首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cone photoreceptors and horizontal cells (HCs) have a reciprocal synapse that underlies lateral inhibition and establishes the antagonistic center-surround organization of the visual system. Cones transmit to HCs through an excitatory synapse and HCs feed back to cones through an inhibitory synapse. Here we report that HCs also transmit to cone terminals a positive feedback signal that elevates intracellular Ca(2+) and accelerates neurotransmitter release. Positive and negative feedback are both initiated by AMPA receptors on HCs, but positive feedback appears to be mediated by a change in HC Ca(2+), whereas negative feedback is mediated by a change in HC membrane potential. Local uncaging of AMPA receptor agonists suggests that positive feedback is spatially constrained to active HC-cone synapses, whereas the negative feedback signal spreads through HCs to affect release from surrounding cones. By locally offsetting the effects of negative feedback, positive feedback may amplify photoreceptor synaptic release without sacrificing HC-mediated contrast enhancement.  相似文献   

2.
The primary feedback control apparatus in the outer retina is the sign-inverting feedback synapse between horizontal cells and cones. In many lower vertebrates horizontal cells release GABA in darkness, which opens Cl- channels in cones. Input-output relations of the feedback synapse reveal that the synaptic gain is light-dependent with the highest negative gain near the dark horizontal cell potential. The horizontal cell-cone feedback synapse improves the reliability of the photoreceptor output synapses. It also modulates the dynamic range and mediates color opponency and surround responses in second-order retinal neurons.  相似文献   

3.
In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons. Mutant zebrafish were generated that lack connexin 55.5 hemichannels in horizontal cells. Whole cell voltage clamp recordings were made from isolated horizontal cells and cones in flat mount retinas. Light-induced feedback from horizontal cells to cones was reduced in mutants. A reduction of feedback was also found when horizontal cells were pharmacologically hyperpolarized but was absent when they were pharmacologically depolarized. Hemichannel currents in isolated horizontal cells showed a similar behavior. The hyperpolarization-induced hemichannel current was strongly reduced in the mutants while the depolarization-induced hemichannel current was not. Intracellular recordings were made from horizontal cells. Consistent with impaired feedback in the mutant, spectral opponent responses in horizontal cells were diminished in these animals. A behavioral assay revealed a lower contrast-sensitivity, illustrating the role of the horizontal cell to cone feedback pathway in contrast enhancement. Model simulations showed that the observed modifications of feedback can be accounted for by an ephaptic mechanism. A model for feedback, in which the number of connexin hemichannels is reduced to about 40%, fully predicts the specific asymmetric modification of feedback. To our knowledge, this is the first successful genetic interference in the feedback pathway from horizontal cells to cones. It provides direct evidence for an unconventional role of connexin hemichannels in the inhibitory synapse between horizontal cells and cones. This is an important step in resolving a long-standing debate about the unusual form of (ephaptic) synaptic transmission between horizontal cells and cones in the vertebrate retina.  相似文献   

4.
Sampath AP  Rieke F 《Neuron》2004,41(3):431-443
A threshold-like nonlinearity in signal transfer from mouse rod photoreceptors to rod bipolar cells dramatically improves the absolute sensitivity of the rod signals. The work described here reaches three conclusions about the mechanisms generating this nonlinearity. (1) The nonlinearity is caused primarily by saturation of the feedforward rod-to-rod bipolar synapse and not by feedback from horizontal or amacrine cells. This saturation renders the rod bipolar current insensitive to small changes in transmitter release from the rod. (2) Saturation occurs within the G protein cascade that couples receptors to channels in the rod bipolar dendrites, with little or no contribution from presynaptic mechanisms or saturation of the postsynaptic receptors. (3) Between 0.5 and 2 bipolar transduction channels are open in darkness at each synapse, compared to the approximately 30 channels open at the peak of the single photon response.  相似文献   

5.

Background

Recent studies designed to identify the mechanism by which retinal horizontal cells communicate with cones have implicated two processes. According to one account, horizontal cell hyperpolarization induces an increase in pH within the synaptic cleft that activates the calcium current (Ca2+-current) in cones, enhancing transmitter release. An alternative account suggests that horizontal cell hyperpolarization increases the Ca2+-current to promote transmitter release through a hemichannel-mediated ephaptic mechanism.

