首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia.  相似文献   

2.
3.
The DNA methylation status of the protozoan parasite Entamoeba histolytica was heretofore unknown. In the present study, we developed a new technique, based on the affinity of methylated DNA to 5-methylcytosine antibodies, to identify methylated DNA in this parasite. Ribosomal DNA and ribosomal DNA circles were isolated by this method and we confirmed the validity of our approach by sodium bisulfite sequencing. We also report the identification and the characterization of a gene, Ehmeth, encoding a DNA methyltransferase strongly homologous to the human DNA methyltransferase 2 (Dnmt2). Immunofluorescence microscopy using an antibody raised against a recombinant Ehmeth showed that Ehmeth is concentrated in the nuclei of trophozoites. The recombinant Ehmeth has a weak but significant methyltransferase activity when E.histolytica genomic DNA is used as substrate. 5-Azacytidine (5-AzaC), an inhibitor of DNA methyltransferase, was used to study in vivo the role of DNA methylation in E.histolytica. Genomic DNA of trophozoites grown with 5-AzaC (23 µM) was undermethylated and the ability of 5-AzaC-treated trophozoites to kill mammalian cells or to cause liver abscess in hamsters was strongly impaired.  相似文献   

4.
Direct detection of methylation in genomic DNA   总被引:2,自引:0,他引:2  
The identification of methylated sites on bacterial genomic DNA would be a useful tool to study the major roles of DNA methylation in prokaryotes: distinction of self and nonself DNA, direction of post-replicative mismatch repair, control of DNA replication and cell cycle, and regulation of gene expression. Three types of methylated nucleobases are known: N6-methyladenine, 5-methylcytosine and N4-methylcytosine. The aim of this study was to develop a method to detect all three types of DNA methylation in complete genomic DNA. It was previously shown that N6-methyladenine and 5-methylcytosine in plasmid and viral DNA can be detected by intersequence trace comparison of methylated and unmethylated DNA. We extended this method to include N4-methylcytosine detection in both in vitro and in vivo methylated DNA. Furthermore, application of intersequence trace comparison was extended to bacterial genomic DNA. Finally, we present evidence that intrasequence comparison suffices to detect methylated sites in genomic DNA. In conclusion, we present a method to detect all three natural types of DNA methylation in bacterial genomic DNA. This provides the possibility to define the complete methylome of any prokaryote.  相似文献   

5.
6.
Adaptation to the environment requires pathogenic bacteria to alter their gene expression in order to increase long-term survival in the host. Here, we present the first experimental evidence that bacterial DNA methylation affects the intracellular survival of pathogenic Mycoplasma hyorhinis. Using bisulfite sequencing, we identified that the M. hyorhinis DNA methylation landscape was distinct in free-living M. hyorhinis relative to the internalized bacteria surviving in the infected human cells. We determined that genomic GATC sites were consistently highly methylated in the bacterial chromosome suggesting that the bacterial GATC-specific 5-methylcytosine DNA methyltransferase was fully functional both pre- and post-infection. In contrast, only the low CG methylation pattern was observed in the mycoplasma genome in the infective bacteria that invaded and then survived in the host cells. In turn, two distinct populations, with either high or low CG methylation, were detected in the M. hyorhinis cultures continually grown in the rich medium independently of host cells. We also identified that M. hyorhinis efficiently evaded endosomal degradation and uses exocytosis to exit infected human cells enabling re-infection of additional cells. The well-orchestrated changes in the chromosome methylation landscape play a major regulatory role in the mycoplasma life cycle.  相似文献   

7.
We report the complete sequence of ER2796, a laboratory strain of Escherichia coli K-12 that is completely defective in DNA methylation. Because of its lack of any native methylation, it is extremely useful as a host into which heterologous DNA methyltransferase genes can be cloned and the recognition sequences of their products deduced by Pacific Biosciences Single-Molecule Real Time (SMRT) sequencing. The genome was itself sequenced from a long-insert library using the SMRT platform, resulting in a single closed contig devoid of methylated bases. Comparison with K-12 MG1655, the first E. coli K-12 strain to be sequenced, shows an essentially co-linear relationship with no major rearrangements despite many generations of laboratory manipulation. The comparison revealed a total of 41 insertions and deletions, and 228 single base pair substitutions. In addition, the long-read approach facilitated the surprising discovery of four gene conversion events, three involving rRNA operons and one between two cryptic prophages. Such events thus contribute both to genomic homogenization and to bacteriophage diversification. As one of relatively few laboratory strains of E. coli to be sequenced, the genome also reveals the sequence changes underlying a number of classical mutant alleles including those affecting the various native DNA methylation systems.  相似文献   

