首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the long-standing observation of vast neuronal loss in Alzheimer's disease (AD) our understanding of how and when neurons are eliminated is incomplete. While previous investigation has focused on apoptosis, several novel forms of cell death (i.e. necroptosis, parthanatos, ferroptosis, cuproptosis) have emerged that require further investigation. This review aims to collect evidence for different modes of neuronal cell death in AD and to also discuss how these different forms of cell death may impact the neuroinflammatory environment that prevails in the AD brain. Improved understanding of how neurons die may help to delineate disease pathogenesis, provide insights toward treatment, and aid in the development of improved animal models of AD.  相似文献   

2.
The ubiquitous UbiX-UbiD system is associated with a wide range of microbial (de)carboxylation reactions. Recent X-ray crystallographic studies have contributed to elucidating the enigmatic mechanism underpinning the conversion of α,β-unsaturated acids by this system. The UbiD component utilises a unique cofactor, prenylated flavin (prFMN), generated by the bespoke action of the associated UbiX flavin prenyltransferase. Structure determination of a range of UbiX/UbiD representatives has revealed a generic mode of action for both the flavin-to-prFMN metamorphosis and the (de)carboxylation. In contrast to the conserved UbiX, the UbiD superfamily is associated with a versatile substrate range. The latter is reflected in the considerable variety of UbiD quaternary structure, dynamic behaviour and active site architecture. Directed evolution of UbiD enzymes has taken advantage of this apparent malleability to generate new variants supporting in vivo hydrocarbon production. Other applications include coupling UbiD to carboxylic acid reductase to convert alkenes into α,β-unsaturated aldehydes via enzymatic CO2 fixation.  相似文献   

3.
There are over 7 million people worldwide suffering from Parkinson's disease, and this number will double in the next decade. Causative mutations and risk variants in >20 genes that predominantly act at synapses have been linked to Parkinson's disease. Synaptic defects precede neuronal death. However, we are only now beginning to understand which molecular mechanisms contribute to this synaptic dysfunction. In this review, we discuss recent data demonstrating that Parkinson proteins act centrally to various protein quality control pathways at the synapse, and we argue that disturbed synaptic proteostasis is an early driver of neurodegeneration in Parkinson's disease.  相似文献   

4.
《Genomics》2022,114(4):110400
Endive (Cichorium endivia L.) is a leafy vegetable in the Asteraceae family. Sesquiterpene lactones (STLs) in endive leaves bring a bitter taste that varies between varieties. Despite their importance in breeding varieties with unique flavours, sesquiterpenoid biosynthesis pathways in endive are poorly understood. We assembled a chromosome-scale endive genome of 641 Mb with a contig N50 of 5.16 Mb and annotated 46,711 protein-coding genes. Several gene families, especially terpene synthases (TPS) genes, expanded significantly in the C. endivia genome. STLs biosynthesis-related genes and TPS genes in more bitter varieties have shown a higher level of expression, which could be attributed to genomic variations. Our results penetrate the origin and diversity of bitter taste and facilitate the molecular breeding of endive varieties with unique bitter tastes. The high-quality endive assembly would provide a reference genome for studying the evolution and diversity of Asteraceae.  相似文献   

5.
Much of our understanding of the homologous recombination (HR) machinery hinges on studies using Escherichia coli as a model organism. Interestingly enough, studies on the HR machinery in different bacterial species casts doubt on the universality of the E. coli paradigm. The human pathogen Mycobacterium tuberculosis encodes two Holliday junction (HJ)‐resolvase paralogues, namely RuvC and RuvX; however, insights into their structural features and functional relevance is still limited. Here, we report on structure-guided functional studies of the M. tuberculosis RuvX HJ resolvase (MtRuvX). The crystalline MtRuvX is a dimer in the asymmetric unit, and each monomer has a RNAse H fold vis-à-vis RuvC-like nucleases. Interestingly, MtRuvX also contains some unique features, including the residues essential for ATP binding/coordination of Mg2+ ions. Indeed, MtRuvX exhibited an intrinsic, robust ATPase activity, which was further accentuated by DNA cofactors. Structure-guided substitutions of single residues at the ATP binding/Mg2+coordination sites while markedly attenuating the ATPase activity completely abrogated HJ cleavage, indicating an unanticipated relationship between ATP hydrolysis and DNA cleavage. However, the affinity of ATPase-deficient mutants for the HJ was not impaired. Contrary to RuvC, MtRuvX exhibits relaxed substrate specificity, cleaving a variety of branched DNA/RNA substrates. Notably, ATP hydrolysis plays a regulatory role, rendering MtRuvX from a canonical HJ resolvase to a DNA/RNA non-sequence specific endonuclease, indicating a link between HJ resolvase and nucleic acid metabolism. These findings provide novel insights into the structure and dual-functional activities of MtRuvX, and suggest that it may play an important role in DNA/RNA metabolism.  相似文献   

