首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The history of the Jewish Diaspora dates back to the Assyrian and Babylonian conquests in the Levant, followed by complex demographic and migratory trajectories over the ensuing millennia which pose a serious challenge to unraveling population genetic patterns. Here we ask whether phylogenetic analysis, based on highly resolved mitochondrial DNA (mtDNA) phylogenies can discern among maternal ancestries of the Diaspora. Accordingly, 1,142 samples from 14 different non-Ashkenazi Jewish communities were analyzed. A list of complete mtDNA sequences was established for all variants present at high frequency in the communities studied, along with high-resolution genotyping of all samples. Unlike the previously reported pattern observed among Ashkenazi Jews, the numerically major portion of the non-Ashkenazi Jews, currently estimated at 5 million people and comprised of the Moroccan, Iraqi, Iranian and Iberian Exile Jewish communities showed no evidence for a narrow founder effect, which did however characterize the smaller and more remote Belmonte, Indian and the two Caucasus communities. The Indian and Ethiopian Jewish sample sets suggested local female introgression, while mtDNAs in all other communities studied belong to a well-characterized West Eurasian pool of maternal lineages. Absence of sub-Saharan African mtDNA lineages among the North African Jewish communities suggests negligible or low level of admixture with females of the host populations among whom the African haplogroup (Hg) L0-L3 sub-clades variants are common. In contrast, the North African and Iberian Exile Jewish communities show influence of putative Iberian admixture as documented by mtDNA Hg HV0 variants. These findings highlight striking differences in the demographic history of the widespread Jewish Diaspora.  相似文献   

2.
Autochthonous Basques are thought to be a trace from the human population contraction that occurred during the Last Glacial Maximum, based mainly on the salient frequencies and coalescence ages registered for haplogroups V, H1, and H3 of mitochondrial DNA in current Basque populations. However, variability of the maternal lineages still remains relatively unexplored in an important fraction of the Iberian Basque community. In this study, mitochondrial DNA diversity in Navarre (North Spain) was addressed for the first time. To that end, HVS-I and HVS-II sequences from 110 individuals were examined to identify the most relevant lineages, including analysis of coding region SNPs for the refinement of haplogroup assignment. We found a prominent frequency of subhaplogroup J1c (11.8%) in Navarre, coinciding with previous studies on Basques. Subhaplogroup H2a5, a putative autochthonous Basque lineage, was also observed in Navarre, pointing to a common origin of current Basque geographical groups. In contrast to other Basque subpopulations, comparative analyses at Iberian and European scales revealed a relevant frequency of subhaplogroup H3 (10.9%) and a frequency peak for U5b (15.5%) in Navarre. Furthermore, we observed low frequencies for maternal lineages HV0 and H1 in Navarre relative to other northern Iberian populations. All these findings might be indicative of intense genetic drift episodes generated by population fragmentation in the area of the Franco-Cantabrian refuge until recent times, which could have promoted genetic microdifferentiation between the different Basque subpopulations.  相似文献   

3.
Adherents to the Jewish faith have resided in numerous geographic locations over the course of three millennia. Progressively more detailed population genetic analysis carried out independently by multiple research groups over the past two decades has revealed a pattern for the population genetic architecture of contemporary Jews descendant from globally dispersed Diaspora communities. This pattern is consistent with a major, but variable component of shared Near East ancestry, together with variable degrees of admixture and introgression from the corresponding host Diaspora populations. By combining analysis of monoallelic markers with recent genome-wide variation analysis of simple tandem repeats, copy number variations, and single-nucleotide polymorphisms at high density, it has been possible to determine the relative contribution of sex-specific migration and introgression to map founder events and to suggest demographic histories corresponding to western and eastern Diaspora migrations, as well as subsequent microevolutionary events. These patterns have been congruous with the inferences of many, but not of all historians using more traditional tools such as archeology, archival records, linguistics, comparative analysis of religious narrative, liturgy and practices. Importantly, the population genetic architecture of Jews helps to explain the observed patterns of health and disease-relevant mutations and phenotypes which continue to be carefully studied and catalogued, and represent an important resource for human medical genetics research. The current review attempts to provide a succinct update of the more recent developments in a historical and human health context.  相似文献   

