首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many of the specific functions of intrinsically disordered protein segments are mediated by Short Linear Motifs (SLiMs) interacting with other proteins. Well known examples include SLiMs that interact with 14-3-3, PDZ, SH2, SH3, and WW domains but the true extent and diversity of SLiM-mediated interactions is largely unknown. Here, we attempt to expand our knowledge of human SLiMs by applying in silico SLiM prediction to the human interactome. Combining data from seven different interaction databases, we analysed approximately 6000 protein-centred and 1600 domain-centred human interaction datasets of 3+ unrelated proteins that interact with a common partner. Results were placed in context through comparison to randomised datasets of similar size and composition. The search returned thousands of evolutionarily conserved, intrinsically disordered occurrences of hundreds of significantly enriched recurring motifs, including many that have never been previously identified (). In addition to True Positive results for at least 25 different known SLiMs, a striking number of "off-target" proteins/domains also returned significantly enriched known motifs. Often, this was due to the non-independence of the datasets, with many proteins sharing interaction partners or contributing interactions to multiple domain datasets. The majority of these motif classes, however, were also found to be significantly enriched in one or more randomised datasets. This highlights the need for care when interpreting motif predictions of this nature but also raises the possibility that SLiM occurrences may be successfully identified independently of interaction data. Although not as compositionally biased as previous studies, patterns matching known SLiMs tended to cluster into a few large groups of similar sequence, while novel predictions tended to be more distinctive and less abundant. Whether this is due to ascertainment bias or a true functional composition bias of SLiMs is not clear and warrants further investigation.  相似文献   

2.
Traditionally, protein-protein interactions were thought to be mediated by large, structured domains. However, it has become clear that the interactome comprises a wide range of binding interfaces with varying degrees of flexibility, ranging from rigid globular domains to disordered regions that natively lack structure. Enrichment for disorder in highly connected hub proteins and its correlation with organism complexity hint at the functional importance of disordered regions. Nevertheless, they have not yet been extensively characterised. Shifting the attention from globular domains to disordered regions of the proteome might bring us closer to elucidating the dense and complex connectivity of the interactome. An important class of disordered interfaces are the compact mono-partite, short linear motifs (SLiMs, or eukaryotic linear motifs (ELMs)). They are evolutionarily plastic and interact with relatively low affinity due to the limited number of residues that make direct contact with the binding partner. These features confer to SLiMs the ability to evolve convergently and mediate transient interactions, which is imperative to network evolution and to maintain robust cell signalling, respectively. The ability to discriminate biologically relevant SLiMs by means of different attributes will improve our understanding of the complexity of the interactome and aid development of bioinformatics tools for motif discovery. In this paper, the curated instances currently available in the Eukaryotic Linear Motif (ELM) database are analysed to provide a clear overview of the defining attributes of SLiMs. These analyses suggest that functional SLiMs have higher levels of conservation than their surrounding residues, frequently evolve convergently, preferentially occur in disordered regions and often form a secondary structure when bound to their interaction partner. These results advocate searching for small groupings of residues in disordered regions with higher relative conservation and a propensity to form the secondary structure. Finally, the most interesting conclusions are examined in regard to their functional consequences.  相似文献   

3.
The mapping of protein-protein interactions is key to understanding biological processes. Many technologies have been reported to map interactions and these have been systematically applied in yeast. To date, the number of reported yeast protein interactions that have been truly validated by at least one other approach is low. The mapping of human protein interaction networks is even more complicated. Thus, it is unreasonable to try to map the human interactome; instead, interaction mapping in human cell lines should be focused along the lines of diseases or changes that can be associated with specific cells. In this paper, an approach for combining different 'omics' technologies to achieve efficient mapping and validation of protein interactions in human cell lines is presented.  相似文献   

4.
Computational analysis of human protein interaction networks   总被引:4,自引:0,他引:4  
Large amounts of human protein interaction data have been produced by experiments and prediction methods. However, the experimental coverage of the human interactome is still low in contrast to predicted data. To gain insight into the value of publicly available human protein network data, we compared predicted datasets, high-throughput results from yeast two-hybrid screens, and literature-curated protein-protein interactions. This evaluation is not only important for further methodological improvements, but also for increasing the confidence in functional hypotheses derived from predictions. Therefore, we assessed the quality and the potential bias of the different datasets using functional similarity based on the Gene Ontology, structural iPfam domain-domain interactions, likelihood ratios, and topological network parameters. This analysis revealed major differences between predicted datasets, but some of them also scored at least as high as the experimental ones regarding multiple quality measures. Therefore, since only small pair wise overlap between most datasets is observed, they may be combined to enlarge the available human interactome data. For this purpose, we additionally studied the influence of protein length on data quality and the number of disease proteins covered by each dataset. We could further demonstrate that protein interactions predicted by more than one method achieve an elevated reliability.  相似文献   

