首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Starch is a biologically and commercially important polymer of glucose. Starch is organized into starch grains (SGs) inside amyloplasts. The SG size differs depending on the plant species and is one of the most important factors for industrial applications of starch. There is limited information on genetic factors regulating SG sizes. In this study, we report the rice (Oryza sativa) mutant substandard starch grain6 (ssg6), which develops enlarged SGs in endosperm. Enlarged SGs are observed starting at 3 d after flowering. During endosperm development, a number of smaller SGs appear and coexist with enlarged SGs in the same cells. The ssg6 mutation also affects SG morphologies in pollen. The SSG6 gene was identified by map-based cloning and microarray analysis. SSG6 encodes a protein homologous to aminotransferase. SSG6 differs from other rice homologs in that it has a transmembrane domain. SSG6-green fluorescent protein is localized in the amyloplast membrane surrounding SGs in rice endosperm, pollen, and pericarp. The results of this study suggest that SSG6 is a novel protein that controls SG size. SSG6 will be a useful molecular tool for future starch breeding and applications.Starch is an important plant-derived Glc polymer that is widely used as food and in manufacturing applications involving nonfood products. Starch is water insoluble and osmotically inactive. These properties make starch a suitable molecule for long-term carbohydrate storage in seeds and tubers. Higher plant cells contain terminally differentiated plastids called amyloplasts, which is the organelle involved in starch synthesis and storage in endosperm and tubers (Sakamoto et al., 2008). Starch is organized as transparent grains (starch grains [SGs]) in amyloplasts (Buléon et al., 1998; Hancock and Tarbet, 2000). SGs are easily visualized using iodine solution and can be clearly observed with a normal light microscope (Matsushima et al., 2010).Cereal endosperm accumulates high levels of starch, which fill most of the amyloplast intracellular space. Therefore, the amyloplast volume is considered as approximately equivalent to the SG volume (Matsushima et al., 2014). Rice (Oryza sativa) endosperm SGs are normally 10 to 20 μm in diameter (Matsushima et al., 2010). Each amyloplast contains a single SG that is organized from the assembly of several dozen smaller starch granules. Each starch granule is a sharp-edged polyhedron with a typical diameter of 3 to 8 μm. This type of SG is called a compound SG (Tateoka, 1962). For compound SGs, starch granules are assembled but not fused to form a single SG, which is easily separated by conventional purification procedures. By contrast, a simple SG contains a single starch granule (Tateoka, 1962). In this case, both terms are used equally. Simple SGs are produced in several important crops such as maize (Zea mays), sorghum (Sorghum bicolor), barley (Hordeum vulgare), and wheat (Triticum aestivum; Tateoka, 1962; Matsushima et al., 2010, 2013). SG sizes in cereal endosperm are diverse. Maize and sorghum SGs have a uniform size distribution of approximately 10 μm in diameter (Jane et al., 1994; Matsushima et al., 2010; Ai et al., 2011). In barley and wheat, SGs of two discrete size classes (approximately 15−25 μm and less than 10 μm) coexist in the same cells (Evers, 1973; French, 1984; Jane et al., 1994; Matsushima et al., 2010, 2013).The size of starch granules is one of the most important characteristics for industrial applications (Lindeboom et al., 2004). Small starch granules can replace fat in food applications, because aqueous dispersions of small starch granules show fat-mimetic properties (Malinski et al., 2003). The larger starch granules of maize and cassava (Manihot esculenta) improve the final starch yield after wet-milling purification (Gutiérrez et al., 2002). In the case of simple SGs, the size of SGs is equal to the size of starch granules. Therefore, manipulation of the sizes of SGs and starch granules is a molecular target for bioengineering programs. SG size can be reduced in transgenic plants and genetic mutants by down-regulating several starch synthetic enzymes (Gutiérrez et al., 2002; Bustos et al., 2004; Ji et al., 2004; Stahl et al., 2004; Matsushima et al., 2010; Fujita, 2014). By contrast, our understanding of the genetic tools, biosynthetic enzymes, and plant materials that can be utilized to enlarge SGs is limited.Recent work identified a rice mutant that develops enlarged SGs; this mutant has been named substandard starch grain4 (ssg4; Matsushima et al., 2014). The enlarged SGs are observed in starch-accumulating tissues of ssg4, including endosperm, pollen, root caps, and young pericarp. Chloroplasts in young ssg4 leaves also are enlarged. SSG4 encodes an amyloplast-localized large protein with a domain of unknown function (DUF490). SSG4 homologs are conserved from bacteria to higher plants; however, the exact molecular function of SSG4 is unknown.In this study, we report the identification of another rice mutant (ssg6) that develops enlarged SGs in endosperm. We characterize the ssg6 mutation and identify the responsible gene. SSG6 encodes a protein homologous to aminotransferase. SSG6 is localized at the amyloplast membrane and is a novel factor that influences SG size. We also determined that ssg4 and ssg6 mutations act synergistically in pollens. SSG6 will be a useful molecular target for future starch breeding and starch biotechnology programs.  相似文献   

2.