Methodology/Principal Findings

To distinguish between these mechanisms, we interfered with the pH regulating systems in the retina and studied the effects on the feedback responses of cones and horizontal cells. We found that the pH buffers HEPES and Tris partially inhibit feedback responses in cones and horizontal cells and lead to intracellular acidification of neurons. Application of 25 mM acetate, which does not change the extracellular pH buffer capacity, does lead to both intracellular acidification and inhibition of feedback. Because intracellular acidification is known to inhibit hemichannels, the key experiment used to test the pH hypothesis, i.e. increasing the extracellular pH buffer capacity, does not discriminate between a pH-based feedback system and a hemichannel-mediated feedback system. To test the pH hypothesis in a manner independent of artificial pH-buffer systems, we studied the effect of interfering with the endogenous pH buffer, the bicarbonate/carbonic anhydrase system. Inhibition of carbonic anhydrase allowed for large changes in pH in the synaptic cleft of bipolar cell terminals and cone terminals, but the predicted enhancement of the cone feedback responses, according to the pH-hypothesis, was not observed. These experiments thus failed to support a proton mediated feedback mechanism. The alternative hypothesis, the hemichannel-mediated ephaptic feedback mechanism, was therefore studied experimentally, and its feasibility was buttressed by means of a quantitative computer model of the cone/horizontal cell synapse.

Conclusion

We conclude that the data presented in this paper offers further support for physiologically relevant ephaptic interactions in the retina.  相似文献   

6.
The nature of surround-induced depolarizing responses in goldfish cones   总被引:2,自引:0,他引:2  
Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround responses of bipolar cells have been recorded on many occasions, surprisingly, the underlying surround-induced responses in cones are not easily detected. In this paper, the nature of the surround-induced responses in cones is studied. Horizontal cells feed back to cones by shifting the activation function of the calcium current in cones to more negative potentials. This shift increases the calcium influx, which increases the neurotransmitter release of the cone. In this paper, we will show that under certain conditions, in addition to this increase of neurotransmitter release, a calcium-dependent chloride current will be activated, which polarizes the cone membrane potential. The question is, whether the modulation of the calcium current or the polarization of the cone membrane potential is the major determinant for feedback-mediated responses in second-order neurons. Depolarizing light responses of biphasic horizontal cells are generated by feedback from monophasic horizontal cells to cones. It was found that niflumic acid blocks the feedback-induced depolarizing responses in cones, while the shift of the calcium current activation function and the depolarizing biphasic horizontal cell responses remain intact. This shows that horizontal cells can feed back to cones, without inducing major changes in the cone membrane potential. This makes the feedback synapse from horizontal cells to cones a unique synapse. Polarization of the presynaptic (horizontal) cell leads to calcium influx in the postsynaptic cell (cone), but due to the combined activity of the calcium current and the calcium-dependent chloride current, the membrane potential of the postsynaptic cell will be hardly modulated, whereas the output of the postsynaptic cell will be strongly modulated. Since no polarization of the postsynaptic cell is needed for these feedback-mediated responses, this mechanism of synaptic transmission can modulate the neurotransmitter release in single synaptic terminals without affecting the membrane potential of the entire cell.  相似文献   

7.
Color vision is most beneficial when the visual system is color constant and can correct the excitations of photoreceptors for differences in environmental irradiance. A phenomenon related to color constancy is color induction, where the color of an object shifts away from the color of its surroundings. These two phenomena depend on chromatic spatial integration, which was suggested to originate at the feedback synapse from horizontal cells (HC) to cones. However, the exact retinal site was never determined. Using the electroretinogram and compound action potential recordings, we estimated the spectral sensitivity of the photoresponse of cones, the output of cones, and the optic nerve in rainbow trout. Recordings were performed before and following pharmacological inhibition of HC-cone feedback, and were repeated under two colored backgrounds to estimate the efficiency of color induction. No color induction could be detected in the photoresponse of cones. However, the efficiency of color induction in the cone output and optic nerve was substantial, with the efficiency in the optic nerve being significantly higher than in the cone output. We found that the efficiency of color induction in the cone output and optic nerve decreased significantly with the inhibition of HC-cone feedback. Therefore, our findings suggest not only that color induction originates as a result of HC-cone feedback, but also that this effect of HC-cone feedback is further amplified at downstream retinal elements, possibly through feedback mechanisms at the inner plexiform layer. This study provides evidence for an important role of HC-cone feedback in mediating color induction, and therefore, likely also in mediating color constancy.  相似文献   