6.
BackgroundDiabetes mellitus (DM) is a leading cause of preventable cardiovascular disease, but the metabolic changes from prediabetes to diabetes have not been fully clarified. This study implemented a metabolomics profiling platform to investigate the variations of metabolites and to elucidate their global profiling from metabolic syndrome to DM. Methods: Male Sprague-Dawley rats (n = 44) were divided into four groups. Three groups were separately fed with a normal diet, a high-fructose diet (HF), or a high-fat (HL) diet while one group was treated with streptozotocin. The HF and HL diet were meant to induce insulin resistance, obesity, and dyslipidemia, which known to induce DM. Results: The most significant metabolic variations in the DM group’s urine samples were the reduced release of citric acid cycle intermediates, the increase in acylcarnitines, and the decrease in urea excretion, all of which indicated energy metabolism abnormalities and mitochondrial dysfunction. Overall, the metabolic analysis revealed tryptophan metabolic pathway variations in the prediabetic phase, even though the mitochondrial function remains unaffected. Conclusion: This study show that widespread methylations and impaired tryptophan metabolism occur in metabolic syndrome and are then followed by a decline in citric acid cycle intermediates, indicating mitochondrial dysfunction in diabetes.  相似文献   

7.
Staphylococcal protein A (SpA) domain B (the basis of affibody) has been widely used in affinity chromatography and found therapeutic applications against inflammatory diseases through targeting the Fc part of immunoglobulin G (IgG). We have performed extensive molecular dynamics simulation of 41 SpA mutants and compared their dynamics and conformations to wild type. The simulations revealed the molecular details of structural and dynamics changes that occurred due to introducing point mutations and helped to explain the SPR results. It was observed in some variants a point mutation caused extensive structural changes far from the mutation site, while an effect of some other mutations was limited to the site of the mutated residue. Also, the pattern of hydrogen bond networks and hydrophobic core arrangements were investigated. We figured out mutations that occurred at positions 128, 136, 150 and 153, affected two hydrophobic cores at the interface as well as mutations introduced at positions 129 and 154 interrupted two hydrogen bond networks of the interface, SPR data showed all of these mutations reduced binding affinity significantly. Overall, by scanning the SpA-Fc interface through the large numbers of introduced mutations, the new insights have been gained which would help to design high- affinity ligands of IgG.  相似文献   

8.
《Fungal biology》2020,124(2):83-90
Latterly, the upsurge in use of antifungal drugs has brought about the emergence of several drug-resistance strains, making it skeptical to continue relying on current therapeutic regime. In the necessity of resistance-free antifungal agent, flavonoids presented possibilities of replacing existing drugs, displaying antifungal activity against pathogenic fungi. Among them, quercetin, one of the most representative flavonoids, exhibited antifungal activity against Candida albicans. To inspect the further understanding regarding quercetin, the antifungal mode of action of quercetin was investigated. In the initial step, the apoptosis was monitored after quercetin treatment. Moreover, intracellular levels of Mg2+ was assessed and was determined that Mg2+ increase occurred under the influence of quercetin. In addition, several features of mitochondrial dysfunction were monitored. Mitochondrial dysfunction triggers decrease in mitochondrial redox levels and leads to disruption in mitochondrial antioxidant system. Increased intracellular ROS and decreased intracellular redox levels were also displayed, indicating the occurrence of overall disruption in antioxidant systems. Sequentially, DNA fragmentation was observed and this DNA damage in turn induces apoptosis. In analyses, hexaamminecobalt(III) chloride (Cohex) was applied to inhibit Mg2+ transport between cytosol and mitochondria. Cohex attenuated the effects induced by quercetin, which demonstrates that the presence of Mg2+ is essential in quercetin-induced apoptosis.  相似文献   

