首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
关莹  周振宇 《人类学学报》2022,41(1):169-179
从考古学诞生之初,对抽象数据的解读与分析就一直伴随。对于旧石器考古学而言,“人工制品”成为了传达史前物质文化信息的主要载体,对人工制品中所提取的数据进行科学解读,成为了复原古代人类历史的关键步骤。数据科学在旧石器考古学中的应用具有三个主要因素,分别是数理统计学、计算机应用,以及旧石器考古学的基础数据与核心科学问题以及理论知识,即采用某种或多种逻辑将旧石器考古学领域的数据进行基于计算机平台的数理统计,并借助计算机语言对庞大的数据进行快速计算,从而帮助我们解释和重建史前人类社会。在目前的旧石器考古学领域,研究者们已经不再满足于对标本所进行的基础的描述性信息统计,对数据进行科学的处理并系统解读的诉求前所未有的强烈,这种诉求不断推动着学科的发展,深化了我们原本对史前社会的认识,甚至开拓出了新的研究领域,极大地推动了旧石器考古学的发展。本文就数据科学的概念、技术路线,以及在旧石器考古学中的应用历史与发展前景做详细介绍,希望通过系统性的梳理,使更多读者熟悉相关的研究手段与具体技术,使更多考古学者对数据科学的应用产生兴趣,从而应用于相关的项目研究中。  相似文献   

3.
The direct reaction field (DRF) approach has proven to be a useful tool to investigate the influence of solvents on the quantum/classical behaviour of solute molecules. In this paper, we report the latest extension of this DRF approach, which consists of the gradient of the completely classical energy expressions of this otherwise QM/MM method. They can be used in (completely classical) molecular dynamics (MD) simulations and geometry optimizations, that can be followed by a number of single point QM/MM calculations on configurations obtained in these simulations/optimizations. We report all energy and gradient expressions, and results for a number of interesting (model) systems. They include geometry optimization of the benzene dimer as well as MD simulations of some solvents. The most stable configuration for the benzene dimer is shown to be the parallel-displaced form, which is slightly more stable (0.3 kcal/mol) than the T-shaped dimer.  相似文献   

4.
刘志刚  邓贝  杨波  胡征 《生物信息学》2013,11(2):130-135
运用同源模建的方法构建了pACY1三维结构模型,并在能量最小化后对模型进行分子动力学模拟和结构合理性评估。同源模建生成了50个原始模型,经过PROCHECK评测后,筛选出模型A、B进行能量最小化,并得到模型A1、B1。分子动力学模拟结果表明模型B1二聚体结构较稳定。PROCHECK、ProSa以及WHATIF检测结果验证了模型B1属于合理性结构。得到的猪氨基酰化酶Ⅰ(pACY1)的三维结构,为研究其结构与功能关系打下基础。  相似文献   

5.
The paper gives a short overview on recent approaches to link several time and length scales in soft matter simulations. Special attention is given to the fact that in contrast to low molecular weight compounds, intramolecular entropy is as important as the energetic contribution. First applications to industrially relevant problems are mentioned.  相似文献   

6.
The force fields commonly used in molecular dynamics simulations of proteins are optimized under bulk conditions. Whether the same force fields can be used in simulations of membrane proteins is not well established, although they are increasingly being used for such purposes. Here we consider ion permeation in the gramicidin A channel as a test of the AMBER force field in a membrane environment. The potentials of mean force for potassium ions are calculated along the channel axis and compared with the one deduced from the experimental conductance data. The calculated result indicates a rather large central barrier similar to those obtained from other force fields, which are incompatible with the conductance data. We suggest that lack of polarizability is the most likely cause of this problem, and, therefore, urge development of polarizable force fields for simulations of membrane proteins.  相似文献   

7.
The diffusion of small molecules through polymers is important in many areas of polymer science, such as gas barrier and separation membrane materials, polymeric foams, and in the processing and properties of polymers. Molecular simulation techniques have been applied to study the diffusion of oxygen and carbon dioxide as small molecule penetrants in models of bulk amorphous poly(ethylene terephthalate) (PET) and related alkylene and isomeric polyesters. A bulk amorphous configuration with periodic boundary conditions made into a unit cell whose dimensions were determined for each of the simulated polyesters in the cell having the experimental density. The diffusion coefficients for O 2 and CO 2 were determined via NVE molecular dynamics simulations using the Dreiding 2.21 molecular mechanics force field over a range of temperatures (300, 500 and 600 K) using up to 3 ns simulation time. We have focussed on the influence of the temperature, polymer dynamics, number of CH 2 groups, density and free volume distribution on the diffusion properties. Correlation of diffusion coefficients with free volume and number of CH 2 groups was found.  相似文献   