4.
Basque people have received considerable attention from anthropologists, geneticists, and linguists during the last century due to the singularity of their language and to other cultural and biological characteristics. Despite the multidisciplinary efforts performed to address the questions of the origin, uniqueness, and heterogeneity of Basques, the genetic studies performed up to now have suffered from a weak study design where populations are not analyzed in an adequate geographic and population context. To address the former questions and to overcome these design limitations, we have analyzed the uniparentally inherited markers (Y chromosome and mitochondrial DNA) of ~900 individuals from 18 populations, including those where Basque is currently spoken and populations from adjacent regions where Basque might have been spoken in historical times. Our results indicate that Basque-speaking populations fall within the genetic Western European gene pool, that they are similar to geographically surrounding non-Basque populations, and also that their genetic uniqueness is based on a lower amount of external influences compared with other Iberians and French populations. Our data suggest that the genetic heterogeneity and structure observed in the Basque region result from pre-Roman tribal structure related to geography and might be linked to the increased complexity of emerging societies during the Bronze Age. The rough overlap of the pre-Roman tribe location and the current dialect limits support the notion that the environmental diversity in the region has played a recurrent role in cultural differentiation and ethnogenesis at different time periods.  相似文献   

5.
6.
The Common Wall Lizard (Podarcis muralis) has established more than 150 non-native populations in Central Europe, stemming from eight geographically distinct evolutionary lineages. While the majority of these introduced populations are found outside the native range, some of these populations also exist at the northern range margin in southwestern Germany. To (i) infer the level of hybridization in contact zones of alien and native lineages; and (ii) compare the genetic diversity among purebred introduced, native and hybrid populations, we used a combination of maternally inherited markers (mtDNA: cytb) and Mendelian markers (microsatellites). Our results suggest a rapid genetic assimilation of native populations by strong introgression from introduced lineages. Discordant patterns of mtDNA and nDNA variation within hybrid populations may be explained by directed mate choice of females towards males of alien lineages. In contrast to previous studies, we found a nonlinear relationship between genetic diversity and admixture level. The genetic diversity of hybrid populations was substantially higher than in introduced and native populations belonging to a single lineage, but rapidly reaching a plateau of high genetic diversity at an admixture level of two. However, even introduced populations with low founder sizes and from one source population retained moderate levels of genetic diversity and no evidence for a genetic bottleneck was found. The extent of introgression and the dominance of alien haplotypes in mixed populations indicate that introductions of non-native lineages represent a serious threat to the genetic integrity of native populations due to the rapid creation of hybrid swarms.  相似文献   

7.
The Pleistocene glacial cycles left a genetic legacy on taxa throughout the world; however, the persistence of genetic lineages that diverged during these cycles is dependent upon levels of gene flow and introgression. The consequences of secondary contact among taxa may reveal new insights into the history of the Pleistocene’s genetic legacy. Here, we use phylogeographic methods, using 20 nuclear loci from regional populations, to infer the consequences of secondary contact following divergence in the Mountain Chickadee (Poecile gambeli). Analysis of nuclear data identified two geographically-structured genetic groups, largely concordant with results from a previous mitochondrial DNA (mtDNA) study. Additionally, the estimated multilocus divergence times indicate a Pleistocene divergence, and are highly concordant with mtDNA. The previous mtDNA study showed a paucity of sympatry between clades, while nuclear patterns of gene flow show highly varied patterns between populations. The observed pattern of gene flow, from coalescent-based analyses, indicates southern populations in both clades exhibit little gene flow within or between clades, while northern populations are experiencing higher gene flow within and between clades. If this pattern were to persist, it is possible the historical legacy of Pleistocene divergence may be preserved in the southern populations only, and the northern populations would become a genetically diverse hybrid species.  相似文献   