9.
Neuroimmune dysfunction is a cardinal feature of neurodegenerative diseases. But how immune dysregulation in the brain and peripheral organs contribute to neurodegeneration remains unclear. Here, we discuss the recent advances highlighting neuroimmune dysfunction as a key disease-driving factor in frontotemporal dementia (FTD). We provide an overview of the clinical observations supporting a high prevalence of autoimmune diseases in FTD patients with mutations in GRN or C9orf72. We then focus on a myriad of evidence from human genetic studies, mouse models, in vitro assays, and multi-omics platform, which indicate that haploinsufficiency in GRN and C9orf72 promotes neuroimmune dysfunction and contributes to neurodegeneration and premature death. These compelling data provide key insights to disease mechanisms, biomarker discovery, and therapeutic interventions for FTD (120 words).  相似文献   

10.
The causative agent of crayfish plague, Aphanomyces astaci (Saprolegniales, Oomycota), is one of the 100 world’s worst invasive alien species and represents a major threat to freshwater crayfish species worldwide. A better understanding of the biology and epidemiology of A. astaci relies on the application of efficient tools to detect the pathogen and assess its genetic diversity. In this study, we validated the specificity of two recently developed PCR-based approaches used to detect A. astaci groups. The first relies on the analysis of mitochondrial ribosomal rnnS (small) and rnnL (large) subunit sequences and the second, of sequences obtained by using genotype-specific primers designed from A. astaci whole genome sequencing. For this purpose, we tested the specificity against 76 selected isolates, including other oomycete species and the recently described species Aphanomyces fennicus, which, when used in nrITS-based specific tests for A. astaci, is known to result in a false positive. Under both approaches, we were able to efficiently and accurately identify A. astaci and its genetic groups in both pure cultures and clinical samples. We report that sequence analysis of the rnnS region alone is sufficient for the identification of A. astaci and a partial characterization of haplogroups. In contrast, the rnnL region alone is not sufficiently informative for A. astaci identification as other oomycete species present sequences identical to those of A. astaci.  相似文献   

11.
Structural and functional characterization of proteins as well as the design of targeted drugs heavily rely on recombinant protein expression and purification. The polyhistidine-tag (His-tag) is among the most prominent examples of affinity tags used for the isolation of recombinant proteins from their expression hosts. Short peptide tags are commonly considered not to interfere with the structure of the tagged protein and tag removal is frequently neglected. This study demonstrates the formation of higher-order oligomers based on the example of two His-tagged membrane proteins, the dimeric arginine-agmatine antiporter AdiC and the pentameric light-driven proton pump proteorhodopsin. Size exclusion chromatography revealed the formation of tetrameric AdiC and decameric as well as pentadecameric proteorhodopsin through specific interactions between their His-tags. In addition, single particle cryo-electron microscopy (cryo-EM) allowed structural insights into the three-dimensional arrangement of the higher-order oligomers and the underlying His-tag-mediated interactions. These results reinforce the importance of considering the length and removal of affinity purification tags and illustrate how neglect can lead to potential interference with downstream biophysical or biochemical characterization of the target protein.  相似文献   

12.
CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3β-hydroxy-5-cholesten-(25R)26-oic acid (3βHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3βHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3βHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1−/− mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3βHCA levels were maintained at basal levels in ND-fed Cyp7b1−/− mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1−/− mice developed insulin resistance (IR) with subsequent 26HC/3βHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1−/− mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3βHCA accumulation. The results suggest 26HC/3βHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3βHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.  相似文献   

