首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
About 45% of the total surface area of the Castile and Leon region today can potentially be occupied by semi-deciduous forests, chiefly dominated by Quercus faginea Willd. and Quercus pyrenaica Lam. On the basis of extrapolated trends in annual mean temperature and precipitation in Castile and Leon observed over the 37-year period from 1961 to 1997 [del Río et al. 2005], predicted changes in the areas covered by Q. faginea and Q. pyrenaica forests in 2025, 2050 and 2075 were made. A decrease in Q. faginea forests may occur if observed trends in temperature and precipitation continue. With respect to Q. pyrenaica forests, they may increase in present Mediterranean areas and decreases in Temperate Submediterranean areas. In some cases, both types of forests could be replaced by deciduous forests. The predicted results in the natural distribution of vegetation types by the bioclimatic models can be used to establish policies for improved future nature conservation and land management.  相似文献   

2.
The species richness of epiphytic lichens is continuously decreasing by degradation and loss of habitat. Considering that taxonomic identification of all species is time and resource consuming, rapid assessment methods to extrapolate the total number of species are needed for practical conservation. This paper describes an alternative method using the correlation between lichens growth forms and species richness. The study was conducted in 406 forest stands located in Central Spain, covering a wide range of mediterranean-climate ecosystem regions, management intensity levels, canopy cover conditions, and tree sizes. The presence/absence of epiphytic lichens was determined in 6090 trees, which were dominated by oak species (Quercus ilex, Q. faginea, and Q. pyrenaica). In all type of forests, the diversity of growth forms was positively correlated with the total epiphytic lichen richness. In all cases, species richness increased in non-managed forest stands with dense canopies. Thus, we propose the use of lichen growth forms as a helpful surrogate of species richness to detect potentially conservation priority areas in the Mediterranean region.  相似文献   

3.
The identification and quantification of the relative importance of reproductive isolating barriers is of fundamental importance to understand species maintenance in the face of interspecific gene flow between hybridising species. Yet, such assessments require extensive experimental fertilisations that are particularly difficult when dealing with more than two hybridising and long-generation-time species such as oaks. Here, we quantify the relative contribution of four postmating reproductive isolating barriers consisting of two prezygotic barriers (gametic incompatibility, conspecific pollen precedence) and two postzygotic barriers (germination rate, early survival) from extensively controlled pollinations between four oak species (Quercus robur, Quercus petraea, Quercus pubescens and Quercus pyrenaica) that have been shown to frequently hybridise in natural populations. We found high variation in the strength of total reproductive isolation between species, ranging from total reproductive isolation to advantage toward hybrid formation. As previously found, Q. robur pollen was unable to fertilise Q. petraea due to a strong reproductive isolating mechanism. On the contrary, Q. pubescens pollen was more efficient at fertilising Q. petraea than conspecific pollen. Overall, prezygotic barriers contribute far more than postzygotic barriers to isolate species reproductively, suggesting a role for reinforcement in the development of prezygotic barriers. Conspecific pollen precedence reduced hybrid formation when pollen competition was allowed; however, presence of conspecific pollen did not totally prevent hybridization. Our results suggest that pollen competition depends on multiple ecological and environmental parameters, including species local abundance, and that it may be of uppermost importance to understand interspecific gene flow among natural multispecies populations.  相似文献   

4.
Soil water saturation during prolonged periods of time generates a negative impact on nearly all terrestrial plants. In Mediterranean woodlands, precipitation can be very abundant during the wet season, inducing temporary soil waterlogging, coinciding with the seed dispersal and germination time of many species. We investigated the effects of waterlogging on seed germination and early root growth of three coexisting oak species (Quercus canariensis, Q. suber and Q. pyrenaica), by completely flooding of seeds for various periods of time. The three oak species showed a certain level of tolerance to waterlogging, only being affected those seeds subjected for long periods of submersion (over 30 days). Waterlogging during prolonged periods of time decreased the probability of seed germination in the three oak species, lengthened the time to germination, and hampered root development in two of the studied species. The main differences between oak species occurred in terms of root growth (Q. canariensis being the less affected, and Q. suber the most); these differential responses could be related to a species rank of waterlogging tolerance. Thus inter-specific differences in germination responses to waterlogging could contribute to explain, at least partially, species habitat and distribution patterns across landscapes. Seed mass also played an important role on different aspects of germination, though its relative importance varied as function of species and waterlogging treatment. The tolerance to stress induced by waterlogging increased with seed mass, but only in the case of Q. canariensis.  相似文献   