8.
A recently defined charge set, to be used in conjunction with the all-atom CHARMM27r force field, has been validated for a series of phosphatidylcholine lipids. The work of Sonne et al. successfully replicated experimental bulk membrane behaviour for dipalmitoylphosphatidylcholine (DPPC) under the isothermal-isobaric (NPT) ensemble. Previous studies using the defined CHARMM27r charge set have resulted in lateral membrane contraction when used in the tensionless NPT ensemble, forcing the lipids to adopt a more ordered conformation than predicted experimentally. The current study has extended the newly defined charge set to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphatidylcholine (PDPC). Molecular dynamics simulations were run for each of the lipids (including DPPC) using both the CHARMM27r charge set and the newly defined modified charge set. In all three cases a significant improvement was seen in both bulk membrane properties and individual atomistic effects. Membrane width, area per lipid and the depth of water penetration were all seen to converge to experimental values. Deuterium order parameters generated with the new charge set showed increased disorder across the width of the bilayer and reflected both results from experiment and similar simulations run with united atom models. These newly validated models can now find use in mixed biological simulations under the tensionless ensemble without concern for lateral contraction.  相似文献   

9.
The mechanics of substrate adhesion has recently been intensively studied in insects but less is known about the sensorimotor control of substrate engagement. We characterized the responses and motor effects of tarsal campaniform sensilla in stick insects to understand how sensory signals of force could contribute to substrate grip. The tarsi consist of a chain of segments linked by highly flexible articulations. Morphological studies showed that one to four campaniform sensilla are located on the distal end of each segment. Activities of the receptors were recorded neurographically and sensilla were identified by stimulation and ablation of their cuticular caps. Responses were characterized to bending forces and axial loads, muscle contractions and to forces applied to the retractor apodeme (tendon). The tarsal sensilla effectively encoded both the rate and amplitude of loads and muscle forces, but only when movement was resisted. Mechanical stimulation of the receptors produced activation of motor neurons in the retractor unguis and tibial flexor muscles. These findings indicate that campaniform sensilla can provide information about the effectiveness of the leg muscles in generating substrate adherence. They can also produce positive force feedback that could contribute to the development of substrate grip and stabilization of the tarsal chain.  相似文献   

10.
The role of water molecules in assisting proton transfer (PT) is investigated for the proton-pumping protein ferredoxin I (FdI) from Azotobacter vinelandii. It was shown previously that individual water molecules can stabilize between Asp(15) and the buried [3Fe-4S](0) cluster and thus can potentially act as a proton relay in transferring H(+) from the protein to the μ(2) sulfur atom. Here, we generalize molecular mechanics with proton transfer to studying proton transfer reactions in the condensed phase. Both umbrella sampling simulations and electronic structure calculations suggest that the PT Asp(15)-COOH + H(2)O + [3Fe-4S](0) → Asp(15)-COO(-) + H(2)O + [3Fe-4S](0) H(+) is concerted, and no stable intermediate hydronium ion (H(3)O(+)) is expected. The free energy difference of 11.7 kcal/mol for the forward reaction is in good agreement with the experimental value (13.3 kcal/mol). For the reverse reaction (Asp(15)-COO(-) + H(2)O + [3Fe-4S](0)H(+) → Asp(15)-COOH + H(2)O + [3Fe-4S](0)), a larger barrier than for the forward reaction is correctly predicted, but it is quantitatively overestimated (23.1 kcal/mol from simulations versus 14.1 from experiment). Possible reasons for this discrepancy are discussed. Compared with the water-assisted process (ΔE ≈ 10 kcal/mol), water-unassisted proton transfer yields a considerably higher barrier of ΔE ≈ 35 kcal/mol.  相似文献   

