首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.  相似文献   

2.
3.
4.
Phosphoinositides regulate numerous cellular processes by recruiting cytosolic effector proteins and acting as membrane signalling entities. The cellular metabolism and localization of phosphoinositides are tightly regulated by distinct lipid kinases and phosphatases. Here, we identify and characterize a unique phosphatidylinositol 3 kinase (PI3K) in Toxoplasma gondii, a protozoan parasite belonging to the phylum Apicomplexa. Conditional depletion of this enzyme and subsequently of its product, PI(3)P, drastically alters the morphology and inheritance of the apicoplast, an endosymbiotic organelle of algal origin that is a unique feature of many Apicomplexa. We searched the T. gondii genome for PI(3)P‐binding proteins and identified in total six PX and FYVE domain‐containing proteins including a PIKfyve lipid kinase, which phosphorylates PI(3)P into PI(3,5)P2. Although depletion of putative PI(3)P‐binding proteins shows that they are not essential for parasite growth and apicoplast biology, conditional disruption of PIKfyve induces enlarged apicoplasts, as observed upon loss of PI(3)P. A similar defect of apicoplast homeostasis was also observed by knocking down the PIKfyve regulatory protein ArPIKfyve, suggesting that in T. gondii, PI(3)P‐related function for the apicoplast might mainly be to serve as a precursor for the synthesis of PI(3,5)P2. Accordingly, PI3K is conserved in all apicomplexan parasites whereas PIKfyve and ArPIKfyve are absent in Cryptosporidium species that lack an apicoplast, supporting a direct role of PI(3,5)P2 in apicoplast homeostasis. This study enriches the already diverse functions attributed to PI(3,5)P2 in eukaryotic cells and highlights these parasite lipid kinases as potential drug targets.  相似文献   

5.
The generation of phosphoinositides (PIs) with spatial and temporal control is a key mechanism in cellular organization and signaling. The synthesis of PIs is mediated by PI kinases, proteins that are able to phosphorylate unique substrates at specific positions on the inositol headgroup to generate signaling molecules. Phosphatidylinositol 5 phosphate 4 kinase (PIP4K) is one such lipid kinase that is able to specifically phosphorylate phosphatidylinositol 5 phosphate, the most recently discovered PI to generate the well-known and abundant PI, phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2]. PIP4K appears to be encoded only in metazoan genomes, and several genetic studies indicate important physiological functions for these enzymes in metabolism, immune function, and growth control. PIP4K has recently been reported to localize to multiple cellular compartments, including the nucleus, plasma membrane, endosomal systems, and autophagosome. However, the biochemical activity of these enzymes that is relevant to these physiological functions remains elusive. We review recent developments in this area and highlight emerging roles for these enzymes in cellular organization.  相似文献   

6.
Phosphatidylinositol 4-kinases (PI 4-kinases) catalyze the conversion of phosphatidylinositol to phosphatidylinositol 4-phosphate (PtdIns4P). The four known mammalian PI 4-kinases, PI4KA, PI4KB, PI4K2A, and PI4K2B have roles in intracellular lipid and protein trafficking. PI4KA and PI4KB also assist in the replication of several positive-sense RNA viruses. The identification of selective inhibitors of these kinases would be facilitated by assays suitable for high-throughput screening. We describe a homogeneous and nonisotopic assay for PI 4-kinase activity based on the bioluminescent detection of the ADP produced by kinase reactions. We have evaluated this assay with known nonselective inhibitors of PI 4-kinases and show that it performs similar to radiometric assay formats previously described in the literature. In addition, this assay generates Z-factor values of >0.7 for PI4KA in a 384-well format, demonstrating its suitability for high-throughput screening applications.  相似文献   