5.
《Acta Oecologica》2006,29(1):104-113
Mediterranean forests in northern Morocco have been studied. Tree species composition and abundance were investigated in 84 forest sites, distributed throughout the sandstone formation of the Tangier region. The relative abundance of 15 tree and arborescent shrub species was related, by ordination analysis, to altitude, disturbance by fire, and soil fertility. High-elevation forests were dominated by Cedrus atlantica, Quercus pyrenaica and Pinus pinaster. Sacred forests (protected as holy burial places) had a distinct stand structure, and were considered as refuges, for maintaining biodiversity at landscape scale. The evergreen oak Quercus suber and the semideciduous Quercus canariensis co-dominated the lowland forests. The mean basal area of the studied forests was 34 m2 ha–1. The mean trunk size (dbh) for Q. suber was 24 cm and for Q. canariensis 36.5 cm; in both cases there were indications of declining regeneration at population level. A comparative biogeographical analysis with the equivalent region in southern Spain (separated by the Strait of Gibraltar; 14 km wide), indicated a possible biodiversity loss in the Moroccan forests.  相似文献   

6.
Plant-plant interactions influence how forests cope with climate and contribute to modulate species response to future climate scenarios. We analysed the functional relationships between growth, climate and competition for Pinus sylvestris, Quercus pyrenaica and Quercus faginea to investigate how stand competition modifies forest sensitivity to climate and simulated how annual growth rates of these species with different drought tolerance would change throughout the 21st century. Dendroecological data from stands subjected to thinning were modelled using a novel multiplicative nonlinear approach to overcome biases related to the general assumption of a linear relationship between covariates and to better mimic the biological relationships involved. Growth always decreased exponentially with increasing competition, which explained more growth variability than climate in Q. faginea and P. sylvestris. The effect of precipitation was asymptotic in all cases, while the relationship between growth and temperature reached an optimum after which growth declined with warmer temperatures. Our growth projections indicate that the less drought-tolerant P. sylvestris would be more negatively affected by climate change than the studied sub-Mediterranean oaks. Q. faginea and P. sylvestris mean growth would decrease under all the climate change scenarios assessed. However, P. sylvestris growth would decline regardless of the competition level, whereas this decrease would be offset by reduced competition in Q. faginea. Conversely, Q. pyrenaica growth would remain similar to current rates, except for the warmest scenario. Our models shed light on the nature of the species-specific interaction between climate and competition and yield important implications for management. Assuming that individual growth is directly related to tree performance, trees under low competition would better withstand the warmer conditions predicted under climate change scenarios but in a variable manner depending on the species. Thinning following an exponential rule may be desirable to ensure long-term conservation of high-density Mediterranean woodlands, particularly in drought-limited sites.  相似文献   

7.
Chloroplast DNA variation was studied in five evergreen Quercus species from the Western part of Tunisia using Cleaved Amplified Polymorphic Sequence (CAPS) technique. Five primer pair/endonuclease combinations have been used. Chlorotypes of Quercus species have been identified. The enzyme HinfI was more efficient in detecting polymorphism in oak species than TaqI. The phenogram showed five groups defining the five studied oak species: suber group, afares group, coccifera group, canariensis group and ilex group. The topology of phenogram showed that the classification depends only on species and independently of their geographic origin. The principal component analysis (ACP) corroborated the results of the tree branching and confirmed the existence of five species groups. Our results showed a genetic proximity between Quercus afares and Quercus coccifera species that may be due to temperature tolerance or the demographic history of these species. Nevertheless, a high value of GST calculated (GST = 1), suggesting that the maximum of variation is maintained among oak species. This result was confirmed by the low value of the genetic diversity within species (hS = 0), the value obtained of the total genetic diversity (hT = 0.378) and the absence of gene flow between species (Nm = 0). A high genetic proximity has been registered between Q. afares, Quercus suber and Quercus canariensis. Moreover, Q. afares shared the chlorotype of Q. suber and Q. canariensis which suggests its hybrid origin.  相似文献   