5.
Many biologically important protein-protein interactions (PPIs) have been found to be mediated by short linear motifs (SLiMs). These interactions are mediated by the binding of a protein domain, often with a nonlinear interaction interface, to a SLiM. We propose a method called D-SLIMMER to mine for SLiMs in PPI data on the basis of the interaction density between a nonlinear motif (i.e., a protein domain) in one protein and a SLiM in the other protein. Our results on a benchmark of 113 experimentally verified reference SLiMs showed that D-SLIMMER outperformed existing methods notably for discovering domain-SLiMs interaction motifs. To illustrate the significance of the SLiMs detected, we highlighted two SLiMs discovered from the PPI data by D-SLIMMER that are variants of the known ELM SLiM, as well as a literature-backed SLiM that is yet to be listed in the reference databases. We also presented a novel SLiM predicted by D-SLIMMER that was strongly supported by existing biological literatures. These examples showed that D-SLIMMER is able to find SLiMs that are biologically relevant.  相似文献   

6.
Figeys D 《Cell research》2008,18(7):716-724
Interactions are the essence of all biomolecules because they cannot fulfill their roles without interacting with other molecules. Hence, mapping the interactions of biomolecules can be useful for understanding their roles and functions. Furthermore, the development of molecular based systems biology requires an understanding of the biomolecular interactions. In recent years, the mapping of protein-protein interactions in different species has been reported, but few reports have focused on the large-scale mapping of protein-protein interactions in human. Here, we review the developments in protein interaction mapping and we discuss issues and strategies for the mapping of the human protein interactome.  相似文献   

7.
Yang CW 《PloS one》2012,7(6):e38637
Protein-protein interactions through short linear motifs (SLiMs) are an emerging concept that is different from interactions between globular domains. The SLiMs encode a functional interaction interface in a short (three to ten residues) poorly conserved sequence. This characteristic makes them much more likely to arise/disappear spontaneously via mutations, and they may be more evolutionarily labile than globular domains. The diversity of SLiM composition may provide functional diversity for a viral protein from different viral strains. This study is designed to determine the different SLiM compositions of ribonucleoproteins (RNPs) from influenza A viruses (IAVs) from different hosts and with different levels of virulence. The 96 consensus sequences (regular expressions) of SLiMs from the ELM server were used to conduct a comprehensive analysis of the 52,513 IAV RNP sequences. The SLiM compositions of RNPs from IAVs from different hosts and with different levels of virulence were compared. The SLiM compositions of 845 RNPs from highly virulent/pandemic IAVs were also analyzed. In total, 292 highly conserved SLiMs were found in RNPs regardless of the IAV host range. These SLiMs may be basic motifs that are essential for the normal functions of RNPs. Moreover, several SLiMs that are rare in seasonal IAV RNPs but are present in RNPs from highly virulent/pandemic IAVs were identified.The SLiMs identified in this study provide a useful resource for experimental virologists to study the interactions between IAV RNPs and host intracellular proteins. Moreover, the SLiM compositions of IAV RNPs also provide insights into signal transduction pathways and protein interaction networks with which IAV RNPs might be involved. Information about SLiMs might be useful for the development of anti-IAV drugs.  相似文献   

8.
Nesvizhskii AI 《Proteomics》2012,12(10):1639-1655
Analysis of protein interaction networks and protein complexes using affinity purification and mass spectrometry (AP/MS) is among most commonly used and successful applications of proteomics technologies. One of the foremost challenges of AP/MS data is a large number of false-positive protein interactions present in unfiltered data sets. Here we review computational and informatics strategies for detecting specific protein interaction partners in AP/MS experiments, with a focus on incomplete (as opposite to genome wide) interactome mapping studies. These strategies range from standard statistical approaches, to empirical scoring schemes optimized for a particular type of data, to advanced computational frameworks. The common denominator among these methods is the use of label-free quantitative information such as spectral counts or integrated peptide intensities that can be extracted from AP/MS data. We also discuss related issues such as combining multiple biological or technical replicates, and dealing with data generated using different tagging strategies. Computational approaches for benchmarking of scoring methods are discussed, and the need for generation of reference AP/MS data sets is highlighted. Finally, we discuss the possibility of more extended modeling of experimental AP/MS data, including integration with external information such as protein interaction predictions based on functional genomics data.  相似文献   

9.
Studying protein interaction networks of all proteins in an organism (“interactomes”) remains one of the major challenges in modern biomedicine. Such information is crucial to understanding cellular pathways and developing effective therapies for the treatment of human diseases. Over the past two decades, diverse biochemical, genetic, and cell biological methods have been developed to map interactomes. In this review, we highlight basic principles of interactome mapping. Specifically, we discuss the strengths and weaknesses of individual assays, how to select a method appropriate for the problem being studied, and provide general guidelines for carrying out the necessary follow‐up analyses. In addition, we discuss computational methods to predict, map, and visualize interactomes, and provide a summary of some of the most important interactome resources. We hope that this review serves as both a useful overview of the field and a guide to help more scientists actively employ these powerful approaches in their research.  相似文献   

