首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The external form of the follicles was mostly spherical or oval and the large oval follicles reached more than 300 times 180 μm in size. Cytoplasmic inclusions of various sizes were observed in the follicular epithelium. Follicles were composed of hexagonal epithelial cells, and on the apical surface of the cells many microvilli were found (380–500 microvilli per cell) with globular or amorphic cytoplasmic protrusions. In a few cells a central cilium was also observed. From these results a relationship between thyroid structure and function in the hagfish is discussed.  相似文献   

2.
Prominin‐1 is a cell surface biomarker that allows the identification of stem and cancer stem cells from different organs. It is also expressed in several differentiated epithelial and non‐epithelial cells. Irrespective of the cell type, prominin‐1 is associated with plasma membrane protrusions. Here, we investigate its impact on the architecture of membrane protrusions using microvilli of Madin‐Darby canine kidney cells as the main model. Our high‐resolution analysis revealed that upon the overexpression of prominin‐1 the number of microvilli and clusters of them increased. Microvilli with branched and/or knob‐like morphologies were observed and stimulated by mutations in the ganglioside‐binding site of prominin‐1. The altered phenotypes were caused by the interaction of prominin‐1 with phosphoinositide 3‐kinase and Arp2/3 complex. Mutation of tyrosine 828 of prominin‐1 impaired its phosphorylation and thereby inhibited the aforementioned interactions abolishing altered microvilli. This suggests that the interplay of prominin‐1‐ganglioside membrane complexes, phosphoinositide 3‐kinase and cytoskeleton components regulates microvillar architecture. Lastly, the expression of prominin‐1 and its mutants modified the structure of filopodia emerging from fibroblast‐like cells and silencing human prominin‐1 in primary hematopoietic stem cells resulted in the loss of uropod‐associated microvilli. Altogether, these findings strengthen the role of prominin‐1 as an organizer of cellular protrusions.   相似文献   

3.
Microvilli are actin-based protrusions found on the surface of diverse cell types, where they amplify membrane area and mediate interactions with the external environment. In the intestinal tract, these protrusions play central roles in nutrient absorption and host defense and are therefore essential for maintaining homeostasis. However, the mechanisms controlling microvillar assembly remain poorly understood. Here we report that the multifunctional actin regulator cordon bleu (COBL) promotes the growth of brush border (BB) microvilli. COBL localizes to the base of BB microvilli via a mechanism that requires its proline-rich N-terminus. Knockdown and overexpression studies show that COBL is needed for BB assembly and sufficient to induce microvillar growth using a mechanism that requires functional WH2 domains. We also find that COBL acts downstream of the F-BAR protein syndapin-2, which drives COBL targeting to the apical domain. These results provide insight into a mechanism that regulates microvillar growth during epithelial differentiation and have significant implications for understanding the maintenance of intestinal homeostasis.  相似文献   

4.
Prominin-1 (CD133) is a cholesterol-interacting pentaspan membrane protein concentrated in plasma membrane protrusions. In epithelial cells, notably neuroepithelial stem cells, prominin-1 is found in microvilli, the primary cilium and the midbody. These three types of apical membrane protrusions are subject to remodeling during (neuro)epithelial cell differentiation. The protrusion-specific localization of prominin involves its association with a distinct cholesterol-based membrane microdomain. Moreover, the three prominin-1-containing plasma membrane protrusions are the origin of at least two major subpopulations of prominin-1-containing extracellular membrane particles. Intriguingly, the release of these particles has been implicated in (neuro)epithelial cell differentiation.  相似文献   

5.
Possible changes in the epithelial cells of the pigeon choroid plexus induced by administration of thyroid powder (Thyradin), 2,4-dinitrophenol, and cycloheximide were studied by scanning and transmission electron microscopy. A marked increase in the number of large bulbous and bleblike protrusions on the apical end of the epithelial cells was observed after oral administration of Thyradin for a month. The endoplasmic content of the protrusions consisted mainly of electron-lucent material. These results provide morphological evidence for the stimulatory effect of Thyradin. Intramuscular injections of 2,4-dinitrophenol for 15 days caused the collapse or deformation of the mitochondria and bleblike or bulbous protrusions. This indicates that changes in the surface configuration of the choroid plexus are controlled by an energy-dependent mechanism. The decrease of protrusions and polyribosomes and increase of the tubular saccules of varying electron density, size, and shape were noted in cells after 15 days of intramuscular cycloheximide injection. The electron density of the protrusions is lower than that of the control pigeons. The results of this study suggest that a curious pleomorphic structure on the apical surface of the choroid epithelial cell of pigeon is closely related to the functional state of choroidal cells. The study also demonstrates that a secondary ultrastructural response due to diverse physiologic effects is reflected in the architecture of the choroid plexus cells.  相似文献   

