) is clearly distinct from healthy modern humans and from those exhibiting hypothyroidism and Laron syndrome. Modern human microcephalic specimens converge, to some extent, on crania of extinct species of Homo. However in the features that distinguish these two groups, LB1 consistently groups with fossil hominins and is most similar to H. erectus. Our study provides further support for recognizing the Flores hominins as a distinct species, H. floresiensis, whose affinities lie with archaic Homo.  相似文献   

20.
The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号