10.
Protein–protein interaction networks are useful for studying human diseases and to look for possible health care through a holistic approach. Networks are playing an increasing and important role in the understanding of physiological processes such as homeostasis, signaling, spatial and temporal organizations, and pathological conditions. In this article we show the complex system of interactions determined by human Sirtuins (Sirt) largely involved in many metabolic processes as well as in different diseases. The Sirtuin family consists of seven homologous Sirt-s having structurally similar cores but different terminal segments, being rather variable in length and/or intrinsically disordered. Many studies have determined their cellular location as well as biological functions although molecular mechanisms through which they act are actually little known therefore, the aim of this work was to define, explore and understand the Sirtuin-related human interactome. As a first step, we have integrated the experimentally determined protein–protein interactions of the Sirtuin-family as well as their first and second neighbors to a Sirtuin-related sub-interactome. Our data showed that the second-neighbor network of Sirtuins encompasses 25% of the entire human interactome, and exhibits a scale-free degree distribution and interconnectedness among top degree nodes. Moreover, the Sirtuin sub interactome showed a modular structure around the core comprising mixed functions. Finally, we extracted from the Sirtuin sub-interactome subnets related to cancer, aging and post-translational modifications for information on key nodes and topological space of the subnets in the Sirt family network.  相似文献   

11.
Genome-wide physical protein±protein interaction(PPI) mapping remains a major challenge for current technologies. Here, we reported a high-efficiency BiFC-seq method, yeastenhanced green fluorescent protein-based bimolecular fluorescence complementation(y EGFPBiFC) coupled with next-generation DNA sequencing, for interactome mapping. We first applied y EGFP-BiFC method to systematically investigate an intraviral network of the Ebola virus.Two-thirds(9/14) of known interactions of EBOV were recap...  相似文献   

12.
A catalog of all human protein-protein interactions would provide scientists with a framework to study protein deregulation in complex diseases such as cancer. Here we demonstrate that a probabilistic analysis integrating model organism interactome data, protein domain data, genome-wide gene expression data and functional annotation data predicts nearly 40,000 protein-protein interactions in humans-a result comparable to those obtained with experimental and computational approaches in model organisms. We validated the accuracy of the predictive model on an independent test set of known interactions and also experimentally confirmed two predicted interactions relevant to human cancer, implicating uncharacterized proteins into definitive pathways. We also applied the human interactome network to cancer genomics data and identified several interaction subnetworks activated in cancer. This integrative analysis provides a comprehensive framework for exploring the human protein interaction network.  相似文献   

13.
Campagna A  Serrano L  Kiel C 《FEBS letters》2008,582(8):1231-1236
Determining protein interaction networks and generating models to simulate network changes in time and space are crucial for understanding a biological system and for predicting the effect of mutants found in diseases. In this review we discuss the great potential of using structural information together with computational tools towards reaching this goal: the prediction of new protein interactions, the estimation of affinities and kinetic rate constants between protein complexes, and finally the determination of which interactions are compatible with each other and which interactions are exclusive. The latter one will be important to reorganize large scale networks into functional modular networks.  相似文献   

14.
Comparison of human protein-protein interaction maps   总被引:1,自引:0,他引:1  
MOTIVATION: Large-scale mappings of protein-protein interactions have started to give us new views of the complex molecular mechanisms inside a cell. After initial projects to systematically map protein interactions in model organisms such as yeast, worm and fly, researchers have begun to focus on the mapping of the human interactome. To tackle this enormous challenge, different approaches have been proposed and pursued. While several large-scale human protein interaction maps have recently been published, their quality remains to be critically assessed. RESULTS: We present here a first comparative analysis of eight currently available large-scale maps with a total of over 10,000 unique proteins and 57,000 interactions included. They are based either on literature search, orthology or by yeast-two-hybrid assays. Comparison reveals only a small, but statistically significant overlap. More importantly, our analysis gives clear indications that all interaction maps imply considerable selection and detection biases. These results have to be taken into account for future assembly of the human interactome. AVAILABILITY: An integrated human interaction network called Unified Human Interactome (UniHI) is made publicly accessible at http://www.mdc-berlin.de/unihi. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

15.
Although the identification of protein interactions by high-throughput (HTP) methods progresses at a fast pace, 'interactome' data sets still suffer from high rates of false positives and low coverage. To map the human protein interactome, we describe a new framework that uses experimental evidence on structural complexes, the atomic details of binding interfaces and evolutionary conservation. The structurally inferred interaction network is highly modular and more functionally coherent compared with experimental interaction networks derived from multiple literature citations. Moreover, structurally inferred and high-confidence HTP networks complement each other well, allowing us to construct a merged network to generate testable hypotheses and provide valuable experimental leads.  相似文献   