6.
Rat leukemia cells IRC 741 in suspension culture form single cytoplasmic protrusions by which the cells preferentially adhere to one another. The induction and/or maintenance of these protrusions is sensitive to changes in intercellular contact, pH, temperature, and nutritional conditions. The protrusions are stable, rigid structures which take part in intercellular adhesion but not in adhesion to substrata. Movement on substrata occurs by means of ruffling membranes formed on the main cell body. This asymmetry in cellular form and function is associated with specialized cell surface regions. Ultrastructurally, the cell surface over the protrusions lacks microvilli, and is covered with a 3,000–4,000-Å thick cell coat consisting of 200–500-Å electron-dense particles in an amorphous matrix. In contrast, the surface over the main cell body has microvilli and a 200-Å wide cell coat which lacks particles. The extracellular particles overlying the protrusions have electron-lucent cores, are protease- and pepsin-resistant, and do not stain with colloidal iron, while the matrix in which they are embedded is sensitive to proteolytic enzymes and contains acidic moieties. The negative surface charge density over the protrusions is higher than that over the main cell body, as shown by the orientation of the cells in an electric field. The unexpected observation that a region of higher charge density is one of increased intercellular adhesiveness might be explained, in part, by the rigidity of the protrusions and by the very small radius of curvature of the overlying extracellular particles. The protrusions permit the observation of discrete regions, differing in charge density, on the surface of living leukemia cells.  相似文献   

7.
The human AC133 antigen and mouse prominin are structurally related plasma membrane proteins. However, their tissue distribution is distinct, with the AC133 antigen being found on hematopoietic stem and progenitor cells and prominin on various epithelial cells. To determine whether the human AC133 antigen and mouse prominin are orthologues or distinct members of a protein family, we examined the human epithelial cell line Caco-2 for the possible expression of the AC133 antigen. By both immunofluorescence and immunoprecipitation, the AC133 antigen was found to be expressed on the surface of Caco-2 cells. Interestingly, immunoreactivity for the AC133 antigen, but not its mRNA level, was down-regulated upon differentiation of Caco-2 cells. The AC133 antigen was specifically located at the apical rather than basolateral plasma membrane. An apical localization of the AC133 antigen was also observed in various human embryonic epithelia including the neural tube, gut, and kidney. Electron microscopy revealed that, within the apical plasma membrane of Caco-2 cells, the AC133 antigen was confined to microvilli and absent from the planar, intermicrovillar regions. This specific subcellular localization did not depend on an epithelial phenotype, because the AC133 antigen on hematopoietic stem cells, as well as that ectopically expressed in fibroblasts, was selectively found in plasma membrane protrusions. Hence, the human AC133 antigen shows the features characteristic of mouse prominin in epithelial and transfected non-epithelial cells, i.e. a selective association with apical microvilli and plasma membrane protrusions, respectively. Conversely, flow cytometry of murine CD34(+) bone marrow progenitors revealed the cell surface expression of prominin. Taken together, the data strongly suggest that the AC133 antigen is the human orthologue of prominin.  相似文献   

8.
Brush border microvilli enable functions that are critical for epithelial homeostasis, including solute uptake and host defense. However, the mechanisms that regulate the assembly and morphology of these protrusions are poorly understood. The parallel actin bundles that support microvilli have their pointed-end rootlets anchored in a filamentous meshwork referred to as the “terminal web.” Although classic electron microscopy studies revealed complex ultrastructure, the composition and function of the terminal web remain unclear. Here we identify nonmuscle myosin-2C (NM2C) as a component of the terminal web. NM2C is found in a dense, isotropic layer of puncta across the subapical domain, which transects the rootlets of microvillar actin bundles. Puncta are separated by ∼210 nm, the expected size of filaments formed by NM2C. In intestinal organoid cultures, the terminal web NM2C network is highly dynamic and exhibits continuous remodeling. Using pharmacological and genetic perturbations in cultured intestinal epithelial cells, we found that NM2C controls the length of growing microvilli by regulating actin turnover in a manner that requires a fully active motor domain. Our findings answer a decades-old question on the function of terminal web myosin and hold broad implications for understanding apical morphogenesis in diverse epithelial systems.  相似文献   

