首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoinositide signaling disorders in human diseases   总被引:12,自引:0,他引:12  
Phosphoinositides (PIs) play an essential role in diverse cellular functions. Their intracellular level is strictly regulated by specific PI kinases, phosphatases and phospholipases. Recent discoveries indicate that dysfunctions in the control of their level often lead to pathologies. This review will focus on some human diseases whose etiologies involve PI-metabolizing enzymes. The role of PTEN (phosphatase and tensin homolog deleted on chromosome ten) in cancer, the impact of the Src homology 2-containing inositol-5-phosphatase phosphatases in acute myeloid leukemia or diabetes, the involvement of myotubularin family members in genetic diseases and the implication of OCRL1 in Lowe syndrome will be emphasized. We will also review how some bacterial pathogens have evolved strategies to specifically manipulate the host cell PI metabolism to efficiently infect them.  相似文献   

2.
Neurons in the central nervous system establish, via their axons and dendrites, an extended network that allows synaptic transmission. During developmental maturation and process outgrowth, membrane turnover is necessary for the enlargement and subsequent growth of axons and dendrites from the perikarya to the target cell (constitutive exocytosis/endocytosis). After targeting and synapse formation, small synaptic vesicles are needed for the quantal release of neurotransmitters from the presynaptic terminal with subsequent recycling by regulated exocytosis/endocytosis. An investigation of the onset of the appearance of mRNA and protein in dissociated cultures of neurons from mouse hippocampus or from chick retina has shown an early abundance of proteins involved in exocytosis, such as syntaxin 1, SNAP-25, and synaptotagmin 1, whereas dynamin 1, a protein necessary for clathrin-mediated endocytosis, can be detected only after neurons have established contacts with neighboring cells. The results reveal that constitutive membrane incorporation and regulated synaptic transmitter release is mediated by the same neuronal proteins. Moreover, the data exclude that dynamin 1 takes part in constitutive recycling before synapse formation, but dynamin 2 is present at this stage. Thus, dynamin 2 may be the constitutive counterpart of dynamin 1 in growing neurons. Synapse establishment is linked to an upregulation of dynamin 1 and thereby represents the beginning of the regulated recycling of membranes back into the presynaptic terminal.  相似文献   

3.
Lipid autophagy (lipophagy) is defined as a selective autophagy process in which some intracellular lipid droplets are selectively degraded by autophagic lysosomes pathway. The occurrence of lipophagy was first discovered in liver tissues. Additionally, abundant evidence indicated that the occurrence of hepatic lipophagy has been implicated in many liver diseases including fatty liver diseases, nonalcoholic fatty liver diseases, liver fibrosis, and liver cirrhosis. However, recent studies suggested that hepatic lipophagy occurs not only in liver tissue but also in other nonliver tissues and cells. Furthermore, the occurrence of lipophagy plays a crucial role in nonliver tissues and some related diseases. For instance, lipophagy relieves insulin resistance in adipose tissue from obesity patient with type 2 diabetes. Additionally, lipophagy has the ability to remit neurodegenerative diseases by reducing activity-dependent neurodegeneration in nervous tissue. Lipophagy decreases muscle lipid accumulation and accordingly improves lipid storage myopathy in muscle tissue. Moreover, lipophagy alleviates the malignancy and metastasis of cancer in clear renal cell carcinoma tissue. Lipophagy is also involved in other processes, such as spermatogenesis, osteoblastogenesis, and mucosal ulceration. In conclusion, targeting lipophagy may be a critical regulator and a new therapeutic strategy for nonliver tissues and some related diseases.  相似文献   

4.
de Capoa  A.  Marlekaj  P.  Baldini  A.  Rocchi  M.  Archidiacono  N. 《Human genetics》1985,69(3):212-217
Summary rRNA gene activity was evaluated by cytologic methods in cultured human cells from two different tissues grown under controlled experimental conditions. The modal and average numbers of silver positive nucleolus organizers (NOs) per cell as well as the distribution of cells with different numbers of silver positive NOs and different combinations of D-plus G-group silver stained chromosomes, were evaluated. Statistically significant differences in the average number of silver positive NOs per cell between leukocytes and fibroblasts grown under standard experimental conditions have been demonstrated. The observed differences became sharper in cells cultured under more restrictive conditions. Also, differences in the frequency of silver positivity of specific chromosomal NOs located on individually indentified chromosomes were observed in cells from the same tissue. Furthermore, differences in the frequency of activation of rDNA clusters located on the same chromosome were also observed between cells from the two tissues. The possible biologic meanings of these findings are discussed.This paper is dedicated to Professor G. Montalenti on the occasion of his 80th birthday  相似文献   