8.
Understanding the relationships between bud size and position and bud fate through time is crucial for identifying and subsequently modeling the mechanisms underlying tree architecture. However, there is a lack of information on how bud size drives crown architectural patterns in coexisting tree species. We studied bud demography in two coexisting Mediterranean oak species with contrasting leaf habit (Quercus ilex, evergreen; Q. faginea, deciduous). The main objective was to analyse the effect of bud size on the fate of buds with different positions along the shoot (apical, leaf axillary and scale-cataphyll axillary buds). The number, length and position of all buds and stems were recorded in marked branches during 4 years. Study species presented different strategies in bud production and lifespan. The evergreen species showed greater mortality rate than the deciduous one, which produced larger buds. Bud size and position were highly related since apical buds where longer than axillary ones and bud length declined basipetally along the stem. Apical buds had also higher chances of bursting than axillary ones. Within positions, longer buds presented a higher probability of bursting than shorter ones, although no absolute size threshold was found below which bud bursting was impaired. In Q. ilex, four-year-old buds were still viable and able to burst, whereas in Q. faginea practically all buds burst in their first year or died soon after. Such different bud longevities may indicate contrasting strategies in primary growth between both species. Q. ilex is able to accumulate viable buds for several ages, whereas Q. faginea seems to rely on the production of large current-year buds with high bursting probability under favourable environmental conditions.  相似文献   

9.
Quercus forest regeneration is limited by different factors, post-dispersal predation being one of the most critical stages. We analysed seed removal of four coexisting Quercus species (Q. ilex, Q. suber, Q. faginea and Q. pyrenaica) in a Mediterranean forest located in Southern Spain. Marked and weighed acorns from each of the species were placed in experimental units with or without exclusion of large herbivores and in two microhabitat types (Q. ilex shade or open). Acorn removal was monitored for 120?days in order to test the effect of exclusion of large herbivore and microhabitat type on seed removal rates and species selection. Interestingly, the results of microhabitat and species selection differed depending on the presence of large herbivores. Removal was faster in sites without exclusion, where most seeds (??85%) disappeared during the first 9?days. In these sites, no differences in seed removal were found between different microhabitats, but seeds of two species, those with higher seed mass (Q. suber and Q. pyrenaica) were most preferred. However, under exclusion of large herbivores, seed removal was affected by the microhabitat, this being greater in Q. ilex shaded microhabitats, which showed a higher structural diversity. Also, species selection was completely different under exclusion of large herbivores, and seeds of Q. ilex and Q. faginea were removed faster. These results highlight the importance of large herbivore activity on seed removal and its effect on microhabitat and species selection. Therefore, specific selection by seed consumers may modify seedling recruitment and may have an important influence on the relative abundance of coexisting Quercus species.  相似文献   

10.
Northwestern Iberia is characterized for being an Atlantic/Mediterranean transitional area, where the most natural forests contain certain species, typical from either biogeographic region, growing under limiting conditions due to their marginal location. In order to identify the main climatic factors controlling growth, and thus better understand how they impact wood formation processes of the key tree species in these ecosystems, we analyzed tree rings of two somehow contrasting oaks (Quercus robur, Atlantic; and Q. pyrenaica, sub-Mediterranean) at their distribution boundary towards the Mediterranean region. For this, two nearby sites with slightly different regime of water availability were selected for each species. We developed chronologies of radial increment (expressed as latewood width) and functional anatomical traits (size and number of earlywood vessels) for the last decades, and also monitored wood formation along two growing seasons. Our results suggest that the combination of anatomical traits and radial growth constitute a useful tool to understand the behavior of these species in boundary distribution areas. We found some differences between sites, especially for Q. pyrenaica, but the main factors controlling growth were clearly identified at all sites. Earlywood characteristics were mainly related to temperature, whereas latewood width responded to precipitation, regardless of the species. However, vessels of low-elevation Q. robur seemed to be controlled by factors affecting carbohydrate balance, while those of high-elevation Q. pyrenaica were associated to spring conditions for growth resumption. Summer water availability was linked to a wider latewood for both species. In addition, the analysis of xylogenesis carried out at all sites was essential to interpret climate responses by providing evidences for the existence of a cause-effect relationship.  相似文献   

11.

Key message

Earlywood vessel features indicate different adaptations of Quercus petraea and Q. pyrenaica , which are probably related with their corresponding Atlantic and sub-Mediterranean ecological requirements.