9.
The ultrastructure of the supporting cells in the chemoreceptor areas of the tentacles of Pomatias elegans and Helix pomatia is very similar. Complex apical structures are present, and the lateral plasma membrane exhibits three zones: (1) a zone of slight interdigitations; (2) a zone characterized by longitudinal plicae; (3) a zone of basal radiculae. The portions of the sensory cells located within the epithelial layer are accommodated in longitudinal grooves in the supporting cells. However, there are also differences. In Pomatias elegans the apical surface is differentiated into long microvilli that are sometimes dichotomously branched and invested by a surface coat along their entire length. Cytofilia and cilia of the sensory cells pass through this layer of microvilli and surface coat throughout its entire width. In Helix pomatia the supporting cells are somewhat smaller and the apical differentiation consists of candelabra-like protrusions, which are usually three times dichotomously branched. The final branchings, corresponding to microvilli, are called terminal twigs. They are covered by a surface coat, which forms a feltwork. The cytofilia and cilia of the sensory cells that intertwine among the protrusions are confined to the space below the terminal twigs, where they compose the spongy layer.  相似文献   

10.
We have previously purified a Mr 75,000 protein, cytovillin, from cultured human choriocarcinoma cells (JEG-3) and shown that this protein was specifically confined to the microvillus membrane of these cells. I have now studied the expression and the subcellular distribution of cytovillin in eighteen normal and transformed human cell lines and strains by using immunoblotting and indirect immunofluorescence microscopy. In all cell types, cytovillin was highly enriched in cell surface protrusions. When cell types were ranked according to their staining intensity, choriocarcinoma was highest, then amniotic epithelial cells, other choriocarcinoma cells and tumor cells, and finally fibroblastoid cells. The latter only gave faint diffuse fluorescence on the plasma membrane and, occasionally, on the microvilli. However, detergent extracts of all cell types could be shown to contain cytovillin by the use of immunoblotting techniques. Metabolic pulse-chase labelling experiments with JEG-3 cells demonstrated synthesis of cytovillin as a single-chain polypeptide. No precursor forms or specific proteolytic cleavage products could be seen either by immunoblotting or immunoprecipitation. The protein was found to be very stable with a biologic half-life of about 25 hours. The pI determined by isoelectric focusing was 6.1. These results were consistent with cytovillin being an integral component of the microvilli and other surface extensions of all human cell types examined.  相似文献   

11.
Actin-based protrusions can form prominent structures on the apical surface of epithelial cells, such as microvilli. Several cytoplasmic factors have been identified that control the dynamics of actin filaments in microvilli. However, it remains unclear whether the plasma membrane participates actively in microvillus formation. In this paper, we analyze the function of Drosophila melanogaster cadherin Cad99C in the microvilli of ovarian follicle cells. Cad99C contributes to eggshell formation and female fertility and is expressed in follicle cells, which produce the eggshells. Cad99C specifically localizes to apical microvilli. Loss of Cad99C function results in shortened and disorganized microvilli, whereas overexpression of Cad99C leads to a dramatic increase of microvillus length. Cad99C that lacks most of the cytoplasmic domain, including potential PDZ domain-binding sites, still promotes excessive microvillus outgrowth, suggesting that the amount of the extracellular domain determines microvillus length. This study reveals Cad99C as a critical regulator of microvillus length, the first example of a transmembrane protein that is involved in this process.  相似文献   

12.
C A Rubio 《Acta cytologica》1976,20(4):375-380
The anatomy of the epithelial surface of the uterine cervix was investigated in 31 mice with scanning electron microscope (SEM). The cervox of 20 mice was painted twice a week during five months with 3,4-benzpyrene (BP) in acetone and in 11 mice with acetone alone. Only two of the 15 acetone or BP treated animals with histologic normal epithelium showed similar structures as those described earlier for the normal cervical epithelium of untreated mice. The remaining 13 animals had regular mosaics, intermediate or cobblestone structures covered with irregular microvilli with or without long, finger-like protrusions. Irregular mosaics, intermediate or cobblestone structures were seen in atypical epithelium. In atypias Grade III and in invasive carcinoma irregular cobblestone structures with cellular overlapping were present. Atypical and invasive carcinoma were usually furnished with irregular microvilli, irregular fragmented microrugae and finger-like protrusions. The proportion of mice having anisovillosis with finger-like protrusions increased with increasing degree of epithelial severity. Since pathologic SEM changes were observed in some treated mice having normal histology the possibility was entertained that alterations at the cellular membrane level may preceed the nucleocytoplasmic changes required for the recognition of atypical epithelium in conventional histologic preparations.  相似文献   