8.
Observations made with Escherichia coli have suggested that a lag between replication and methylation regulates initiation of replication. To address the question of whether a similar mechanism operates in mammalian cells, we have determined the temporal relationship between initiation of replication and methylation in mammalian cells both at a comprehensive level and at specific sites. First, newly synthesized DNA containing origins of replication was isolated from primate-transformed and primary cell lines (HeLa cells, primary human fibroblasts, African green monkey kidney fibroblasts [CV-1], and primary African green monkey kidney cells) by the nascent-strand extrusion method followed by sucrose gradient sedimentation. By a modified nearest-neighbor analysis, the levels of cytosine methylation residing in all four possible dinucleotide sequences of both nascent and genomic DNAs were determined. The levels of cytosine methylation observed in the nascent and genomic DNAs were equivalent, suggesting that DNA replication and methylation are concomitant events. Okazaki fragments were also demonstrated to be methylated, suggesting that the rapid kinetics of methylation is a feature of both the leading and the lagging strands of nascent DNA. However, in contrast to previous observations, neither nascent nor genomic DNA contained detectable levels of methylated cytosines at dinucleotide contexts other than CpG (i.e., CpA, CpC, and CpT are not methylated). The nearest-neighbor analysis also shows that cancer cell lines are hypermethylated in both nascent and genomic DNAs relative to the primary cell lines. The extent of methylation in nascent and genomic DNAs at specific sites was determined as well by bisulfite mapping of CpG sites at the lamin B2, c-myc, and β-globin origins of replication. The methylation patterns of genomic and nascent clones are the same, confirming the hypothesis that methylation occurs concurrently with replication. Interestingly, the c-myc origin was found to be unmethylated in all clones tested. These results show that, like genes, different origins of replication exhibit different patterns of methylation. In summary, our results demonstrate tight coordination of DNA methylation and replication, which is consistent with recent observations showing that DNA methyltransferase is associated with proliferating cell nuclear antigen in the replication fork.  相似文献   

9.
Many differentially methylated genes have been identified in prostate cancer (PCa), primarily using candidate gene-based assays. Recently, several global DNA methylation profiles have been reported in PCa, however, each of these has weaknesses in terms of ability to observe global DNA methylation alterations in PCa. We hypothesize that there remains unidentified aberrant DNA methylation in PCa, which may be identified using higher resolution assay methods. We used the newly developed Illumina HumanMethylation450 BeadChip in PCa (n = 19) and adjacent normal tissues (n = 4) and combined these with gene expression data for identifying new DNA methylation that may have functional consequences in PCa development and progression. We also confirmed our methylation results in an independent data set. Two aberrant DNA methylation genes were validated among an additional 56 PCa samples and 55 adjacent normal tissues. A total 28,735 CpG sites showed significant differences in DNA methylation (FDR adjusted P<0.05), defined as a mean methylation difference of at least 20% between PCa and normal samples. Furthermore, a total of 122 genes had more than one differentially methylated CpG site in their promoter region and a gene expression pattern that was inverse to the direction of change in DNA methylation (e.g. decreased expression with increased methylation, and vice-versa). Aberrant DNA methylation of two genes, AOX1 and SPON2, were confirmed via bisulfate sequencing, with most of the respective CpG sites showing significant differences between tumor samples and normal tissues. The AOX1 promoter region showed hypermethylation in 92.6% of 54 tested PCa samples in contrast to only three out of 53 tested normal tissues. This study used a new BeadChip combined with gene expression data in PCa to identify novel differentially methylated CpG sites located within genes. The newly identified differentially methylated genes may be used as biomarkers for PCa diagnosis.  相似文献   

10.
Proliferation of neural stem cells (NSCs) is required for development and repair in the nervous system. NSC amplification in vitro is a necessary step towards using NSC transplantation therapy to treat neurodegenerative diseases. Folic acid (FA) has been shown to act through DNA methyltransferase to stimulate NSC proliferation. To elucidate the underlying mechanism, the effect of FA on the methylation profiles in neonatal rat NSCs was assessed by methylated DNA immunoprecipitation (MeDIP) and methylated DNA immunoprecipitation-DNA microarray (MeDIP-Chip). Differentially methylated regions (DMRs) were determined by quantitative differentially methylated regions analysis, and genes carrying at least three DMRs were selected for pathway analysis. Gene network analysis revealed links with steroid biosynthesis, fatty acid elongation and the PI3K/Akt/CREB, neuroactive ligand–receptor interaction, Jak-STAT and MAPK signaling pathways. Moreover, Akt3 acted as a hub in the network, in which 14 differentially methylated genes converged to the PI3K/Akt/CREB signaling pathway. These findings indicate that FA stimulates NSC proliferation by modifying DNA methylation levels in the PI3K/Akt/CREB pathway.  相似文献   