16.
Protein–protein interactions are central to all cellular processes. Understanding of protein–protein interactions is therefore fundamental for many areas of biochemical and biomedical research and will facilitate an understanding of the cell process-regulating machinery, disease causative mechanisms, biomarkers, drug target discovery and drug development. In this review, we summarize methods for populating and analyzing the interactome, highlighting their advantages and disadvantages. Applications of interactomics in both the biochemical and clinical arenas are presented, illustrating important recent advances in the field.  相似文献   

17.
Braun P 《Proteomics》2012,12(10):1499-1518
Protein interactions mediate essentially all biological processes and analysis of protein-protein interactions using both large-scale and small-scale approaches has contributed fundamental insights to the understanding of biological systems. In recent years, interactome network maps have emerged as an important tool for analyzing and interpreting genetic data of complex phenotypes. Complementary experimental approaches to test for binary, direct interactions, and for membership in protein complexes are used to explore the interactome. The two approaches are not redundant but yield orthogonal perspectives onto the complex network of physical interactions by which proteins mediate biological processes. In recent years, several publications have demonstrated that interactions from high-throughput experiments can be equally reliable as the high quality subset of interactions identified in small-scale studies. Critical for this insight was the introduction of standardized experimental benchmarking of interaction and validation assays using reference sets. The data obtained in these benchmarking experiments have resulted in greater appreciation of the limitations and the complementary strengths of different assays. Moreover, benchmarking is a central element of a conceptual framework to estimate interactome sizes and thereby measure progress toward near complete network maps. These estimates have revealed that current large-scale data sets, although often of high quality, cover only a small fraction of a given interactome. Here, I review the findings of assay benchmarking and discuss implications for quality control, and for strategies toward obtaining a near-complete map of the interactome of an organism.  相似文献   

18.
Erce MA  Pang CN  Hart-Smith G  Wilkins MR 《Proteomics》2012,12(4-5):564-586
Since its discovery more than 50 years ago, post-translational modification (PTM) of proteins via methylation has grown in prominence, its involvement having been recognised in a number of central processes in the cell. Of these, the best characterised is its role in the epigenetic code. However, there is increasing evidence that its role extends far beyond this and we propose that it is a key regulator in interactome dynamics. In this review, we focus on the role of methylation in regulating protein-protein interactions and illustrate, by providing a broad-scale summary of our current knowledge of methylation and its impact on systems biology, how this can ultimately affect interactome dynamics. We describe the variety of analytical techniques available for the study of the methylproteome, comment on their advantages and limitations, and consider how these tools can help elucidate how methylation regulates the dynamics of the interactome. The insights gained from methyltransferase-substrate networks will be summarised and the ability of protein methylation to facilitate or block protein-protein interactions as well as their interplay with other post-translational modifications, in particular phosphorylation, is highlighted. Finally, the importance of methylation in pathology-associated protein interaction networks will be discussed using examples involving human diseases and the p53 protein.  相似文献   

19.
Short linear motif (SLiM)-mediated interactions offer a unique strategy for viral intervention due to their compact interfaces, ease of convergent evolution, and key functional roles. Consequently, many viruses extensively mimic host SLiMs to hijack or deregulate cellular pathways and the same motif-binding pocket is often targeted by numerous unrelated viruses. A toolkit of therapeutics targeting commonly mimicked SLiMs could provide prophylactic and therapeutic broad-spectrum antivirals and vastly improve our ability to treat ongoing and future viral outbreaks. In this opinion article, we discuss the therapeutic relevance of SLiMs, advocating their suitability as targets for broad-spectrum antiviral inhibitors.  相似文献   

20.
One possible path towards understanding the biological function of a target protein is through the discovery of how it interfaces within protein-protein interaction networks. The goal of this study was to create a virtual protein-protein interaction model using the concepts of orthologous conservation (or interologs) to elucidate the interacting networks of a particular target protein. POINT (the prediction of interactome database) is a functional database for the prediction of the human protein-protein interactome based on available orthologous interactome datasets. POINT integrates several publicly accessible databases, with emphasis placed on the extraction of a large quantity of mouse, fruit fly, worm and yeast protein-protein interactions datasets from the Database of Interacting Proteins (DIP), followed by conversion of them into a predicted human interactome. In addition, protein-protein interactions require both temporal synchronicity and precise spatial proximity. POINT therefore also incorporates correlated mRNA expression clusters obtained from cell cycle microarray databases and subcellular localization from Gene Ontology to further pinpoint the likelihood of biological relevance of each predicted interacting sets of protein partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号