5.
Reactive oxygen species (ROS), chemically reactive molecules containing oxygen, can form as a natural byproduct of the normal metabolism of oxygen and also have their crucial roles in cell homeostasis. Of note, the major intracellular sources including mitochondria, endoplasmic reticulum (ER), peroxisomes and the NADPH oxidase (NOX) complex have been identified in cell membranes to produce ROS. Interestingly, autophagy, an evolutionarily conserved lysosomal degradation process in which a cell degrades long-lived proteins and damaged organelles, has recently been well-characterized to be regulated by different types of ROS. Accumulating evidence has demonstrated that ROS-modulated autophagy has numerous links to a number of pathological processes, including cancer, ageing, neurodegenerative diseases, type-II diabetes, cardiovascular diseases, muscular disorders, hepatic encephalopathy and immunity diseases. In this review, we focus on summarizing the molecular mechanisms of ROS-regulated autophagy and their relevance to diverse diseases, which would shed new light on more ROS modulators as potential therapeutic drugs for fighting human diseases.  相似文献   

6.
Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms play an essential role in processes connected to tumorigenesis, as they efficiently accelerate the hydration of carbon dioxide to bicarbonate and proton. In this context, examples are CA IX and CA XII, which were proved to be upregulated in many solid malignancies. On the other hand, cancer and the immune system are inextricably linked, and targeting the immune checkpoints recently was shown to efficiently improve the treatment of malignancies. In this study, we have investigated the expression of CA isoforms in tumour-infiltrating lymphocytes (TILs) that, according to the immunosurveillance theory, were suggested to have a crucial role in the development of colorectal cancer (CRC). T lymphocytes isolated from healthy surrounding mucosa showed a higher CA activity compared to those present in tumour and peripheral blood in the same patients. CA I and II were confirmed as enzyme isoforms involved in the process, as determined by proteomic analysis of corresponding TIL samples. These preliminary findings suggest a dysregulation of the local immune response in the CRC tissues and a loss of effective anticancer mechanisms mediated by CAs therein.  相似文献   

7.
Pom121 is one of the integral membrane components of the nuclear pore complex (NPC) in vertebrate cells. Unlike rodent cells carrying a single POM121 gene, human cells possess multiple POM121 gene loci on chromosome 7q11.23, as a consequence of complex segmental-duplications in this region during human evolution. In HeLa cells, two "full-length" Pom121 are transcribed and translated by two distinct genetic loci. RNAi experiments showed that efficient depletion of both Pom121 proteins significantly reduces assembled NPCs on nuclear envelope. Pom121-depletion also induced clustering of NPCs, indicating its role on maintenance of NPC structure/organization.  相似文献   

8.
9.
Although metastases from original (primary) tumors are highly studied, metastases from metastatic sites (secondary tumors) are far less studied. Here, using data from metastasis map (MetMap) project reported in a recent study (Jin et al. in Nature 588(7837): 331–336. 10.1038/s41586-020-2969-2, 2020), we found that human cancer cell lines isolated from metastatic sites have higher potential to metastasize to another site in mice, compared to human cancer cell lines isolated from primary sites, for certain types of cancer including liver, lung and pancreas cancer. In contrast, for cancer types such as ovarian and skin cancer, human cancer cell lines originated from primary tumors have increased metastatic potential in mice, compared to human cancer cell lines originated from metastatic sites. This preliminary analysis points that the potential of metastases to further metastasize compared to that of primary tumors might be cancer type-dependent, and further research is needed to understand why certain cancer cell lines isolated from metastatic sites are more likely to spread to other organs.  相似文献   