8.
The two best-known types of cell-cell communication are chemical synapses and electrical synapses, which are formed by gap junctions. A third, less well known, form of communication is ephaptic transmission, in which electric fields generated by a specific neuron alter the excitability of neighboring neurons as a result of their anatomical and electrical proximity. Ephaptic communication can be present in a variety of forms, each with their specific features and functional implications. One of these is ephaptic modulation within a chemical synapse. This type of communication has recently been proposed for the cone-horizontal cell synapse in the vertebrate retina. Evidence indicates that the extracellular potential in the synaptic terminal of photoreceptors is modulated by current flowing through connexin hemichannels at the tips of the horizontal cell dendrites, mediating negative feedback from horizontal cells to cones. This example can be added to the growing list of cases of ephaptic communication in the central nervous system.  相似文献   

9.
In retinal cone-HC synapse, it has been found that repetitive stimulation could induce postsynaptic short-term responsiveness enhancement. However, the detailed mechanism underlying this short-term plasticity in the retinal graded neurons remains unclear. In this study, based on an ion-channel model described using Hodgkin--Huxley equations, the possible mechanism of repetitive-stimulation-induced short-term plasticity in the synapse between retinal cones and horizontal cells was investigated. The computational simulation results, together with evidence from experimental observations, suggest that the short-term modification of signal transmission between the retinal graded neurons is likely to be attributed to the regulatory effects that calcium-dependent process exerts on the single-channel properties of the postsynaptic AMPA receptors.  相似文献   

10.
Here we studied the ultrastructural organization of the outer retina of the European silver eel, a highly valued commercial fish species. The retina of the European eel has an organization very similar to most vertebrates. It contains both rod and cone photoreceptors. Rods are abundantly present and immunoreactive for rhodopsin. Cones are sparsely present and only show immunoreactivity for M-opsin and not for L-, S- or UV-cone opsins. As in all other vertebrate retinas, Müller cells span the width of the retina. OFF-bipolar cells express the ionotropic glutamate receptor GluR4 and ON-bipolar cells, as identified by their PKCα immunoreactivity, express the metabotropic receptor mGluR6. Both the ON- and the OFF-bipolar cell dendrites innervate the cone pedicle and rod spherule. Horizontal cells are surrounded by punctate Cx53.8 immunoreactivity indicating that the horizontal cells are strongly electrically coupled by gap-junctions. Connexin-hemichannels were found at the tips of the horizontal cell dendrites invaginating the photoreceptor synapse. Such hemichannels are implicated in the feedback pathway from horizontal cells to cones. Finally, horizontal cells are surrounded by tyrosine hydroxylase immunoreactivity, illustrating a strong dopaminergic input from interplexiform cells.  相似文献   

11.
Processing of visual stimuli by the retina changes strongly during light/dark adaptation. These changes are due to both local photoreceptor-based processes and to changes in the retinal network. The feedback pathway from horizontal cells to cones is known to be one of the pathways that is modulated strongly during adaptation. Although this phenomenon is well described, the mechanism for this change is poorly characterized. The aim of this paper is to describe the mechanism for the increase in efficiency of the feedback synapse from horizontal cells to cones. We show that a train of flashes can increase the feedback response from the horizontal cells, as measured in the cones, up to threefold. This process has a time constant of approximately 3 s and can be attributed to processes intrinsic to the cones. It does not require dopamine, is not the result of changes in the kinetics of the cone light response and is not due to changes in horizontal cells themselves. During a flash train, cones adapt to the mean light intensity, resulting in a slight (4 mV) depolarization of the cones. The time constant of this depolarization is approximately 3 s. We will show that at this depolarized membrane potential, a light-induced change of the cone membrane potential induces a larger change in the calcium current than in the unadapted condition. Furthermore, we will show that negative feedback from horizontal cells to cones can modulate the calcium current more efficiently at this depolarized cone membrane potential. The change in horizontal cell response properties during the train of flashes can be fully attributed to these changes in the synaptic efficiency. Since feedback has major consequences for the dynamic, spatial, and spectral processing, the described mechanism might be very important to optimize the retina for ambient light conditions.  相似文献   

12.