13.
The luminal membrane of salivary acinar cells creates a specialized cell surface area that accepts exocytosis and undergoes dynamic changes during secretion. These changes were visualized three-dimensionally from both the inside and outside of the cell in human parotid and submandibular glands, by application of in vitro secretory stimulation and then of OsO4 maceration to remove cytoplasmic organelles by varying degrees. In control glands treated without secretagogues, the luminal surface of serous acinar cells bore well-developed microvilli with only an occasional incidence of exocytotic profiles. Following treatment with the β-adrenergic agonist, isoproterenol, considerable shortening and loss of microvilli occurred along the luminal membrane where, on its cytoplasmic side, many protuberances of sizes similar to or smaller than those of single secretory granules (~1 μm in diameter) appeared. The cytoplasmic surface of these protuberances exhibited small vesicles (~100–150 nm in diameter) that, by transmission electron microscopy, were shown to be coated pits or vesicles present on or around the exocytosed granule membranes. Treatment of tissues with the muscarinic agonist carbachol also caused a decrease of microvilli and the appearance of protrusions at the luminal membrane. However, unlike isoproterenol treatment, many of these protrusions were devoid of small pits or vesicles and were much larger than a single secretory granule. These results indicate that (1) secretory stimulation causes the dynamic transformation of microvilli at the luminal membrane, where granule docking and membrane fusion take place, and (2) after fusion, the exocytosed membranes are processed differently, by coated pit/vesicle mediated or non-mediated mechanisms, according to the autonomic receptor control.  相似文献   

14.
Summary The ependymal lining of the lateral ventricles of the rabbit brain was studied by means of scanning (SEM) and transmission electron microscopy (TEM). There exist cells devoid of cilia in the anterior horn over the region of the caudate nucleus, in the inferior horn over the hippocampus and on the opposite side over cortical regions. On the surface of some of these ependymal cells, accumulations of cytoplasmic folds and globules can be found. They bulge at different height over the ependymal cells. Clots of these cell particles are tied off from the cell, coming to lie as globules either on or between the cilia of the ependyma. TEM reveals that these tissue protrusions are cell debris consisting of different sized vesicles, cell organelles, tubuli and filaments. They originate from the ependymal layer but may reach down to subependymal cells. Multivesicular protrusions into the ventricular lumen are also observed. Possible causes of these protrusions are discussed; they are likely to be related to the age of the animals.On the ependyma of the caudate nucleus cilia, microvilli, microblebs and supraependymal neuronal cell processes are distributed unevenly over the surface. Within regions where cilia predominate there are cells which are tightly covered with microvilli. A certain direction of the course of the supraependymal neuronal fibers could not be found.The author is pleased to acknowledge useful discussions with Prof. Dr. med. E. van der Zypen. This study was partly supported by the Stanley Thomas Johnson Foundation  相似文献   

15.
The cytochemical localization of alkaline phosphatase (AlPase) activity in the developing IVth ventricular choroidal epithelium was investigated in embryonic and neonatal rats. During the initial development of the choroidal primodium the flattened and/or cuboidal epithelial cells of the ventricular roof were changed to columnar cells with well-developed microvilli and apical tight junctions. When compared to AlPase activity on the lateral plasma membranes of the surrounding ependymal cells, these columnar cells of the choroidal primodium revealed activity on the lateral and luminal plasma membranes, but no activity was found on the basal surface of these cells. On the other hand, the epithelial cells in the neonatal choroid plexus showed a continuous morphological alteration from columnar cells with short microvilli to mature cuboidal cells with numerous long microvilli. AlPase activity in immature columnar cells was observed on all plasma membranes, except for the apical junctional area of the lateral surface. With maturing of the choroidal epithelial cells, the activity appeared to be eliminated from the lateral and luminal plasma membranes of the cuboidal cells, and mature choroidal epithelial cells showed activity on the basal surface only. These findings suggest that AlPase may play an important role in the membrane activity of epithelial cells differentiating between the primitive epithelial cells of the ventricular roof and the mature choroidal epithelial cells.  相似文献   