7.
Phosphatidylinositol 4,5 bisphosphate (PI4,5P2) is a critical second messenger that regulates a myriad of diverse cellular activities including modulation of the actin cytoskeleton, vesicle trafficking, focal adhesion formation, and nuclear events. In order to effectively regulate these disparate cellular events, synthesis of PI4,5P2 by phosphatidylinositol phosphate kinases (PIP kinases) must be both spatially and temporally regulated. Two subfamilies of PIP kinases, types I and II, allow the generation of PI4,5P2 from independent pools of substrate, PI(4)P and PI(5)P respectively. In turn, type I and II PIP kinases show different subcellular localization and thus are involved in distinct signaling pathways. Additionally, several type I isoforms, and their splice variants, have now been shown to be differentially localized throughout the cell and to be involved in the synthesis of PI4,5P2 at distinct sites. These findings implicate PIP kinases as the major regulators of PI4,5P2-mediated events, making them key signaling enzymes in a variety of processes. Understanding the mechanisms regulating spatial and temporal synthesis of PI4,5P2 by PIP kinases is vital for understanding these processes as a whole. This review examines both structural and regulatory features that modulate activity, localization, and substrate usage of PIPKs.  相似文献   

8.
PIKfyve negatively regulates exocytosis in neurosecretory cells   总被引:2,自引:0,他引:2  
Regulated secretion depends upon a highly coordinated series of protein-protein and protein-lipid interactions. Two phosphoinositides, phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3-phosphate, are important for the ATP-dependent priming of the secretory apparatus prior to Ca(2+)-dependent exocytosis. Mechanisms that control phosphoinositide levels are likely to play an important role in priming fine tuning. Here we have investigated the involvement of PIKfyve, a phosphoinositide 5-kinase that can phosphorylate phosphatidylinositol 3-phosphate to produce phosphatidylinositol 3,5-bisphosphate on large dense core vesicle exocytosis from neuroendocrine cells. PIKfyve localizes to a subpopulation of secretory granules in chromaffin and PC12 cells. Nicotine stimulation promoted recruitment of PIKfyve-EGFP onto secretory vesicles in PC12 cells. YM-201636, a selective inhibitor of PIKfyve activity, and PIKfyve knockdown by small interfering RNA potentiated secretory granule exocytosis. Overexpression of PIKfyve or its yeast orthologue Fab1p inhibited regulated secretion in PC12 cells, whereas a catalytically inactive PIKfyve mutant had no effect. These results demonstrate a novel inhibitory role for PIKfyve catalytic activity in regulated secretion and provide further evidence for a fine tuning of exocytosis by 3-phosphorylated phosphoinositides.  相似文献   

9.
One or more free hydroxyls of the phosphatidylinositol (PtdIns) head group undergo enzymatic phosphorylation, yielding phosphoinositides (PIs) with key functions in eukaryotic cellular regulation. Two such species, PtdIns 5-P and PtdIns 3,5-P(2), have now been identified in mammalian cells, but their biosynthesis remains unclear. We have isolated a novel mammalian PI kinase, p235, whose exact substrate specificity remained to be determined (Shisheva, A., Sbrissa, D., and Ikonomov, O. (1999) Mol. Cell. Biol. 19, 623-634). Here we report that recombinant p235 expressed in COS cells, like the authentic p235 in adipocytes, displays striking specificity for PtdIns over PI substrates and generates two products identified as PtdIns 5-P and PtdIns 3,5-P(2) by HPLC analyses. Synthetic PtdIns 3-P substrates were also converted to PtdIns 3,5-P(2) but to a substantially lesser extent than PtdIns isolated from natural sources. Important properties of the p235 PI 5-kinase include high sensitivity to nonionic detergents and relative resistance to wortmannin and adenosine. By analyzing deletion mutants in a heterologous cell system, we determined that in addition to the predicted catalytic domain other regions of the molecule are critical for the p235 enzymatic activity. HPLC resolution of monophosphoinositide products, generated by p235 immune complexes derived from lysates of 3T3-L1 adipocytes acutely stimulated with insulin, revealed essentially the same PtdIns 5-P levels as the corresponding p235 immune complexes of resting cells. However, the acute insulin action resulted in an increase of a wortmannin-sensitive PtdIns 3-P peak, suggestive of a plausible recruitment of wortmannin-sensitive PI 3-kinase(s) to p235. In conclusion, mouse p235 (renamed here PIKfyve) displays a strong in vitro activity for PtdIns 5-P and PtdIns 3,5-P(2) generation, implying PIKfyve has a key role in their biosynthesis.  相似文献   