10.
The gC1qR (i.e., gC1q receptor, gC1q binding protein, p32, p33) is a multifunctional cellular protein that interacts with components of the complement, kinin, and coagulation cascades and select microbial pathogens. Enhanced gC1qR expression has been reported in adenocarcinomas arising in a variety of organs. The present study compared gC1qR expression in normal, inflammatory, dysplastic, and malignant tissue of epithelial and mesenchymal origin. gC1qR expression was visualized in tissue sections by immunohistochemistry using the 60.11 monoclonal antibody (i.e., IgG(1) mouse monoclonal antibody directed against gC1qR) and the UltraVision LP Detection System. Sections were counterstained with hematoxylin and examined by light microscopy. Strongest gC1qR expression was noted in epithelial tumors of breast, prostate, liver, lung, and colon, as well as in squamous and basal cell carcinoma of the skin. However, increased gC1qR staining was appreciated also in inflammatory and proliferative lesions of the same cell types, as well as in normal continuously dividing cells. In contrast, tumors of mesenchymal origin generally stained weakly, with the exception of osteoblasts, which stained in both benign and malignant tissues. The data suggest that increased gC1qR expression may be a marker of benign and pathologic cell proliferation, particularly in cells of epithelial origin, with potential diagnostic and therapeutic applications.  相似文献   

11.
Spleen tyrosine kinase (Syk) is expressed widely in hematopoietic and non-hematopoietic cells. The widespread distribution of Syk and its involvement in host defense and allergic reactions, prompted us analyze the influence of microbial exposure on Syk expression. We compared the distribution of Syk in various tissues of germ-free and conventional mice using immunohistochemistry, Western blot analysis and real time RT-PCR. Total Syk expression was similar between germ-free and conventional mice. Since it has been claimed that Syk isoforms are differentially expressed, we studied the distribution and abundance of Syk (L) and Syk (S) isoforms in tissues from these mice. In contrast to previous reports, we found broad tissue expression of Syk (S). Interestingly, in germ-free mice the amount of Syk (S) but not Syk L protein was selectively increased in lung and spleen. In summary, our study reveals new and broad tissue expression of both Syk isoforms and demonstrates that lack of microbial flora results in selectively increased expression of Syk (S) isoform in lung and spleen.Florentina Duta, Marina Ulanova and Daniel Seidel are joint first authors. Ulrich Steinhoff and A. Dean Befus are joint last authors.M. Ulanova received a postdoctoral fellowship from the Canadian Society of Allergy and Clinical Immunology/Merck Frosst and from the Alberta Heritage Foundation for Medical Research.  相似文献   

12.
The serine/arginine rich proteins (SR proteins) are members of a family of RNA binding proteins involved in regulating various features of RNA metabolism, including pre-mRNA constitutive and alternative splicing. In humans, a total of 12 SR splicing factors (SRSFs) namely SRSF1-SRSF12 have been reported. SRSF3, the smallest member of the SR family and the focus of this review, regulates critical steps in mRNA metabolism and has been shown to have mRNA-independent functions as well. Recent studies on SRSF3 have uncovered its role in a wide array of complex biological processes. We have also reviewed the involvement of SRSF3 in disease conditions like cancer, ageing, neurological and cardiac disorders. Finally, we have discussed in detail the autoregulation of SRSF3 and its implications in cancer and commented on the potential of SRSF3 as a therapeutic target, especially in the context of cancer.  相似文献   

13.
14.
Germline copy number variation (CNV) is considered to be an important form of human genetic polymorphisms. Previous studies have identified amounts of CNVs in human genome by advanced technologies, such as comparative genomic hybridization, single nucleotide genotyping, and high-throughput sequencing. CNV is speculated to be derived from multiple mechanisms, such as nonallelic homologous recombination (NAHR) and nonhomologous end-joining (NHEJ). CNVs cover a much larger genome scale than single nucleotide polymorphisms (SNPs), and may alter gene expression levels by means of gene dosage, gene fusion, gene disruption, and long-range regulation effects, thus affecting individual phenotypes and playing crucial roles in human pathogenesis. The number of studies linking CNVs with common complex diseases has increased dramatically in recent years. Here, we provide a comprehensive review of the current understanding of germline CNVs, and summarize the association of germline CNVs with the susceptibility to a wide variety of human diseases that were identified in recent years. We also propose potential issues that should be addressed in future studies.  相似文献   