13.
Transient receptor potential vanilloid member 4 (TRPV4) is a Ca2+ permeable nonselective cation channel, and mutations in the TRPV4 gene cause congenital skeletal dysplasias and peripheral neuropathies. Although TRPV4 is widely expressed in the brain, few studies have assessed the pathogenesis of TRPV4 mutations in the brain. We aimed to elucidate the pathological associations between a specific TRPV4 mutation and neurodevelopmental defects using dopaminergic neurons (DNs) differentiated from dental pulp stem cells (DPSCs). DPSCs were isolated from a patient with metatropic dysplasia and multiple neuropsychiatric symptoms caused by a gain-of-function TRPV4 mutation, c.1855C>T (p.L619F). The mutation was corrected by CRISPR/Cas9 to obtain isogenic control DPSCs. Mutant DPSCs differentiated into DNs without undergoing apoptosis; however, neurite development was significantly impaired in mutant vs. control DNs. Mutant DNs also showed accumulation of mitochondrial Ca2+ and reactive oxygen species, low adenosine triphosphate levels despite a high mitochondrial membrane potential, and lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression and mitochondrial content. These results suggested that the persistent Ca2+ entry through the constitutively activated TRPV4 might perturb the adaptive coordination of multiple mitochondrial functions, including oxidative phosphorylation, redox control, and biogenesis, required for dopaminergic circuit development in the brain. Thus, certain mutations in TRPV4 that are associated with skeletal dysplasia might have pathogenic effects on brain development, and mitochondria might be a potential therapeutic target to alleviate the neuropsychiatric symptoms of TRPV4-related diseases.  相似文献   

14.
Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.  相似文献   

15.
Background and aimTransarterial chemoembolization combined with hepatic arterial infusion chemotherapy (TACE-HAIC) has shown encouraging efficacy in the treatment of unresectable hepatocellular carcinoma (HCC). We aimed to develop a novel nomogram to predict overall survival (OS) of patients with unresectable HCC treated with TACE-HAIC.MethodsA total of 591 patients with unresectable HCC treated with TACE-HAIC between May 2009 and September 2020 were enrolled. These patients were randomly divided into training and validation cohorts. The independent prognostic factors were identified with Cox proportional hazards model. The model's discriminative ability and accuracy were validated using concordance index (C-index), calibration plots, the area under the time-dependent receiver operating characteristic curve (AUC) and decision curve analyses (DCAs).ResultsThe median OS was 15.6 months. A nomogram was established based on these factors, including tumor size, vein invasion, extrahepatic metastasis, tumor number, alpha fetoprotein (AFP), and albumin-bilirubin (ALBI), to predict OS for patients with unresectable HCC treated with TACE-HAIC. The C-index of the nomogram were 0.717 in the training cohort and 0.724 in validation cohort. The calibration plots demonstrated good agreement between the predicted outcomes and the actual observations. The AUC values were better than those of three conventional staging systems. The results of DCA indicated that the nomogram may have clinical usefulness. The patients in the low-risk group had a longer OS than those in intermediate-risk and high-risk groups (P<0.001).ConclusionA prognostic nomogram was developed and validated to assist clinicians in accurately predicting the OS of patients with unresectable HCC after TACE-HAIC.  相似文献   

16.
The ribosomal stalk protein plays a crucial role in functional interactions with translational GTPase factors. It has been shown that the archaeal stalk aP1 binds to both GDP- and GTP-bound conformations of aEF1A through its C-terminal region in two different modes. To obtain an insight into how the aP1•aEF1A binding mode changes during the process of nucleotide exchange from GDP to GTP on aEF1A, we have analyzed structural changes in aEF1A upon binding of the nucleotide exchange factor aEF1B. The isolated archaeal aEF1B has nucleotide exchange ability in the presence of aa-tRNA but not deacylated tRNA, and increases activity of polyphenylalanine synthesis 4-fold. The aEF1B mutation, R90A, results in loss of its original nucleotide exchange activity but retains a remarkable ability to enhance polyphenylalanine synthesis. These results suggest an additional functional role for aEF1B other than in nucleotide exchange. The crystal structure of the aEF1A•aEF1B complex, resolved at 2.0 Å resolution, shows marked rotational movement of domain 1 of aEF1A compared to the structure of aEF1A•GDP•aP1, and this conformational change results in disruption of the original aP1 binding site between domains 1 and 3 of aEF1A. The loss of aP1 binding to the aEF1A•aEF1B complex was confirmed by native gel analysis. The results suggest that aEF1B plays a role in switching off the interaction between aP1 and aEF1A•GDP, as well as in nucleotide exchange, and promote translation elongation.  相似文献   

17.
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer’s disease, prion diseases, Parkinson’s disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.  相似文献   