10.
In a recent study published in EMBO reports, the group of Jorgen Wesche identified a new role for PI5P as a positive regulator of cell migration, most likely by facilitating actin cytoskeletal rearrangements.EMBO reports (2013) 14 1, 57–64 doi:10.1038/embor.2012.183The dynamic nature of membrane phospholipid turnover was first described by Hokin and Hokin during their studies on exocrine tissue stimulation (reviewed in [1]). Subsequently, phosphatidylinositol (PI) and its phosphorylated products, called phosphoinositides, were shown to have a fundamental role in regulating membrane–cytosol interfaces in several contexts, including regulating signal transduction, membrane traffic and permeability, the cytoskeleton, nuclear events and transport [1]. Seven phosphoinositides have been identified and are defined by the phosphorylation state of the inositol headgroup at the 3′-, 4′- and 5′-position, which is regulated reversibly by several lipid kinases and phosphatases [1]. Of the seven lipid species, phosphatidylinositol-5-phosphate (PI5P) was most recently discovered by the Cantley group and remains the most enigmatic of the phosphoinositide family [2]. PI5P levels have been shown to change in response to stimuli such as thrombin, histamine, insulin and oxidative stress, and have been suggested to regulate various processes, including signalling pathways, nuclear functions, vesicular transport and cytoskeletal organization [3,4,5]. In a recent issue of EMBO reports, Oppelt and colleagues identified a new role for PI5P as a positive regulator of cell migration probably by facilitating actin cytoskeletal rearrangements [6].Unlike other phosphoinositides (PI3P and PI4P) that can be produced through the direct phosphorylation of PI, there is no evidence that PI5P can be produced through the direct in vivo phosphorylation of PI. Instead, PI4P 5-kinases generate PI(4,5)P2 from PI4P and PIKfyve generates PI(3,5)P2 from PI3P, and the products PI(3,5)P2 and PI(4,5)P2 are dephosphorylated by myotubularin-related proteins (that is, MTMR3) and inositol 4-phosphatases (PI(4,5)P2 phosphatases type I and II), respectively, to produce PI5P (Fig 1). Recent in vivo evidence indicates that the PIKfyve–MTMR pathway is responsible for most PI5P production [7]. The study from the Wesche lab shows that production of PI5P through the MTMR3 pathway is important for cell migration [6]. After initially observing that depletion of the class III PI(3)K Vps34 and its lipid product, PI3P, impairs cell migration, the authors performed a small interfering RNA (siRNA) screen to identify FYVE or PX-domain-containing PI3P effectors that regulate this process. In addition to factors already known to promote migration—for example, Cdc42, FGD1, FGD2 and Hrs—PIKfyve and MTMR3 were identified as new candidates. PIKfyve has a PI3P-binding FYVE domain and, as mentioned above, synthesizes PI(3,5)P2, whilst MTMR3, a member of the myotubularin family containing a PI3P-binding PH-GRAM domain, is a phosphatase that dephosphorylates PI(3,5)P2 to PI5P. Cells depleted of PIKfyve or MTMR3 showed impaired cell polarization and defects in orienting actin filaments and the Golgi complex towards the growth factor stimulus. In addition, siRNA experiments and pharmacological inhibition of PIKfyve decreased migration velocity and persistence. These findings were confirmed in vivo when ablation of MTMR3 in border cells inhibited border cell migration in Drosophila during oogenesis. Taken together, the authors demonstrate that the lipid enzymes Vps34, PIKfyve and MTMR3 regulate the PI3P–PI(3,5)P2–PI5P phosphoinositide interconversion pathway that mediates cell migration [6].Open in a separate windowFigure 1Pathways of PI5P synthesis and turnover. Pathways demonstrated in vivo are shown in bold text and arrows, whereas in vitro, putative pathways are represented in italics and broken arrows. Thick arrows highlight the PI5P production pathway responsible for cell migration as reported in reference [6]. IpgD, invasion plasmid gene D; MTM, myotubularin; PI, phosphatidylinositol; PI(3)K, phosphoinositide 3-kinase; PI5P, phosphatidylinositol-5-phosphate; PIKfyve, phosphoinositide kinase, FYVE finger containing; PTPMP1, protein tyrosine phosphatase, mitochondrial 1.The low abundancy, dynamic turnover and tight spatial