Abstract

We studied the climatic signal of the earlywood anatomy of a temperate [Quercus petraea (Mattuschka) Liebl.] and a sub-Mediterranean (Quercus pyrenaica Willd.) oak species growing under similar climatic conditions in a transitional area between the Atlantic and Mediterranean regions of the Iberian Peninsula. We hypothesized that both species react differently in their wood anatomy due to their contrasting ecological requirements, and we test the usefulness of earlywood anatomical features to study the behaviour of these ring-porous oaks upon climate. For this, we measured the earlywood vessels, and obtained annual series of several anatomical variables for the period 1937–2006 using dendrochronological techniques, considering whether the vessels belonged to the first row or not. After optimizing the data set by principal component analysis and progressive filtering of large vessels, we selected maximum vessel area and total number of vessels as they resulted to be the optimal variables to describe vessel size and number, respectively. Vessel size of Q. pyrenaica was dependent on precipitation along the previous growing season, whereas it did not show any clear climatic response for Q. petraea. On the contrary, vessel number was related to winter temperature for both species. These relationships observed between climate and anatomy appeared to be stable through time. The results obtained reinforce the utility of earlywood vessel features as potential climate proxies.  相似文献   

12.
A strong selection for acorn characteristics is expected to have evolved in the mutualistic relationship between the European jay (Garrulus glandarius) and the oak (Quercus spp.). Bossema's pioneer work suggested that jays do not select acorns randomly, but rather they preferentially select some size and species. Preference for some seeds over others may have implications on plant community dynamics by conferring advantages (or disadvantages) on the selected (avoided) seed characteristics. In this paper we test to what extent jays select acorns by species and/or by size and the relation between these two traits in Mediterranean oak species. The experiments consist of a set of field tests in which acorns from four different coexisting Mediterranean oak species (Quercus ilex, Quercus faginea, Quercus suber, and Quercus coccifera) were placed in artificial feeders accessible to wild jays. The acorns were previously measured to control individual acorn characteristics. Using video-recording techniques, we followed jay activity and the fate of each acorn (sequence of acorn selection and method of transport). Q. ilex acorns were preferred over other acorns, and Q. coccifera acorns were avoided when other acorns were available. Preference for Q. faginea and Q. suber acorns was intermediate, that is, they were preferred over Q. coccifera acorns but not over Q. ilex acorns. Large acorns were also preferred although acorn species selection was stronger than size selection. Jays selected species and size both by visual means and by using acorn area as an indicator of size. Acorns wider than 17–19 mm were carried in the bill because of throat limitation. Our results confirm Bossema's study on temperate oaks and extend it to Mediterranean oak species, revealing implications on mixed oak forest dynamics.  相似文献   

13.
Aims Both human and non‐human determinants have shaped Mediterranean forest structure over the last few millennia. The effects of recent human activities on forest composition, however, remain poorly understood. We quantified changes in forest composition during the past century in the mixed forests of Quercus suber (cork oak) and Q. canariensis (Algerian oak), and explored the effects of forest management and environmental (climate, topography) factors on forest structure at various spatial and temporal scales. Location Mountains north of the Strait of Gibraltar (southern Spain). Methods First, we quantified 20th‐century changes in species composition from a series of inventories in nine mixed forests (c. 40,000 ha), and examined them in terms of the management practices and environmental conditions. Second, we analysed present‐day Q. suber and Q. canariensis stand structure along environmental gradients at two spatial scales: (1) that of the forest landscape (c. 284 ha), combining local inventories and topographic variables and using a digital elevation model; and (2) regional (c. 87,600 km2), combining data from the Spanish Forest Inventory for the Andalusia region and estimates of climatic variables. Results Historical data indicate anthropogenic changes in stand composition, revealing a sharp increase in the density of cork oaks over the last century. Forest management has favoured this species (for cork production) at the expense of Q. canariensis. The impact of management is imprinted on the present‐day forest structure. The abundance of both species increases with annual mean precipitation, and they coexist above 800 mm (the minimum threshold for Q. canariensis). Quercus suber dominates in most of the stands, and species segregation in the landscape is associated with the drainage network, Q. canariensis being clearly associated with moister habitats near streams. Main conclusions Our study quantitatively exemplifies a recent human‐mediated shift in forest composition. As a result of forest management, the realized niche of the cork oak has been enlarged at the expense of that of Q. canariensis, providing further evidence for humans as major drivers of oak forest composition across the Mediterranean. Recent regeneration problems detected in Q. suber stands, a reduced demand for wood products, conservation policies, and climate change augur new large‐scale shifts in forest composition.  相似文献   