8.
The European genetic landscape has been shaped by several human migrations occurred since Paleolithic times. The accumulation of archaeological records and the concordance of different lines of genetic evidence during the last two decades have triggered an interesting debate concerning the role of ancient settlers from the Franco-Cantabrian region in the postglacial resettlement of Europe. Among the Franco-Cantabrian populations, Basques are regarded as one of the oldest and more intriguing human groups of Europe. Recent data on complete mitochondrial DNA genomes focused on macrohaplogroup R0 revealed that Basques harbor some autochthonous lineages, suggesting a genetic continuity since pre-Neolithic times. However, excluding haplogroup H, the most representative lineage of macrohaplogroup R0, the majority of maternal lineages of this area remains virtually unexplored, so that further refinement of the mtDNA phylogeny based on analyses at the highest level of resolution is crucial for a better understanding of the European prehistory. We thus explored the maternal ancestry of 548 autochthonous individuals from various Franco-Cantabrian populations and sequenced 76 mitogenomes of the most representative lineages. Interestingly, we identified three mtDNA haplogroups, U5b1f, J1c5c1 and V22, that proved to be representative of Franco-Cantabria, notably of the Basque population. The seclusion and diversity of these female genetic lineages support a local origin in the Franco-Cantabrian area during the Mesolithic of southwestern Europe, ∼10,000 years before present (YBP), with signals of expansions at ∼3,500 YBP. These findings provide robust evidence of a partial genetic continuity between contemporary autochthonous populations from the Franco-Cantabrian region, specifically the Basques, and Paleolithic/Mesolithic hunter-gatherer groups. Furthermore, our results raise the current proportion (≈15%) of the Franco-Cantabrian maternal gene pool with a putative pre-Neolithic origin to ≈35%, further supporting the notion of a predominant Paleolithic genetic substrate in extant European populations.  相似文献   

9.
The main goal of this contribution is to investigate the genetic structure of boll weevil populations from South America (Argentina and Brazil) and to make further comparisons with a putative source population from USA. Samples were collected in a Paranaense forest under reserve protection, cotton fields and non-cultivated areas. Data from anonymous molecular markers were analysed using both traditional methods of population genetics and Bayesian approaches. Results help to support a previous hypothesis on the presence of two lineages of boll weevil populations in South America: one with characteristics of recent invaders and the other with characteristics of ancient populations. The sample from Urugua-í Provincial Park (Misiones, Argentina) shows the highest percentage of polymorphic loci, the highest values of mean heterozigosity, and the largest number of population-specific alleles, all being typical features of ancient populations. Furthermore, the Urugua-í sample shows two gene pools occurring in sympatry, probably as a consequence of a secondary contact. The remaining samples reveal not only lower percentages of polymorphic loci and heterozygosity values, but also an almost negligible presence of specific alleles. Bayesian methods also suggest the occasional migration of some individuals of ancient lineages from their natural habitats in fragments of the Paranaense forest into cotton fields, and vice versa.  相似文献   

10.
The Y-chromosome haplogroup composition of the population of the Cabo Verde Archipelago was profiled by using 32 single-nucleotide polymorphism markers and compared with potential source populations from Iberia, west Africa, and the Middle East. According to the traditional view, the major proportion of the founding population of Cabo Verde was of west African ancestry with the addition of a minor fraction of male colonizers from Europe. Unexpectedly, more than half of the paternal lineages (53.5%) of Cabo Verdeans clustered in haplogroups I, J, K, and R1, which are characteristic of populations of Europe and the Middle East, while being absent in the probable west African source population of Guiné-Bissau. Moreover, a high frequency of J* lineages in Cabo Verdeans relates them more closely to populations of the Middle East and probably provides the first genetic evidence of the legacy of the Jews. In addition, the considerable proportion (20.5%) of E3b(xM81) lineages indicates a possible gene flow from the Middle East or northeast Africa, which, at least partly, could be ascribed to the Sephardic Jews. In contrast to the predominance of west African mitochondrial DNA haplotypes in their maternal gene pool, the major west African Y-chromosome lineage E3a was observed only at a frequency of 15.9%. Overall, these results indicate that gene flow from multiple sources and various sex-specific patterns have been important in the formation of the genomic diversity in the Cabo Verde islands.An erratum to this article can be found at  相似文献   

11.
Sex determination in Armadillidium vulgare may be under the control of two parasitic sex factors that reverse genetic males into functional neo-females. The first feminizing factor (F) is a Wolbachia and the other (f) is probably a sequence of the F bacterial DNA unstably integrated into the host genome. Both of these feminizing factors are mainly maternally transmitted. Here we investigate the mitochondrial DNA polymorphism of wild iso-female lineages harbouring either F or f. Among the four haplotypes present in the population, two were the f-harbouring lineages, while two were common to the F- and f-harbouring lineages. This result suggests that there has been an introgression of the f factor into lineages infected by F Wolbachia. Based on previous data, we propose two different ways to account for such introgression. Given the particular dynamics of feminizing factors (f-harbouring lineages increase in populations at the expense of F-harbouring lineages), such an introgression should prevent the replacement of F-linked mitochondrial types by f-linked mitochondrial types in wild populations.  相似文献   