Background

Changes of the interneuronal coupling mediated by electrical synapse proteins in response to light adaptation and receptive field shaping are a paramount feature in the photoreceptor/horizontal cell/bipolar cell (PRC/HC/BPC) complex of the outer retina. The regulation of these processes is not fully understood at the molecular level but they may require information transfer to the nucleus by locally generated messengers. Electrical synapse proteins may comprise a feasible molecular determinant in such an information-laden signalling pathway.

Results

Connexin55.5 (Cx55.5) is a connexin with horizontal cell-restricted expression in zebrafish accumulating at dendritic sites within the PRC/HC/BPC complex in form of hemichannels where light-dependent plasticity occurs. Here we provide evidence for the generation of a carboxy-terminal domain of Cx55.5. The protein product is translated from the Cx55.5 mRNA by internal translation initiation from an in-frame ATG codon involving a putative internal ribosome entry site (IRES) element localized in the coding region of Cx55.5. This protein product resembling an 11 kDa domain of Cx55.5 is partially located in the nucleus in vivo and in vitro.

Conclusion

Our results demonstrate the generation of a second protein from the coding region of Cx55.5 by an IRES mediated process. The nuclear occurrence of a fraction of this protein provides first evidence that this electrical synapse protein may participate in a putative cytoplasmic to nuclear signal transfer. This suggests that Cx55.5 could be involved in gene regulation making structural plasticity at the PRC/HC/BPC complex feasible.  相似文献   

13.
Yu Y  Fay NC  Smoligovets AA  Wu HJ  Groves JT 《PloS one》2012,7(2):e30704
Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It remains unclear, however, if mechanical forces exert any direct influence on the signaling cascades. We use T cells from AND transgenic mice expressing TCRs specific to the moth cytochrome c 88-103 peptide, and replace the APC with a synthetic supported lipid membrane. Through a series of high spatiotemporal molecular tracking studies in live T cells, we demonstrate that the molecular motor, non-muscle myosin IIA, transiently drives TCR transport during the first one to two minutes of immunological synapse formation. Myosin inhibition reduces calcium influx and colocalization of active ZAP-70 (zeta-chain associated protein kinase 70) with TCR, revealing an influence on signaling activity. More tellingly, its inhibition also significantly reduces phosphorylation of the mechanosensing protein CasL (Crk-associated substrate the lymphocyte type), raising the possibility of a direct mechanical mechanism of signal modulation involving CasL.  相似文献   

14.
Spike-Timing Dependent Plasticity (STDP) is characterized by a wide range of temporal kernels. However, much of the theoretical work has focused on a specific kernel – the “temporally asymmetric Hebbian” learning rules. Previous studies linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes: potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that their dynamics is identical.  相似文献   

15.
16.
Opioid receptor signaling via EGF receptor (EGFR) transactivation and ERK/MAPK phosphorylation initiates diverse cellular responses that are cell type-dependent. In astrocytes, multiple μ opioid receptor-mediated mechanisms of ERK activation exist that are temporally distinctive and feature different outcomes. Upon discovering that chronic opiate treatment of rats down-regulates thrombospondin 1 (TSP1) expression in the nucleus accumbens and cortex, we investigated the mechanism of action of this modulation in astrocytes. TSP1 is synthesized in astrocytes and is released into the extracellular matrix where it is known to play a role in synapse formation and neurite outgrowth. Acute morphine (hours) reduced TSP1 levels in astrocytes. Chronic (days) opioids repressed TSP1 gene expression and reduced its protein levels by μ opioid receptor and ERK-dependent mechanisms in astrocytes. Morphine also depleted TSP1 levels stimulated by TGFβ1 and abolished ERK activation induced by this factor. Chronic morphine treatment of astrocyte-neuron co-cultures reduced neurite outgrowth and synapse formation. Therefore, inhibitory actions of morphine were detected after both acute and chronic treatments. An acute mechanism of morphine signaling to ERK that entails depletion of TSP1 levels was suggested by inhibition of morphine activation of ERK by a function-blocking TSP1 antibody. This raises the novel possibility that acute morphine uses TSP1 as a source of EGF-like ligands to activate EGFR. Chronic morphine inhibition of TSP1 is reminiscent of the negative effect of μ opioids on EGFR-induced astrocyte proliferation via a phospho-ERK feedback inhibition mechanism. Both of these variations of classical EGFR transactivation may enable opiates to diminish neurite outgrowth and synapse formation.  相似文献   