restriction of the phosphoinositides enable them to mediate acute responses within cells [1]. Part of the initial difficulty in identifying PI5P was due to the fact that it is the phosphoinositide of lowest abundance—approximately 1–2% of PI4P—and that earlier high-performance liquid chromatography (HPLC) techniques had erroneously measured PI5P as its PI4P isomer [8]. By using improved biochemical techniques, the authors measured phosphoinoside levels during cell migration and found specifically that levels of PI5P rise acutely in response to migratory stimulation by fibroblast growth factor 1 (FGF1). Cells treated with PIKfyve and MTMR3 siRNA failed to produce PI5P on FGF1 stimulation, again suggesting that PIKfyve and MTMR3 constitute the interconversion pathway responsible for the production of PI5P during migration. Importantly, Oppelt and colleagues showed convincingly that PI5P is a relevant signalling mediator of cell migration [6]—when exogenous PI5P was added to MTMR3 and PIKfyve siRNA-treated cells, migration was partly rescued. To further confirm this finding, the authors showed that overexpression of the Shigella flexneri virulence factor IpgD, a PI(4,5)P2 4-phosphatase that converts PI(4,5)P2 to PI5P [9], and production of endogenous PI5P in MTMR3 siRNA-treated cells also rescue migration defects. In fact, this production of PI5P from PI(4,5)P2 proved that PI5P is a relevant migratory signal and not merely an intermediate to the production of PI(4,5)P2, which has been implicated previously in regulating actin dynamics and, by contrast, requires PI4P synthesis—another potential intermediate for its signalling effects [1]. Interestingly, manipulation of PI5P levels in control cells does not initiate cell migration in the absence of stimulation, suggesting that PI5P is not sufficient to promote migration; instead, the pathway works together with others to promote migration and there is an inhibitory regulatory pathway that acts downstream from PI5P. This clearly demonstrates that it is PI5P and not PI3P, PI(3,5)P2 or PI(4,5)P2 that regulates cell migration.Preliminary evidence from Oppelt and colleagues suggests that PI5P might help to regulate actin cytoskeletal remodelling during migration [6]. For instance, silencing of MTMR3 and PIKfyve resulted in actin fibres that are unable to orient properly and form knots when cell migration was stimulated. These findings complement previous work indicating that PI5P regulates cytoskeletal organization in other contexts. For instance, PI5P production in response to insulin stimulation or on overexpression of the bacterial virulence factor IpgD induces disassembly of actin stress fibres [9,10]. The molecular mechanisms underlying PI5P''s regulation of actin polymerization and disassembly remain unclear. Additionally, the subcellular location of PI5P production in response to these agonists remains largely undetermined; however, membrane fractionation and HPLC analysis has localized PI5P to the nucleus, endoplasmic reticulum, Golgi and plasma membrane under basal conditions [8]. Standard tools used to study phosphoinositide localization have yet to be developed for PI5P. PI5P-binding domains are beginning to be identified and include the PHD domain of ING2, and the PH domain of Dok proteins [4], but it will be important to develop PI5P probes as well as continue to identify additional effectors to better understand PI5P function.The PI5P field is at a naive, yet exciting, stage in which studies such as that of Oppelt and colleagues advance our understanding of PI5P multiple roles in cellular function. Although this study has concentrated largely on identifying Vps34, PIKfyve and MTMR3 in the production of PI5P in response to migration stimuli, it will be essential to explore how the activities of these enzymes are regulated. Moreover, the mechanism of PI5P catabolism in this context and others, as well as the precise molecular basis for PI5P actions in the cellular contexts, have to be further elucidated. Finally, the crosstalk between PI5P and other phosphoinositide-mediated signalling cascades, such as the PI(3,4,5)P3–Akt pathway, will have to be closely examined in the context of cell migration, based on previous studies showing that PI5P is a positive regulator of class IA PI(3)Ks [3].  相似文献   