11.
Collective dynamic properties of different kind of binary liquid mixtures have been investigated by molecular dynamics simulation. The study includes both the longitudinal and the transverse current spectra in simple liquid alloys, 1:1 molten salts and liquid binary mixtures of neutral particles with an ionic-like structure. These systems were chosen as representative of binary liquids with different static structures in order to analyse the effects of structural ordering on the mechanisms of dynamic collective properties. The effect of the mass asymmetry between the two species in the mixture has been also discussed from the results for two different mass ratios for each kind of structure. Two length scales have been considered. On the one hand, the hydrodynamic scale (low wave numbers), where the modes for the partial currents of the two species are characterised by very close frequencies. On the other hand, the molecular scale (higher wave numbers), where the characteristic frequencies for the two species show noticeable differences. Vibrational concentration current modes (optic modes) have been found in neutral mixtures though their influence is rather weak, being the collective dynamic properties of this kind of systems dominated by the mass current modes (acoustic modes). On the contrary, in mixtures of charged particles such as molten salts the contribution of the concentration (charge) currents to the collective dynamics is important and optic modes can be characterised by a well-defined frequency for a wide range of wave numbers. It has been observed that heavy particles have a more relevant role on the mass current correlations whereas light particles play a dominant role on the concentration current correlations. The overall results for the three kinds of liquid mixtures analysed in this paper show that both the longitudinal and transverse current spectra are little dependent on the static structure of the system whereas marked differences are revealed when the particles in the system are either neutral or carry an electric charge.  相似文献   

12.
The quality of biomolecular dynamics simulations relies critically on the force field that is used to describe the interactions between particles in the system. Force fields, which are generally parameterized using experimental data on small molecules, can only prove themselves in realistic simulations of relevant biomolecular systems. In this work, we begin the validation of the new 53A6 GROMOS parameter set by examining three test cases. Simulations of the well-studied 129 residue protein hen egg-white lysozyme, of the DNA dodecamer d(CGCGAATTCGCG)2, and a proteinogenic 3-dodecapeptide were performed and analysed. It was found that the new parameter set performs as well as the previous parameter sets in terms of protein (45A3) and DNA (45A4) stability and that it is better at describing the folding–unfolding balance of the peptide. The latter is a property that is directly associated with the free enthalpy of hydration, to which the 53A6 parameter set was parameterized.  相似文献   

13.
We report results of molecular dynamics simulations of the limiting conductance of Li + ion in ambient water and in supercritical water using polarizable models for water and Li + . The limiting conductances of Li + in ambient water calculated from mean square displacement (MSD) using four points transferable intermolecular potential model (TIP4P), extended simple point charge model (SPC/E), and revised polarizable model 1 (RPOL1) are larger than the experimental value. The behavior of the limiting conductance of Li + in supercritical water using the RPOL models results in good agreement with experimental results for the limiting conductance of LiCl. The agreement of the RPOL1 model with the experimental results is much better than the RPOL2 model in the higher-density regime, whereas that of the RPOL2 model is much better than the RPOL1 model in the lower-density regime. Using the RPOL models (in contrast to the SPC/E model), the number of hydration water molecules around Li + is the dominating contributor to the limiting conductance in the higher-density regime. In agreement with the SPC/E model, the interaction strength between Li + and the hydration water molecules is a non-factor in the lower-density region since the potential energy per hydration water molecule decreases with decreasing water density at the lowest water densities.  相似文献   

14.
Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox−/− coronary microvascular cells. Compared with wild-type p47phox cDNA transfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2 production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells.  相似文献   

15.
The present article reports long timescale (200 ns) simulations of four beta-D-hexopyranoses (beta-D-glucose, beta-D-mannose, beta-D-galactose and beta-D-talose) using explicit-solvent (water) molecular dynamics and vacuum stochastic dynamics simulations together with the GROMOS 45A4 force field. Free-energy and solvation free-energy differences between the four compounds are also calculated using thermodynamic integration. Along with previous experimental findings, the present results suggest that the formation of intramolecular hydrogen-bonds in water is an 'opportunistic' consequence of the close proximity of hydrogen-bonding groups, rather than a major conformational driving force promoting this proximity. In particular, the conformational preferences of the hydroxymethyl group in aqueous environment appear to be dominated by 1,3-syn-diaxial repulsion, with gauche and solvation effects being secondary, and intramolecular hydrogen-bonding essentially negligible. The rotational dynamics of the exocyclic hydroxyl groups, which cannot be probed experimentally, is found to be rapid (10-100 ps timescale) and correlated (flip-flop hydrogen-bonds interconverting preferentially through an asynchronous disrotatory pathway). Structured solvent environments are observed between the ring and lactol oxygen atoms, as well as between the 4-OH and hydroxymethyl groups. The calculated stability differences between the four compounds are dominated by intramolecular effects, while the corresponding differences in solvation free energies are small. An inversion of the stereochemistry at either C(2) or C(4) from equatorial to axial is associated with a raise in free energy. Finally, the particularly low hydrophilicity of beta-D-talose appears to be caused by the formation of a high-occurrence hydrogen-bonded bridge between the 1,3-syn-diaxial 2-OH and 4-OH groups. Overall, good agreement is found with available experimental and theoretical data on the structural, dynamical, solvation and energetic properties of these compounds. However, this detailed comparison also reveals some discrepancies, suggesting the need (and providing a solid basis) for further refinement.  相似文献   