18.
《Genomics》2022,114(2):110302
The genetic origins of novelty are of central interest in evolutionary biology. ISG15 and UBA7 are present only in vertebrates. The emergence and evolution of them are not clear. Phylogenetic comparisons revealed that UBA7 descends from gene duplication, and ISG15 and UBA7 arose from UBB/UBC and UBA1, respectively. Uba7 exhibits ubiquitin-activation activity in fish but not tetrapods, suggesting that the relationship of ISG15/Uba7 was promiscuous in origin but was later coopted toward higher specificity. Zebrafish Uba7 is capable of activating the ubiquitin cascade in vitro and in vivo, and it displays distinct specificity preference toward substrates and E2 enzymes compared to zebrafish Uba1. These results together provide a framework for understanding the origin and diversification of ISG15/Uba7 and may serve as a paradigmatic example in which an originally minor functionality in an old gene is made into a new high-specificity protein through random mutations and natural selection.  相似文献   

19.
Mass-spectrometry-enabled ADP-ribosylation workflows are developing rapidly, providing researchers a variety of ADP-ribosylome enrichment strategies and mass spectrometric acquisition options. Despite the growth spurt in upstream technologies, systematic ADP-ribosyl (ADPr) peptide mass spectral annotation methods are lacking. HCD-dependent ADP-ribosylome studies are common, but the resulting MS2 spectra are complex, owing to a mixture of b/y-ions and the m/p-ion peaks representing one or more dissociation events of the ADPr moiety (m-ion) and peptide (p-ion). In particular, p-ions that dissociate further into one or more fragment ions can dominate HCD spectra but are not recognized by standard spectral annotation workflows. As a result, annotation strategies that are solely reliant upon the b/y-ions result in lower spectral scores that in turn reduce the number of reportable ADPr peptides. To improve the confidence of spectral assignments, we implemented an ADPr peptide annotation and scoring strategy. All MS2 spectra are scored for the ADPr m-ions, but once spectra are assigned as an ADPr peptide, they are further annotated and scored for the p-ions. We implemented this novel workflow to ADPr peptides enriched from the liver and spleen isolated from mice post 4 h exposure to systemic IFN-γ. HCD collision energy experiments were first performed on the Orbitrap Fusion Lumos and the Q Exactive, with notable ADPr peptide dissociation properties verified with CID (Lumos). The m-ion and p-ion series score distributions revealed that ADPr peptide dissociation properties vary markedly between instruments and within instrument collision energy settings, with consequences on ADPr peptide reporting and amino acid localization. Consequentially, we increased the number of reportable ADPr peptides by 25% (liver) and 17% (spleen) by validation and the inclusion of lower confidence ADPr peptide spectra. This systematic annotation strategy will streamline future reporting of ADPr peptides that have been sequenced using any HCD/CID-based method.  相似文献   

20.
Amyloidogenic proteins form aggregates in cells, thereby leading to neurodegenerative disorders, including Alzheimer's and prion's disease, amyotrophic lateral sclerosis (ALS) in humans, and degenerative myelopathy (DM) and cognitive dysfunction in dogs. Hence, many small-molecule compounds have been screened to examine their inhibitory effects on amyloidogenic protein aggregation. However, no effective drug suitable for transition to clinical use has been found. Here we examined several novel oxindole compounds (GIF compounds) for their inhibitory effects on aggregate formation of the canine mutant superoxide dismutase 1 (cSOD1 E40K), a causative mutation resulting in DM, using Thioflavin-T fluorescence. Most GIF compounds inhibited the aggregation of cSOD1 E40K. Among the compounds, GIF-0854-r and GIF-0890-r were most effective. Their inhibitory effects were also observed in cSOD1 E40K-transfected cells. Additionally, GIF-0890-r effectively inhibited the aggregate formation of human SOD1 G93A, a causative mutation of ALS. GIF-0827-r and GIF-0856-r also effectively inhibited aggregate formation of human prion protein (hPrP). Subsequently, the correlation between their inhibitory effects on cSOD1 and hPrP aggregation was shown, indicating GIF compounds inhibited the aggregate formation of multiple amyloidogenic proteins. Conclusively, the novel oxindole compounds (GIF-0827-r, GIF-0854-r, GIF-0856-r, and GIF-0890-r) are proposed as useful therapeutic candidates for amyloidogenic neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号