17.
CD28 signals in the immature immunological synapse   总被引:3,自引:0,他引:3  
T cell recognition of peptide-MHC complexes on APCs results in the aggregation of TCRs at a central supramolecular activation complex (c-SMAC) within a mature immunological synapse. T cells require a second "costimulatory" signal for activation, the most important of which, for naive T cells, is from CD28. However the time at which CD28-derived signals are induced relative to c-SMAC formation is not well understood. In this study, we have assessed the kinetics of CD28 localization and function relative to well-established aspects of c-SMAC formation. CD28 accumulates at the immature synapse alongside the TCR and is likewise enriched at the synapse at the onset of the calcium signal. In addition, using CD28 deficient or reconstituted murine cells in a single-cell recording approach shows that CD28 regulates this signal within seconds of a TCR-mediated rise in intracellular calcium levels. Finally, CD28 exerts effects on both the initiation and stabilization of the synapse in parallel with its effects on the downstream proliferation of T cells. Together, the data show that CD28 functions in the immunological synapse before the formation of the c-SMAC.  相似文献   

18.
19.
Changes in the number, size, and shape of dendritic spines are associated with synaptic plasticity, which underlies cognitive functions such as learning and memory. This plasticity is attributed to reorganization of actin, but the molecular signals that regulate this process are poorly understood. In this study, we show neural Wiskott-Aldrich syndrome protein (N-WASP) regulates the formation of dendritic spines and synapses in hippocampal neurons. N-WASP localized to spines and active, functional synapses as shown by loading with FM4-64 dye. Knock down of endogenous N-WASP expression by RNA interference or inhibition of its activity by treatment with a specific inhibitor, wiskostatin, caused a significant decrease in the number of spines and excitatory synapses. Deletion of the C-terminal VCA region of N-WASP, which binds and activates the actin-related protein 2/3 (Arp2/3) complex, dramatically decreased the number of spines and synapses, suggesting activation of the Arp2/3 complex is critical for spine and synapse formation. Consistent with this, Arp3, like N-WASP, was enriched in spines and excitatory synapses and knock down of Arp3 expression impaired spine and synapse formation. A similar defect in spine and synapse formation was observed when expression of an N-WASP activator, Cdc42, was knocked down. Thus, activation of N-WASP and, subsequently, the Arp2/3 complex appears to be an important molecular signal for regulating spines and synapses. Arp2/3-mediated branching of actin could be a mechanism by which dendritic spine heads enlarge and subsequently mature. Collectively, our results point to a critical role for N-WASP and the Arp2/3 complex in spine and synapse formation.  相似文献   

20.
A model of the cone-L-type horizontal cell circuit of the catfish contains 3 stages. The outer segment consists of a compression factor producing the Naka-Rushton relationship between amplitude of response and intensity and 7 low-pass filters in tandem that produces an absolute delay of about 15 ms. The cone pedicle consists of an internal negative feedback circuit in series with a low-pass filter. The L-type horizontal cell acts as a linear low-pass filter and forms the external negative feedback circuit with the cone pedicle. The system shows peicewise linearity with the feedback gain of the external negative feedback circuit directly proportional to the dc level of the horizontal cell. Thus, at any given mean illuminance the impulse response of the cone and L-HC adequately defines the dynamics of the responses. The conversion of a slow monophasic to a faster biphasic impulse response due to either an increase in mean illuminace or use of a steady annulus results from the change in the characteristic equation as the effective value of the feedback gain changes. By proper adjustement of gains and time constants, the cone-L-HC circuit of the catfish retina simulates the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号