11.
Function and dysfunction of the PI system in membrane trafficking   总被引:1,自引:0,他引:1  
The phosphoinositides (PIs) function as efficient and finely tuned switches that control the assembly–disassembly cycles of complex molecular machineries with key roles in membrane trafficking. This important role of the PIs is mainly due to their versatile nature, which is in turn determined by their fast metabolic interconversions. PIs can be tightly regulated both spatially and temporally through the many PI kinases (PIKs) and phosphatases that are distributed throughout the different intracellular compartments. In spite of the enormous progress made in the past 20 years towards the definition of the molecular details of PI–protein interactions and of the regulatory mechanisms of the individual PIKs and phosphatases, important issues concerning the general principles of the organisation of the PI system and the coordination of the different PI-metabolising enzymes remain to be addressed. The answers should come from applying a systems biology approach to the study of the PI system, through the integration of analyses of the protein interaction data of the PI enzymes and the PI targets with those of the ‘phenomes' of the genetic diseases that involve these PI-metabolising enzymes.  相似文献   

12.
Mechanisms that control lysosomal function are essential for cellular homeostasis. Lysosomes adapt in size and number to cellular needs but little is known about the underlying molecular mechanism. We demonstrate that the late endosomal/lysosomal multimeric BLOC‐1‐related complex (BORC) regulates the size of these organelles via PIKfyve‐dependent phosphatidylinositol‐3,5‐bisphosphate [PI(3,5)P2] production. Deletion of the core BORC component Diaskedin led to increased levels of PI(3,5)P2, suggesting activation of PIKfyve, and resulted in enhanced lysosomal reformation and subsequent reduction in lysosomal size. This process required AMP‐activated protein kinase (AMPK), a known PIKfyve activator, and was additionally dependent on the late endosomal/lysosomal adaptor, mitogen‐activated protein kinases and mechanistic target of rapamycin activator (LAMTOR/Ragulator) complex. Consistently, in response to glucose limitation, AMPK activated PIKfyve, which induced lysosomal reformation with increased baseline autophagy and was coupled to a decrease in lysosomal size. These adaptations of the late endosomal/lysosomal system reversed under glucose replete growth conditions. In summary, our results demonstrate that BORC regulates lysosomal reformation and size in response to glucose availability.  相似文献   

13.
Inositol‐containing phospholipids (phosphoinositides, PIs) control numerous cellular processes in eukaryotic cells. For plants, a key involvement of PIs has been demonstrated in the regulation of membrane trafficking, cytoskeletal dynamics and in processes mediating the adaptation to changing environmental conditions. Phosphatidylinositol‐4,5‐bisphosphate (PtdIns(4,5)P2) mediates its cellular functions via binding to various alternative target proteins. Such downstream targets of PtdIns(4,5)P2 are characterised by the possession of specific lipid‐binding domains, and binding of the PtdIns(4,5)P2 ligand exerts effects on their activity or localisation. The large number of potential alternative binding partners – and associated cellular processes – raises the question how alternative or even contrapuntal effects of PtdIns(4,5)P2 are orchestrated to enable cellular function. This article aims to provide an overview of recent insights and new views on how distinct functional pools of PtdIns(4,5)P2 are generated and maintained. The emerging picture suggests that PtdIns(4,5)P2 species containing different fatty acids influence the lateral mobility of the lipids in the membrane, possibly enabling specific interactions of PtdIns(4,5)P2 pools with certain downstream targets. PtdIns(4,5)P2 pools with certain functions might also be defined by protein–protein interactions of PI4P 5‐kinases, which pass PtdIns(4,5)P2 only to certain downstream partners. Individually or in combination, PtdIns(4,5)P2 species and specific protein–protein interactions of PI4P 5‐kinases might contribute to the channelling of PtdIns(4,5)P2 signals towards specific functional effects. The dynamic nature of PI‐dependent signalling complexes with specific functions is an added challenge for future studies of plant PI signalling.  相似文献   

14.
Phosphoinositide kinases comprise a unique family of enzymes that catalyze the phosphorylation of phosphatidylinositol and its phosphorylated metabolites to produce seven phosphoinositides. Recent advances have revealed that these phosphoinositides have specific physiological functions, such as in actin cytoskeletal reorganization, membrane transport, cell proliferation and survival, in eukaryotic cells and that each phosphoinositide kinase is differently and precisely regulated. Here we describe the diverse regulation and physiological functions of phosphoinositide kinases involving their products.  相似文献   