12.
A multivariate analysis of four prehistoric and nine historic populations from the Iberian Peninsula and Balearic Islands with large sample sizes (n > 30 individuals for the neurocranium and n > 15 for the facial skeleton) is presented, considering 874 male and 557 female skulls and using 20 craniometric measurements. Cluster analyses have been undertaken using the squared Euclidean distance as a measure of proximity and the average linkage between groups (UPGMA), and neighbor-joining algorithms as a branching method, and a bootstrap analysis was used to assess the robustness of the clustering topology. The study was complemented with a principal coordinate analysis and with the application of the Mantel test to measure the degree of correspondence between the information furnished by the female and the male samples. The analyses show that the main source of morphometric variability in the Iberian Peninsula is the Basque population. The second source of variation is provided by two populations (Muslims and Jews), different from the rest from an archaeological and cultural point of view, and can probably be attributed to influences from sub-Saharan Africa. The massive deportations of the Jews in 1492 and of the Moors between the 15th and 17th centuries may have erased this source of variability from the present population of the Iberian Peninsula. The remaining studied populations, including samples from Castile, Cantabria, Andalusia, Catalonia and Balearic Islands, are grouped together, showing a notable morphological homogeneity, despite their temporal and geographic heterogeneity. These results are in general agreement with those obtained in synthetic maps, by analyzing multiple genetic markers. In such studies, the Basque population is described as the main source of genetic variability, not only in the Iberian Peninsula, but also in Western Europe. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Aim We study the population differentiation and phylogeography of the Temminck’s Stint (Calidris temminckii). Specifically, we seek signs of past and present population size changes and dispersal events and evaluate management and conservation unit status of the populations. We also study the possibility of introgression as the origin of two mitochondrial DNA (mtDNA) lineages found and estimate the divergence time of the lineages. Location Northern Eurasia. Methods We analysed 583 bp of mtDNA control region domains I and II and 11 microsatellite loci from 13 localities throughout the breeding range. In addition, we used mitochondrial cytochrome c oxidase subunit I (COI), a barcoding gene, to search for signs of introgression. Results More population differentiation was found from microsatellites than from mtDNA, although differentiation was weak in both markers. Signs of past population growth were observed, in addition to more recent decline in some areas. Both control region and COI sequences revealed two maternal lineages coexisting in Fennoscandia and in north‐west Siberia. No signs of introgression were detected. Lineage divergence time was estimated to have occurred during the glacial periods of Pleistocene. Main conclusions Slight differences in mtDNA and microsatellite differentiation and diversity may reflect different features – such as the mutation rate and effective population size – of the markers used, or female‐biased dispersal pattern and high male site‐fidelity of the species. The coexistence of the two mitochondrial lineages is most likely a consequence of post‐glacial mixing of two refugial Pleistocene populations. Based on genetic information alone, global conservation concerns are not imminent. However, fast decline of a marginal Bothnian Bay population and the smallness and remoteness of a Central Yakutian population warrant conservation actions.  相似文献   

14.
The Eurasian wild boar (Sus scrofa Linnaeus, 1758) was introduced into Argentina at the beginning of the twentieth century when individuals from Europe were taken to La Pampa province for hunting purposes. Starting from there, a dispersal process began due to the invasive characteristics of the species and to human-mediated translocations. The main objective of this study was to characterize for the first time, the phylogenetic relationships among wild boars from Argentina with those from Uruguay, Europe, Asia, and the Near East, along with diverse domestic pig breeds in order to corroborate the historical information about the origin of the local populations. To this end, we used mitochondrial Control Region and Cytochrome b sequences from sampled Argentinian wild boars and retrieved from GenBank. The results showed that the majority of the Argentinian wild boar populations descend from European lineages, in particular of the E1 clade, according to the historical records. Remarkably, the population of El Palmar National Park had Asian origin that could be attributed to hybridization with local domestic pigs or to unrecorded translocations. Finally, genetic diversity in Argentinian populations was lower than in Europe and Uruguay meaning that wild boar in Argentina is still under the influence of founder effect and has experienced minor genetic introgression from domestic pigs, representing in this sense a reservoir of the original wild boar genetic variability.  相似文献   