14.
15.
This study analyses how coexisting evergreen and deciduous oaks adjust their phenology to cope with the stressful Mediterranean summer conditions. We test the hypothesis that the vegetative and reproductive growth of the winter deciduous (Quercus faginea Lam.) is more affected by summer drought than that of the evergreen [Quercus ilex L. subsp. ballota (Desf.) Samp.]. First, we assessed the complete aboveground phenology of both species during two consecutive years. Shoot and litter production and bud, acorn and secondary growth were monitored monthly. Second, we identified several parameters affected by summer conditions: apical bud size, individual leaf area (LA), leaf mass per area (LMA) and acorn yield in both species, and leaf-fall in Q. faginea; and analysed their variation over 10 years. Q. ilex performed up to 25% of shoot growth and most leaf development during summer, whereas Q. faginea completed most of both phenophases during spring. Secondary growth was arrested in summer under drought conditions. Approximately, 30–40% of bud and 40–50% of acorn growth was undertaken during summer in both species. Summer drought related to differences in LA, LMA and leaf senescence, but not to acorn yield. Both species had similar year-to-year patterns of acorn production, though yields were always lower in Q. faginea. Bud size decreased severely in both species during extremely dry years. In Q. ilex, bud size tended to alternate between years of large and small buds, and these patterns were followed by opposite trends in stem length. In Q. faginea, bud size was more stable through time. Q. ilex was more phenologically active during summer than Q. faginea, indicating a higher tolerance to drought. Furthermore, bud and fruit growth (the only two phenophases that both species performed during summer) were more severely affected by summer drought in Q. faginea than in the evergreen. The differential effects of summer drought on key phenophases for the persistence (bud growth) and colonization ability (fruit production) of both species may have consequences for their coexistence.  相似文献   

16.
Understanding community dynamics during early life stages of trees is critical for the prediction of future species composition. In Mediterranean forests drought is a major constraint for regeneration, but likely not the only factor determining the observed spatial patterns. We carried out a sowing experiment aimed at identifying main filters during seed-seedling transition. Specifically, we studied seed fate (predation, fungi infection, emergence) and subsequent seedling performance (mortality during the first summer and overall recruitment after 2 years) of four co-occurring Mediterranean tree species (Quercus ilex, Quercus faginea, Juniperus thurifera, Pinus nigra). We related these processes to the dominant species composition, microhabitat heterogeneity, herb cover and seed mass. The identity of the dominant species in the forest canopy was more important for recruitment than the forest canopy being dominated by conspecific vs. heterospecific species. The patterns we found suggest that biotic interactions such as facilitation (lower mortality under the canopies) and herb competition (during emergence of J. thurifera) are relevant during recruitment. Moreover, our results pointed to ontogenetic conflicts regarding the seed mass of Q. faginea and to density-dependent seed mortality for Q. ilex, rarely described in Mediterranean ecosystems. We propose that our study species experience population growth in forests dominated by heterospecifics where the recruitment success depends on habitat heterogeneity and on moderated biotic and abiotic stresses created by each species. Our results reveal patterns and mechanisms involved in recruitment constraints that add complexity to the well-known drought-related processes in Mediterranean ecosystems.  相似文献   

17.
Knowledge on the distribution and abundance of species is plagued by significant taxonomic and geographic biases that influence the analyses on biodiversity patterns. Due to this, standard, easy-to-use methods are needed to design efficient field campaigns that minimize data deficiencies. We evaluate the applicability, usefulness and effectiveness of a survey design protocol based on the Environmental Diversity (ED) criterion under different scenarios, with examples of varying extent of environmental niche, range of spatial distribution and level of previous knowledge. We planned surveys for epiphytic bryophytes growing in three types of forests at NW Iberian Peninsula (dominated by Quercus ilex, Q. faginea and Q. pyrenaica). Knowledge on the distribution and abundance of epiphytic bryophytes in this region presents large gaps and strong geographic biases. Besides, the three forest types differ in their environmental requirements, spatial distribution and level of previous knowledge, providing three working scenarios to test the response of the protocol under different situations. The protocol was implemented as a set of sequential selection rules, starting by an ED-based criterion aiming at maximizing the coverage of climatic and geographic variability; further criteria include an iterative set of qualitative properties: maximizing forest area, conservation status and accessibility. The protocol performed efficiently at different ranges of spatial distribution levels of environmental variability, and degree of previous knowledge and generated an even distribution of sampling points that efficiently covered the diversity of epiphytic bryophytes. The results show that ED protocols are a proficient and time-saving approach to select sampling sites by objective criteria also for groups with high dispersal ability and fragmented landscapes.  相似文献   