11.
De novo DNA methylation in Arabidopsis thaliana is catalyzed by the methyltransferase DRM2, a homolog of the mammalian de novo methyltransferase DNMT3. DRM2 is targeted to DNA by small interfering RNAs (siRNAs) in a process known as RNA-directed DNA Methylation (RdDM). While several components of the RdDM pathway are known, a functional understanding of the underlying mechanism is far from complete. We employed both forward and reverse genetic approaches to identify factors involved in de novo methylation. We utilized the FWA transgene, which is methylated and silenced when transformed into wild-type plants, but unmethylated and expressed when transformed into de novo methylation mutants. Expression of FWA is marked by a late-flowering phenotype, which is easily scored in mutant versus wild-type plants. By reverse genetics we discovered the requirement for known RdDM effectors AGO6 and NRPE5a for efficient de novo methylation. A forward genetic approach uncovered alleles of several components of the RdDM pathway, including alleles of clsy1, ktf1 and nrpd/e2, which have not been previously shown to be required for the initial establishment of DNA methylation. Mutations were mapped and genes cloned by both traditional and whole genome sequencing approaches. The methodologies and the mutant alleles discovered will be instrumental in further studies of de novo DNA methylation.Key words: DNA methylation, Arabidopsis, de novo, genetic screen, whole-genome sequencing  相似文献   

12.
The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. To date, four paternally methylated DMRs have been identified in screens based on conventional approaches. These DMRs are linked to the imprinted genes H19, Gtl2 (IG-DMR), Rasgrf1 and, most recently, Zdbf2 which encodes zinc finger, DBF-type containing 2. In this study, we applied a novel methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method to genomic DNA from mouse parthenogenetic- and androgenetic-derived stem cells and sperm and identified 458 putative DMRs. This included the majority of known DMRs. We further characterized the paternally methylated Zdbf2/ZDBF2 DMR. In mice, this extensive germ line DMR spanned 16 kb and possessed an unusual tripartite structure. Methylation was dependent on DNA methyltransferase 3a (Dnmt3a), similar to H19 DMR and IG-DMR. In both humans and mice, the adjacent gene, Gpr1/GPR1, which encodes a G-protein-coupled receptor 1 protein with transmembrane domain, was also imprinted and paternally expressed. The Gpr1-Zdbf2 domain was most similar to the Rasgrf1 domain as both DNA methylation and the actively expressed allele were in cis on the paternal chromosome. This work demonstrates the effectiveness of meDIP-on-chip as a technique for identifying DMRs.  相似文献   

13.
14.

Background

Fluoroquinolones have been used broadly since the end of the 1980s and have been recommended for Neisseria meningitidis prophylaxis since 2005 in China. The aim of this study was to determine whether and how N. meningitidis antimicrobial susceptibility, serogroup prevalence, and clonal complex (CC) prevalence shifted in association with the introduction and expanding use of quinolones in Shanghai, a region with a traditionally high incidence of invasive disease due to N. meningitidis.

Methods and Findings

A total of 374 N. meningitidis isolates collected by the Shanghai Municipal Center for Disease Control and Prevention between 1965 and 2013 were studied. Shifts in the serogroups and CCs were observed, from predominantly serogroup A CC5 (84%) in 1965–1973 to serogroup A CC1 (58%) in 1974–1985, then to serogroup C or B CC4821 (62%) in 2005–2013. The rates of ciprofloxacin nonsusceptibility in N. meningitidis disease isolates increased from 0% in 1965–1985 to 84% (31/37) in 2005–2013 (p < 0.001). Among the ciprofloxacin-nonsusceptible isolates, 87% (27/31) were assigned to either CC4821 (n = 20) or CC5 (n = 7). The two predominant ciprofloxacin-resistant clones were designated ChinaCC4821-R1-C/B and ChinaCC5-R14-A. The ChinaCC4821-R1-C/B clone acquired ciprofloxacin resistance by a point mutation, and was present in 52% (16/31) of the ciprofloxacin-nonsusceptible disease isolates. The ChinaCC5-R14-A clone acquired ciprofloxacin resistance by horizontal gene transfer, and was found in 23% (7/31) of the ciprofloxacin-nonsusceptible disease isolates. The ciprofloxacin nonsusceptibility rate was 47% (7/15) among isolates from asymptomatic carriers, and nonsusceptibility was associated with diverse multi-locus sequence typing profiles and pulsed-field gel electrophoresis patterns. As detected after 2005, ciprofloxacin-nonsusceptible strains were shared between some of the patients and their close contacts. A limitation of this study is that isolates from 1986–2004 were not available and that only a small sample of convenience isolates from 1965–1985 were available.

Conclusions

The increasing prevalence of ciprofloxacin resistance since 2005 in Shanghai was associated with the spread of hypervirulent lineages CC4821 and CC5. Two resistant meningococcal clones ChinaCC4821-R1-C/B and ChinaCC5-R14-A have emerged in Shanghai during the quinolone era. Ciprofloxacin should be utilized with caution for the chemoprophylaxis of N. meningitidis in China.  相似文献   

15.
16.
17.
S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号