16.
Effective force fields for Ni-C interactions developed by Yamaguchi and Maruyama for the formation of metallofullerenes are modified to simulate the catalyzed growth of single-wall carbon nanotubes on Nin clusters with n >20, and the reactive empirical bond order Brenner potential for C-C interactions is also revised to include the effect of the metal atoms on such interactions. Figure Force field parameters for carbon-metal interactions obtained from DFT calculations in small clusters.  相似文献   

17.
Channelrhodopsins (ChRs) are light-gated cation channels that mediate ion transport across membranes in microalgae (vectorial catalysis). ChRs are now widely used for the analysis of neural networks in tissues and living animals with light (optogenetics). For elucidation of functional mechanisms at the atomic level, as well as for further engineering and application, a detailed structure is urgently needed. In the absence of an experimental structure, here we develop a structural ChR model based on several molecular computational approaches, capitalizing on characteristic patterns in amino acid sequences of ChR1, ChR2, Volvox ChRs, Mesostigma ChR, and the recently identified ChR of the halophilic alga Dunaliella salina. In the present model, we identify remarkable structural motifs that may explain fundamental electrophysiological properties of ChR2, ChR1, and their mutants, and in a crucial validation of the model, we successfully reproduce the excitation energy predicted by absorption spectra.  相似文献   

18.
Molecular dynamics simulations of linear models interacting through a dipolar Kihara intermolecular potential are presented. Molecular orientation correlations are used to calculate the orientational factor kappa squared in the resonance energy transfer (RET) as a function of the intermolecular separation. The distance, R 0 (2/3), at which the simulated systems show an isotropic behavior is calculated and an analysis of the dependence of R 0 (2/3) on microscopic properties (molecular aspect ratio and dipole moment) as well on thermodynamics (temperature and density) is presented. An explanation of the use of metallic cations as probes in RET is given and some relations of our models with biological molecules are pointed out.  相似文献   

19.
Summary

Proline-rich peptides are known to adopt preferentially the extended polyproline II (PPII) helical conformation, which is involved in several protein-protein recognition events. By resorting to molecular modelling techniques, we wished to investigate the extent to which PPII helices could be used for the formation of isohelical peptide-DNA complexes leading to the selective recognition of the major groove of B-DNA. For that purpose, we have grafted to a cationic intercalator, 9-amino-acridine, an oligopeptide having the sequence: Pro-Arg-Pro-Pro-Arg-Pro-Pro-Arg-Pro-Pro-Asp-Pro-Pro. Each residue in the sequence was set in the D configuration, to prevent enzymatic hydrolysis, and each Arg residue was designed to target O6/N7 of a guanine base following the intercalation site. The Asp residue was designed to target a cytosine base, whilst simultaneously forming a bidentate complex with the Arg three residues upstream. Energy-minimization, using the JUMNA procedure, led to the following conclusions: 1) major groove binding is favoured over minor groove or exclusive binding to the phosphates by large energy differences, of over 50 and 90 kcal/mole, respectively; 2) the two best bound sequences are those having three successive guanine bases on the same DNA strand, immediately adjacent to the intercalation site. Sequence d(CGGGC G), encountered in the Primer Binding Site of the HIV retrovirus, thus ranks amongst the best-bound sequences; 3) replacement of an individual guanine amongst the three ones upstream of the intercalation site, by an adenine base, weakens by > 6 kcal/mole the binding energetics; 4) the conformational rigidity of the DNA-bound PPII helix should enable for a modulation of the base sequence selectivity, by appropriate replacements of the Arg and Asp residues. Thus sequence CGGCAAG, also encountered in the HIV genome, could be targeted by an oligopeptide having the sequence Pro-Arg-Pro-Pro-Asp-Pro-Pro- Asn-Pro-Pro-Asn-Pro-Pro-Arg-Ala.  相似文献   

20.
In Problem-Based Learning (PBL), a problem is posed before students have learned how to solve it. Language and PBL pair well for effective learning environments. Informed by language-based theories of learning and strategically adding methods for working with English Language Learners (ELLs), we developed an approach called Problem-Based Enhanced-Language Learning. In this article, we provide the background for the approach and explain the specifics of implementing Bears in a Boat, which we have used in many contexts including a second-grade urban classroom and a third-grade US-Mexico border classroom with significant numbers of ELLs. The science content learner outcomes are that students will be able to: (a) describe what it means to sink and float and (b) explain that the more weight you add to a boat, the deeper it will float.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号