16.
Tetraspanins regulate the protrusive activities of cell membrane   总被引:1,自引:0,他引:1  
Tetraspanins have gained increased attention due to their functional versatility. But the universal cellular mechanism that governs such versatility remains unknown. Herein we present the evidence that tetraspanins CD81 and CD82 regulate the formation and/or development of cell membrane protrusions. We analyzed the ultrastructure of the cells in which a tetraspanin is either overexpressed or ablated using transmission electron microscopy. The numbers of microvilli on the cell surface were counted, and the radii of microvillar tips and the lengths of microvilli were measured. We found that tetraspanin CD81 promotes the microvillus formation and/or extension while tetraspanin CD82 inhibits these events. In addition, CD81 enhances the outward bending of the plasma membrane while CD82 inhibits it. We also found that CD81 and CD82 proteins are localized at microvilli using immunofluorescence. CD82 regulates microvillus morphogenesis likely by altering the plasma membrane curvature and/or the cortical actin cytoskeletal organization. We predict that membrane protrusions embody a common morphological phenotype and cellular mechanism for, at least some if not all, tetraspanins. The differential effects of tetraspanins on microvilli likely lead to the functional diversification of tetraspanins and appear to correlate with their functional propensity.  相似文献   

17.
The structure of the digestive gland epithelium of a terrestrial isopod Porcellio scaber has been investigated by conventional scanning electron microscopy (SEM), focused ion beam–scanning electron microscopy (FIB/SEM), and light microscopy in order to provide evidence on morphology of the gland epithelial surface in animals from a stock culture. We investigated the shape of cells, extrusion of lipid droplets, shape and distribution of microvilli, and the presence of bacteria on the cell surface. A total of 22 animals were investigated and we found some variability in the appearance of the gland epithelial surface. Seventeen of the animals had dome-shaped digestive gland “normal” epithelial cells, which were densely and homogeneously covered by microvilli and varying proportions of which extruded lipid droplets. On the surface of microvilli we routinely observed sparsely distributed bacteria of different shapes. Five of the 22 animals had “abnormal” epithelial cells with a significantly altered shape. In three of these animals, the cells were much smaller, partly or completely flat or sometimes pyramid-like. A thick layer of bacteria was detected on the microvillous border, and in places, the shape and size of microvilli were altered. In two animals, hypertrophic cells containing large vacuoles were observed indicating a characteristic intracellular infection. The potential of SEM in morphological investigations of epithelial surfaces is discussed.  相似文献   

18.
A hydrodynamic cell model is introduced to analyze the dynamic stability of the cell membrane after malignant transformation. The cell membrane is considered as a two-dimensional charged interface between intra- and extra-cellular fluids. Employing a first order stability analysis, conditions are established under which growth of surface fluctuations can occur (leading to microvilli formation or cell division). The system is unstable if the total surface tension, i.e. the pure surface tension plus the free energy of formation of the double layers, is negative. Following that criterion, cell division is promoted in cancer cells; moreover, as cancer cells are more fluid than normal cells, they will divide more rapidly. The model also predicts that microvilli (protrusions of the cell membrane) will have a diameter of the order of the dominant wavelengths of perturbation (0.1 - 1 mu) which supports the view that such protrusions are consequences of amplified cell surface fluctuations.  相似文献   

19.
Summary The surface of ependymal cells bordering the brain ventricles, and that of the epithelial cells of choroid plexuses of the cat have been investigated by means of the scanning electron microscope. The ventricle walls are entirely covered with very long and numerous cilia and no regional differences have been observed regarding their number and disposition. Among the ciliated cells dome-shaped structures are present, possibly containing nervous elements. The ependymal cells of the third ventricle floor are mainly non ciliated but the surface thereof shows numerous small microvilli. Numerous round formations are present among these cells, their nature being difficult to interpret. Also present on the floor are small cells of triangular shape with long and tortuous protrusions, tentatively identified as small neurons. The choroid plexuses have a typical sinuous structure of long tortuous villi rich in cavities and convolutions. Details of the epithelial cells covering the plexus and their surface organization are also reported.Part of these results were presented to the Septième Congrès International de Microscopie Electronique, Grenoble 1970.  相似文献   

20.
The ventral surface of the deep layer of gastrulating quail and chick embryos was examined using scanning electron microscopy. On the basis of cell protrusions, three or four different cell types were recognized. Cells covered with microplicae were found in the caudal region of the germ and as a narrow band extending along the lateral and anterior borders of the area pellucida. Cells covered with microvilli were found in a horseshoe-shaped zone in the anterior part of the germ. Beneath the rostral end of the primitive streak, the flattened deep-layer cells exhibited intercellular ridges and few microvilli. This area was surrounded by cells that usually had extended microvilli. The pattern of these cell types is discussed in relation to the formation of the different tissues that compose the deep layer in gastrulating embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号