15.
Sbrissa D  Ikonomov OC  Shisheva A 《Biochemistry》2000,39(51):15980-15989
A subset of phosphoinositide 3-kinase family members are dual specificity enzymes; their protein kinase activity is thought to bring about an additional level to their intracellular regulation. Here we have examined whether the 5'-phosphoinositide kinase PIKfyve, reported previously to catalyze the formation of PtdIns 5-P and PtdIns 3,5-P(2) in vitro [Sbrissa et al. (1999) J. Biol. Chem. 274, 21589-21597], displays dual specificity. We now report that PIKfyve possesses an intrinsic protein kinase activity inseparable from its lipid kinase activity and, besides itself, can phosphorylate exogenous proteins in a substrate-specific manner. Both the autophosphorylation and transphosphorylation were demonstrated with PIKfyve immunopurified or affinity-purified from heterologously transfected COS cells, infected Sf9 cells, or native 3T3-L1 adipocytes. Conversely, no protein kinase activity was associated with immunopurified lipid kinase dead point (K1831E) or truncated (Delta1812-2052) PIKfyve mutants. PIKfyve autophosphorylation or transphosphorylation engaged Ser but not Thr or Tyr residues. PIKfyve autophosphorylation was largely abrogated upon pretreatment with PIKfyve lipid substrates or phosphatases. The impact of autophosphorylation on the PIKfyve lipid kinase activity was further examined with purified PIKfyve preparations. A decrease of 70% in the lipid product formation was associated with PIKfyve autophosphorylation, which was reversed upon treatment with phosphatases. In the cellular context, PIKfyve, or a fraction of it, was found in a phosphorylated form. Collectively, these results indicate that PIKfyve is a dual specificity kinase, which can generate and relay protein phosphorylation signals to regulate the formation of its lipid products, and possibly other events, in the context of living cells.  相似文献   

16.
In eukaryotic cells, phosphatidylinositol can be phosphorylated on the inositol ring by a series of kinases to produce at least seven distinct phosphoinositides. These lipids have been implicated in a variety of cellular processes, including calcium regulation, actin rearrangement, vesicle trafficking, cell survival and mitogenesis. The phosphorylated lipids can act as precursors of second messengers or act directly to recruit specific signaling proteins to the membrane. A number of the kinases responsible for producing these lipids have been purified and their cDNA clones have been isolated. The most well characterized of these enzymes are the phosphoinositide 3-kinases. However, progress has also been made in the characterization of phosphatidylinositol 4-kinases and phosphatidylinositol-4-phosphate 5-kinases. In addition, new pathways involving phosphatidylinositol-5-phosphate 4-kinases, phosphatidylinositol-3-phosphate 5-kinases and phosphatidylinositol-3-phosphate 4-kinases have recently been described. The various enzymes and pathways involved in the synthesis of cellular phosphoinositides will be discussed.  相似文献   

17.
3‐phosphorylated phosphoinositides (3‐PtdIns) orchestrate endocytic trafficking pathways exploited by intracellular pathogens such as Salmonella to gain entry into the cell. To infect the host, Salmonellae subvert its normal macropinocytic activity, manipulating the process to generate an intracellular replicative niche. Disruption of the PtdIns(5) kinase, PIKfyve, be it by interfering mutant, siRNA‐mediated knockdown or pharmacological means, inhibits the intracellular replication of Salmonella enterica serovar typhimurium in epithelial cells. Monitoring the dynamics of macropinocytosis by time‐lapse 3D (4D) videomicroscopy revealed a new and essential role for PI(3,5)P2 in macropinosome‐late endosome/lysosome fusion, which is distinct from that of the small GTPase Rab7. This PI(3,5)P2‐dependent step is required for the proper maturation of the Salmonella‐containing vacuole (SCV) through the formation of Salmonella‐induced filaments (SIFs) and for the engagement of the Salmonella pathogenicity island 2‐encoded type 3 secretion system (SPI2‐T3SS). Finally, although inhibition of PIKfyve in macrophages did inhibit Salmonella replication, it also appears to disrupt the macrophage's bactericidal response.  相似文献   

18.
Phosphatidylinositol 4-kinase type IIIα (PI4KA) is a host factor essential for hepatitis C virus replication and hence is a target for drug development. PI4KA has also been linked to endoplasmic reticulum exit sites and generation of plasma membrane phosphoinositides. Here, we developed highly specific and potent inhibitors of PI4KA and conditional knock-out mice to study the importance of this enzyme in vitro and in vivo. Our studies showed that PI4KA is essential for the maintenance of plasma membrane phosphatidylinositol 4,5-bisphosphate pools but only during strong stimulation of receptors coupled to phospholipase C activation. Pharmacological blockade of PI4KA in adult animals leads to sudden death closely correlating with the drug''s ability to induce phosphatidylinositol 4,5-bisphosphate depletion after agonist stimulation. Genetic inactivation of PI4KA also leads to death; however, the cause in this case is due to severe intestinal necrosis. These studies highlight the risks of targeting PI4KA as an anti-hepatitis C virus strategy and also point to important distinctions between genetic and pharmacological studies when selecting host factors as putative therapeutic targets.  相似文献   