15.
王晓庆  王传超  邓琼英  李辉 《遗传》2013,35(2):168-174
文章对我国广西仫佬族91个无关男性个体Y-STR、Y-SNP、mtDNA HVS-Ⅰ和mtDNA-SNP等进行检测分型, 探索仫佬族的分子遗传结构。结果显示:Y染色体单倍群O1a1-P203和O2a1*-M95在仫佬族中为高频单倍群, 利用Y-STR构建的N-J树中仫佬族与侗族聚类, 说明在父系遗传上仫佬族与侗族遗传关系较近; mtDNA中F1a、M*、B4a、B5a等4类单倍群高频出现, 体现出仫佬族在母系遗传方面具有典型的东亚南方群体特征。17个Y-STR位点和mtDNA HVS-Ⅰ具有丰富的遗传多态性, 在群体遗传学和法医学方面具有应用前景。  相似文献   

16.
Sennertia mites live as inquilines in the nests of carpenter bees and disperse as deutonymphs on newly emerged adult bees. Because their life cycle is tightly linked to that of the host bees, Sennertia may diverge in response to speciation in the hosts. However, the majority of Sennertia species are associated with several closely related carpenter bees, suggesting that host speciation may not be reflected in mite genetic structure. Here we investigate the extent of host-associated genetic differentiation in two Sennertia mites (S. alfkeni and S. japonica) that share four closely related, strictly allopatric large carpenter bees (Xylocopa). Analysis of the mitochondrial cytochrome oxidase subunit I (COI) gene in Sennertia unexpectedly indicates that the two species represent morphological variants of a single species, and they collectively group into four distinct, allopatric clades that are uniquely associated with a single Xylocopa host. An exception is the mites associated with X. amamensis of the northernmost populations, which have genotypes typical of those associated with neighboring X. appendiculatacircumvolans. Additional analysis using amplified fragment length polymorphism (AFLP) further corroborates the presence of four mite clades but contrary to the COI data, suggests that the mites of the southernmost population of X. appendiculatacircumvolans have genetic profiles typical of those associated with X. amamensis. These results indicate that some mites have undergone secondary host switch after the formation of the four mite lineages and further experienced mitochondrial introgression during period of lineage coexistence. Overall, our results strongly urge reappraisal of deutonymph-based mite taxonomy and illuminate the importance of host-associated divergence during incipient stage of speciation in chaetodactylid mites. Furthermore, the occurrence of host switch and introgression between genetically differentiated mites entails that two host species have co-occurred in the past, thus providing a unique source of evidence for migration and competitive exclusion between the presently allopatric Xylocopa hosts.  相似文献   

17.
Evaluating population structure in the marine environment is a challenging task when the species of interest is continuously distributed, and yet the use of population or stock structure is a crucial component of management and conservation strategies. The franciscana dolphin (Pontoporia blainvillei), a rare endangered coastal cetacean, suffers high levels of by-catch all along its distribution range in the Western South Atlantic, and questions have been raised about boundaries or divisions for population management. Here we apply genetic tools to better understand population structure and migration, sex-biased dispersal, and to assess potential genetic and demographic impacts of by-catch. Our analyses, based on mtDNA control region sequences, reveal significant genetic division at the regional level and fine-scale structure within our study area. These results suggest that the population in northern Buenos Aires is the most isolated population in Argentina. We found no significant departure from an equal sex ratio among the by-caught animals. A few cases of multiple entanglements appeared to be mother–calf pairs based on field observations and individuals sharing the same mtDNA control region lineage. The distribution of haplotype frequencies observed could imply that some maternal lineages are more prone to be subject to higher rates of by-catch, although biopsy sampling is necessary to fully evaluate whether maternal lineage distributions are the same for biopsy sampled and by-caught animals. A genetic indication of population size disequilibrium was detected for all populations in Argentina, which is consistent with available rates of by-catch and abundance estimates. Collectively, our findings support the current scheme of larger recognized Franciscana Management Areas (FMA), but argue for a finer-scale subdivision within Northern Buenos Aires region (FMA IV). Finally, an integrated approach to promote conservation of this endangered small cetacean has to involve identification of genetic and demographic threats, a more sustainable fishery strategy to reduce by-catch, and designation of protected areas that are supported by underlying population structure for franciscana dolphins.  相似文献   