15.
Myofibrillar myopathies (MFMs) are histopathologically characterized by desmin‐positive protein aggregates and myofibrillar degeneration. While about half of all MFM are caused by mutations in genes encoding sarcomeric and extra‐sarcomeric proteins (desmin, filamin C, plectin, VCP, FHL1, ZASP, myotilin, αB‐crystallin, and BAG3), the other half of these diseases is due to still unresolved gene defects. The present study aims at the proteomic characterization of pathological protein aggregates in skeletal muscle biopsies from patients with MFM‐causing gene mutations. The technical strategy is based on the dissection of plaque versus plaque‐free tissue areas from the same individual patient by laser dissection microscopy, filter‐aided sample preparation, iTRAQ‐labeling, and analysis on the peptide level using offline nano‐LC and MALDI‐TOF‐TOF MS/MS for protein identification and quantification. The outlined workflow overcomes limitations of merely qualitative analyses, which cannot discriminate contaminating nonaggregated proteins. Dependent on the MFM causing mutation, different sets of proteins were revealed as genuine (accumulated) plaque components in independent technical replicates: (i) αB‐crystallin, desmin, filamin A/C, myotilin, PRAF3, RTN2, SQSTM, XIRP1, and XIRP2 (patient with defined MFM mutation distinct from FHL1) or (ii) desmin, FHL1, filamin A/C, KBTBD10, NRAP, SQSTM, RL40, XIRP1, and XIRP2 (patient with FHL1 mutation). The results from differential proteomics indicate that plaques from different patients exhibit protein compositions with partial overlap, on the one hand, and mutation‐dependent protein contents on the other. The FHL1 mutation‐specific pattern was validated for four patients with respect to desmin, SQSTM, and FHL1 by immunohistochemistry.  相似文献   

16.
17.
PEDF and VEGF are important inhibitors and promoters of angiogenesis, and the ratio between the two is an important indicator in many neovascular diseases. In mouse liver PEDF and VEGF(165) were co-expressed at very early stages of liver development and their expression increased as liver embryogenesis progressed, suggesting that PEDF and VEGF are both crucial to vasculogenesis as well. VEGF(189) only appears at the P0 stage in liver organogenesis and is maintained at high levels thereafter. PEDF and the two VEGF isoforms are synthesized by fresh and cultured hepatocytes. Expression of VEGF(121) and overexpression of VEGF(165) were only seen in HepG2, a well-characterized hepatocellular carcinoma line. The results suggest that hepatic vascular architecture is under the control of both PEDF and VEGF, and that VEGF(165) and VEGF(189) have distinct functions in normal vascular development of the liver. The VEGF isoforms 121 and 189 may be key regulators of increased vascularity and progression of hepatocellular carcinoma, one of the most common malignant tumors, and may be of prognostic significance for this tumor.  相似文献   

18.
19.
The synthesis and differential antiproliferative activity of monastrol (1a), oxo-monastrol (1b) and eight oxygenated derivatives 3a,b-6a,b on seven human cancer cell lines are described. For all evaluated cell lines, monastrol (1a) was shown to be more active than its oxo-analogue, except for HT-29 cell line, suggesting the importance of the sulfur atom for the antiproliferative activity. Monastrol (1a) and the thio-derivatives 3a, 4a and 6a displayed relevant antiproliferative properties with 3,4-methylenedioxy derivative 6a being approximately more than 30 times more potent than monastrol (1a) against colon cancer (HT-29) cell line.  相似文献   

20.
Autophagy is a lysosome-dependent intracellular degradation pathway that has been implicated in the pathogenesis of various human diseases, either positively or negatively impacting disease outcomes depending on the specific context. The majority of medical conditions including cancer, neurodegenerative diseases, infections and immune system disorders and inflammatory bowel disease could probably benefit from therapeutic modulation of the autophagy machinery. Drosophila represents an excellent model animal to study disease mechanisms thanks to its sophisticated genetic toolkit, and the conservation of human disease genes and autophagic processes. Here, we provide an overview of the various autophagy pathways observed both in flies and human cells(macroautophagy, microautophagy and chaperone-mediated autophagy), and discuss Drosophila models of the above-mentioned diseases where fly research has already helped to understand how defects in autophagy genes and pathways contribute to the relevant pathomechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号