3.
Necrotrophic and biotrophic pathogens are resisted by different plant defenses. While necrotrophic pathogens are sensitive to jasmonic acid (JA)-dependent resistance, biotrophic pathogens are resisted by salicylic acid (SA)- and reactive oxygen species (ROS)-dependent resistance. Although many pathogens switch from biotrophy to necrotrophy during infection, little is known about the signals triggering this transition. This study is based on the observation that the early colonization pattern and symptom development by the ascomycete pathogen Plectosphaerella cucumerina (P. cucumerina) vary between inoculation methods. Using the Arabidopsis (Arabidopsis thaliana) defense response as a proxy for infection strategy, we examined whether P. cucumerina alternates between hemibiotrophic and necrotrophic lifestyles, depending on initial spore density and distribution on the leaf surface. Untargeted metabolome analysis revealed profound differences in metabolic defense signatures upon different inoculation methods. Quantification of JA and SA, marker gene expression, and cell death confirmed that infection from high spore densities activates JA-dependent defenses with excessive cell death, while infection from low spore densities induces SA-dependent defenses with lower levels of cell death. Phenotyping of Arabidopsis mutants in JA, SA, and ROS signaling confirmed that P. cucumerina is differentially resisted by JA- and SA/ROS-dependent defenses, depending on initial spore density and distribution on the leaf. Furthermore, in situ staining for early callose deposition at the infection sites revealed that necrotrophy by P. cucumerina is associated with elevated host defense. We conclude that P. cucumerina adapts to early-acting plant defenses by switching from a hemibiotrophic to a necrotrophic infection program, thereby gaining an advantage of immunity-related cell death in the host.Plant pathogens are often classified as necrotrophic or biotrophic, depending on their infection strategy (Glazebrook, 2005; Nishimura and Dangl, 2010). Necrotrophic pathogens kill living host cells and use the decayed plant tissue as a substrate to colonize the plant, whereas biotrophic pathogens parasitize living plant cells by employing effector molecules that suppress the host immune system (Pel and Pieterse, 2013). Despite this binary classification, the majority of pathogenic microbes employ a hemibiotrophic infection strategy, which is characterized by an initial biotrophic phase followed by a necrotrophic infection strategy at later stages of infection (Perfect and Green, 2001). The pathogenic fungi Magnaporthe grisea, Sclerotinia sclerotiorum, and Mycosphaerella graminicola, the oomycete Phytophthora infestans, and the bacterial pathogen Pseudomonas syringae are examples of hemibiotrophic plant pathogens (Perfect and Green, 2001; Koeck et al., 2011; van Kan et al., 2014; Kabbage et al., 2015).Despite considerable progress in our understanding of plant resistance to necrotrophic and biotrophic pathogens (Glazebrook, 2005; Mengiste, 2012; Lai and Mengiste, 2013), recent debate highlights the dynamic and complex interplay between plant-pathogenic microbes and their hosts, which is raising concerns about the use of infection strategies as a static tool to classify plant pathogens. For instance, the fungal genus Botrytis is often labeled as an archetypal necrotroph, even though there is evidence that it can behave as an endophytic fungus with a biotrophic lifestyle (van Kan et al., 2014). The rice blast fungus Magnaporthe oryzae, which is often classified as a hemibiotrophic leaf pathogen (Perfect and Green, 2001; Koeck et al., 2011), can adopt a purely biotrophic lifestyle when infecting root tissues (Marcel et al., 2010). It remains unclear which signals are responsible for the switch from biotrophy to necrotrophy and whether these signals rely solely on the physiological state of the pathogen, or whether host-derived signals play a role as well (Kabbage et al., 2015).The plant hormones salicylic acid (SA) and jasmonic acid (JA) play a central role in the activation of plant defenses (Glazebrook, 2005; Pieterse et al., 2009, 2012). The first evidence that biotrophic and necrotrophic pathogens are resisted by different immune responses came from Thomma et al. (1998), who demonstrated that Arabidopsis (Arabidopsis thaliana) genotypes impaired in SA signaling show enhanced susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis (formerly known as Peronospora parastitica), while JA-insensitive genotypes were more susceptible to the necrotrophic fungus Alternaria brassicicola. In subsequent years, the differential effectiveness of SA- and JA-dependent defense mechanisms