18.
We conducted a large‐scale population genetic survey of genetic diversity of the host grass Festuca rubra s.l., which fitness can be highly dependent on its symbiotic fungus Epichloë festucae, to evaluate genetic variation and population structure across the European range. The 27 studied populations have previously been found to differ in frequencies of occurrence of the symbiotic fungus E. festucae and ploidy levels. As predicted, we found decreased genetic diversity in previously glaciated areas in comparison with nonglaciated regions and discovered three major maternal genetic groups: southern, northeastern, and northwestern Europe. Interestingly, host populations from Greenland were genetically similar to those from the Faroe Islands and Iceland, suggesting gene flow also between those areas. The level of variation among populations within regions is evidently highly dependent on the postglacial colonization history, in particular on the number of independent long‐distance seed colonization events. Yet, also anthropogenic effects may have affected the population structure in F. rubra. We did not observe higher fungal infection rates in grass populations with lower levels of genetic variability. In fact, the fungal infection rates of E. festucae in relation to genetic variability of the host populations varied widely among geographical areas, which indicate differences in population histories due to colonization events and possible costs of systemic fungi in harsh environmental conditions. We found that the plants of different ploidy levels are genetically closely related within geographic areas indicating independent formation of polyploids in different maternal lineages.  相似文献   

19.
Introgressive hybridizations have often been observed between native and introduced trouts of North America (Oncorhynchus spp.) and Europe (Salmo spp.), including some lineages that have been isolated for more than a million years. These observations have suggested that introgression is the expected result between introduced and indigenous conspecific salmonids. However, an examination of published information reveals a high variability in such anticipated gene flow. Many studies have noted the relative ease of translocating freshwater over anadromous salmonids, and this difference has been related to the more complex adaptations of anadromous populations (e.g., freshwater and marine residence, smoltification, juvenile and adult migration) that obstruct their translocation to conspecifically colonized areas. This contrast extends to introgressive capabilities where examples of introgression among freshwater populations predominate. Despite intensive introductions of non-native salmonids, indigenous anadromous populations commonly resist introgression. However, within major lineages, anadromous populations appear to be more susceptible to introgression. Measuring the extent and dynamics of such introgressions remains challenging because subgroups within major lineages lie on or below the threshold for detection by molecular genetic markers. These substructures appear to reflect the more rapid evolution of directional selection promoting, for instance, temporal or microgeographic divergence within a population unit defined by genetic markers. Consequently, management that assumes panmixia within a particular region based on even intensive molecular genetic analysis will inevitably erode and prevent reformation of this substructure to the detriment of the overall genetic variability and productivity.  相似文献   

20.
The Pyrenean region exhibits high levels of endemism suggesting a major contribution to the phylogeography of European species. But, to date, the role of the Pyrenees and surrounding areas as a glacial refugium for temperate species remains poorly explored. In the current study, we investigated the biogeographic role of the Pyrenean region through the analyses of genetic polymorphism and morphology of a typical forest-dwelling small mammal, the bank vole ( Myodes glareolus ). Analyses of the mitochondrial cytochrome b gene and the third upper molar (M3) show a complex phylogeographic structure in the Pyrenean region with at least three distinct lineages: the Western European, Spanish and Basque lineages. The Basque lineage in the northwestern (NW) Pyrenees was identified as a new clearly differentiated and geographically localized bank vole lineage in Europe. The average M3 shape of Basque bank voles suggests morphological differentiation but also restricted genetic exchanges with other populations. Our genetic and morphological results as well as palaeo-environmental and fossils records support the hypothesis of a new glacial refugium in Europe situated in the NW Pyrenees. The permissive microclimatic conditions that prevailed for a long time in this region may have allowed the survival of temperate species, including humans. Moreover, local differentiation around the Pyrenees is favoured by the opportunity for populations to track the shift of the vegetation belt in altitude rather than in latitude. The finding of the Basque lineage is in agreement with the high level of endemic taxa reported in the NW Pyrenees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号