19.
The phosphorylated derivatives of phosphatidylinositol (PtdIns), known as the polyphosphoinositides (PIs), represent key membrane-localized signals in the regulation of fundamental cell processes, such as membrane traffic and cytoskeleton remodelling. The reversible production of the PIs is catalyzed through the combined activities of a number of specific phosphoinositide phosphatases and kinases that can either act separately or in concert on all the possible combinations of the 3, 4, and 5 positions of the inositol ring. So far, seven distinct PI species have been identified in mammalian cells and named according to their site(s) of phosphorylation: PtdIns 3-phosphate (PI3P); PtdIns 4-phosphate (PI4P); PtdIns 5-phosphate (PI5P); PtdIns 3,4-bisphosphate (PI3,4P2); PtdIns 4,5-bisphosphate (PI4,5P2); PtdIns 3,5-bisphosphate (PI3,5P2); and PtdIns 3,4,5-trisphosphate (PI3,4,5P3). Over the last decade, accumulating evidence has indicated that the different PIs serve not only as intermediates in the synthesis of the higher phosphorylated phosphoinositides, but also as regulators of different protein targets in their own right. These regulatory actions are mediated through the direct binding of their protein targets. In this way, the PIs can control the subcellular localization and activation of their various effectors, and thus execute a variety of cellular responses. To exert these functions, the metabolism of the PIs has to be finely regulated both in time and space, and this is achieved by controlling the subcellular distribution, regulation, and activation states of the enzymes involved in their synthesis and removal (kinases and phosphatases). These exist in many different isoforms, each of which appears to have a distinctive intracellular localization and regulation. As a consequence of this subcompartimentalized PI metabolism, a sort of "PI-fingerprint" of each cell membrane compartment is generated. When combined with the targeted recruitment of their protein effectors and the different intracellular distributions of other lipids and regulatory proteins (such as small GTPases), these factors can maintain and determine the identity of the cell organelles despite the extensive membrane flux []. Here, we provide an overview of the regulation and roles of different phosphoinositide kinases and phosphatases and their lipid products at the Golgi complex.  相似文献   

20.
Sheep seminal vesicles contain two immunologically distinct phospholipase C (PLC) enzymes that can hydrolyze phosphatidylinositol (PI) (Hofmann, S.L., and Majerus, P.W. (1982) J. Biol. Chem. 257, 6461-6469). One of these enzymes (PLC-I) has been purified to homogeneity; the second (PLC-II) has been purified 2600-fold from a crude extract of seminal vesicles. In the present study we have compared the ability of these purified enzymes to hydrolyze PI, phosphatidylinositol 4-phosphate (PI-4-P), and phosphatidylinositol 4,5-diphosphate (PI-4,5-P2). Using radiolabeled substrates in small unilamellar phospholipid vesicles of defined composition, the two enzymes were found to hydrolyze all three of the phosphoinositides. Hydrolysis of all three phosphoinositides by both enzymes was stimulated by Ca2+; however, in the presence of EGTA only the polyphosphoinositides were hydrolyzed. The two enzymes displayed substrate affinities in the order PI greater than PI-4-P greater than PI-4,5-P2, and maximum hydrolysis rates in the order PI-4,5-P2 greater than PI-4-P greater than PI. When present in the same vesicles, PI and the polyphosphoinositides competed for a limiting amount of either enzyme. Inclusion of phosphatidylcholine into vesicles containing the phosphoinositides resulted in greater inhibition of PI hydrolysis than polyphosphoinositide hydrolysis. When all three phosphoinositides were present in vesicles mimicking the cytoplasmic leaflet of cell membranes, there was preferential hydrolysis of the polyphosphoinositides over PI. We conclude that a single phospholipase C can account for the hydrolysis of all three phosphoinositides seen during agonist-induced stimulation of secretory cells. The cytoplasmic Ca2+ concentration and phospholipid composition of the membrane, however, may influence the relative rate of hydrolysis of the three phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号