18.
The effect of non-reproductive trees and saplings as a physical barrier to pollen dispersal in wind-pollinated species?? forests has not received enough attention in the literature so far. The neighborhood seedling model was used to fit pollen dispersal models for beech at different stages of gap recolonization and to elucidate the effect of saplings as a physical barrier on pollen dispersal at local scale. Phenological overlap of leaf emergence, and pollen release as well as wind directionality patterns were also examined. As a case study, we used a mixed beech-oak forest that was managed as open woodland until 1974. The ban on entry of cattle has led to the recolonization of empty spaces by seedlings and saplings of beech (Fagus sylvatica L.) and two oak species (Quercus petraea (Matts.) Liebl. and Q. pyrenaica Willd.) and, at last, to canopy closure. The average pollen dispersal distance for the first plants that regenerated in the gaps was almost twice those found for recently installed seedlings and seeds collected in traps, supporting the hypothesis that the understory may act as a physical barrier to pollen dispersal. Although a substantial part of effective pollination directionality is at random, horizontal winds and vertical anabatic winds may explain some of this directionality. At the time of beech pollen release, leaves of beech and sessile oak are fully developed, enhancing pollen interception by the saplings. Explicit models of pollen dispersal for wind-pollinated trees should incorporate the effect of canopy closure caused by growth of saplings and account for leaf phenology of co-occurring species in the forest.  相似文献   

19.
Various pollen sequences from lacustrine deposits close to Lago de Sanabria (NW Iberia) have for several decades been a key source of information for palaeoenvironmental reconstructions of SW Europe, though their interpretation has been the subject of some controversy. Here we present two new pollen sequences obtained from this area, and a new palaeoenvironmental reconstruction of the region. The available pollen data reach back to before 18,000 b.p., a period of very harsh climate with seasonal (non continuous) sedimentation and a landscape characterised by herbaceous formations dominated by Gramineae and Artemisia, and scrub formations dominated by Ericaceae and Cistaceae. Subsequently sedimentation became continuous, and various regional forest expansions are apparent. At a local level, the first forest expansion began about 12,000 b.p., when Betula pollen reached 70% followed by peaks in Pinus sylvestris-type (>80%) and Quercus robur-type (40%). The Younger Dryas saw a retreat of woodland formations in the area around the lake, with broadleaved deciduous woodland (largely oak) retreating at mid and low altitudes, but with pine woodland persisting in more sheltered sites. The climatic improvement in the Early Holocene favoured re-expansion of woodland, dominated by Pinus sylvestris-type at higher and Quercus robur and Q. pyrenaica at lower altitudes, until anthropogenic deforestation commenced around 4,000 b.p. The disappearance of natural pine woodlands in this region is probably largely attributable to human interference.  相似文献   

20.
Extreme climatic events such as intense droughts are becoming more frequent in Mediterranean regions, but our understanding of their impact on tree performance is still fragmentary. We analyzed growth and sap flow responses for a 3-year period including the most stressful drought over the last half century in the evergreen Pinus nigra and the deciduous Quercus faginea, two dominant tree species in the continental plateau of the Iberian Peninsula. Our aim was to quantify the differential impacts of this event on the performance of both species and their modulation by local microclimate. Growth was registered with digital dendrometers, and water use was assessed by continuously recording sap flow in 8–9 coexisting adult individuals of each species in two sites. Q. faginea spring growth rate decreased by 60 % during the dry year at the dry site, while the decrease in P. nigra was around 36 %. P. nigra exhibited larger sap flow reductions during the dry season and also larger decreases during the extreme year, but in contrast to Q. faginea, it was able to recover growth and sap flow values after the extreme drought. Minor microclimatic differences between sites had significant effects on growth and water use, with slightly more mesic conditions significantly attenuating the impact of drought on both species. Findings suggest that the study species were near to their tolerance thresholds, so that even moderate increases in the intensity and frequency of unusual droughts have important consequences for individual tree performance, and eventually species coexistence and ecosystem processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号