has been confirmed in different plant-pathogen interactions, while additional plant hormones, such as ethylene, abscisic acid (ABA), auxins, and cytokinins, have emerged as regulators of SA- and JA-dependent defenses (Bari and Jones, 2009; Cao et al., 2011; Pieterse et al., 2012). Moreover, SA- and JA-dependent defense pathways have been shown to act antagonistically on each other, which allows plants to prioritize an appropriate defense response to attack by biotrophic pathogens, necrotrophic pathogens, or herbivores (Koornneef and Pieterse, 2008; Pieterse et al., 2009; Verhage et al., 2010).In addition to plant hormones, reactive oxygen species (ROS) play an important regulatory role in plant defenses (Torres et al., 2006; Lehmann et al., 2015). Within minutes after the perception of pathogen-associated molecular patterns, NADPH oxidases and apoplastic peroxidases generate early ROS bursts (Torres et al., 2002; Daudi et al., 2012; O’Brien et al., 2012), which activate downstream defense signaling cascades (Apel and Hirt, 2004; Torres et al., 2006; Miller et al., 2009; Mittler et al., 2011; Lehmann et al., 2015). ROS play an important regulatory role in the deposition of callose (Luna et al., 2011; Pastor et al., 2013) and can also stimulate SA-dependent defenses (Chaouch et al., 2010; Yun and Chen, 2011; Wang et al., 2014; Mammarella et al., 2015). However, the spread of SA-induced apoptosis during hyperstimulation of the plant immune system is contained by the ROS-generating NADPH oxidase RBOHD (Torres et al., 2005), presumably to allow for the sufficient generation of SA-dependent defense signals from living cells that are adjacent to apoptotic cells. Nitric oxide (NO) plays an additional role in the regulation of SA/ROS-dependent defense (Trapet et al., 2015). This gaseous molecule can stimulate ROS production and cell death in the absence of SA while preventing excessive ROS production at high cellular SA levels via S-nitrosylation of RBOHD (Yun et al., 2011). Recently, it was shown that pathogen-induced accumulation of NO and ROS promotes the production of azelaic acid, a lipid derivative that primes distal plants for SA-dependent defenses (Wang et al., 2014). Hence, NO, ROS, and SA are intertwined in a complex regulatory network to mount local and systemic resistance against biotrophic pathogens. Interestingly, pathogens with a necrotrophic lifestyle can benefit from ROS/SA-dependent defenses and associated cell death (Govrin and Levine, 2000). For instance, Kabbage et al. (2013) demonstrated that S. sclerotiorum utilizes oxalic acid to repress oxidative defense signaling during initial biotrophic colonization, but it stimulates apoptosis at later stages to advance necrotrophic colonization. Moreover, SA-induced repression of JA-dependent resistance not only benefits necrotrophic pathogens but also hemibiotrophic pathogens after having switched from biotrophy to necrotrophy (Glazebrook, 2005; Pieterse et al., 2009, 2012).Plectosphaerella cucumerina ((P. cucumerina, anamorph Plectosporum tabacinum) anamorph Plectosporum tabacinum) is a filamentous ascomycete fungus that can survive saprophytically in soil by decomposing plant material (Palm et al., 1995). The fungus can cause sudden death and blight disease in a variety of crops (Chen et al., 1999; Harrington et al., 2000). Because P. cucumerina can infect Arabidopsis leaves, the P. cucumerina-Arabidopsis interaction has emerged as a popular model system in which to study plant defense reactions to necrotrophic fungi (Berrocal-Lobo et al., 2002; Ton and Mauch-Mani, 2004; Carlucci et al., 2012; Ramos et al., 2013). Various studies have shown that Arabidopsis deploys a wide range of inducible defense strategies against P. cucumerina, including JA-, SA-, ABA-, and auxin-dependent defenses, glucosinolates (Tierens et al., 2001; Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014), callose deposition (García-Andrade et al., 2011; Gamir et al., 2012, 2014; Sánchez-Vallet et al., 2012), and ROS (Tierens et al., 2002; Sánchez-Vallet et al., 2010; Barna et al., 2012; Gamir et al., 2012, 2014; Pastor et al., 2014). Recent metabolomics studies have revealed large-scale metabolic changes in P. cucumerina-infected Arabidopsis, presumably to mobilize chemical defenses (Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014). Furthermore, various chemical agents have been reported to induce resistance against P. cucumerina. These chemicals include β-amino-butyric acid, which primes callose deposition and SA-dependent defenses, benzothiadiazole (BTH or Bion; Görlach et al., 1996; Ton and Mauch-Mani, 2004), which activates SA-related defenses (Lawton et al., 1996; Ton and Mauch-Mani, 2004; Gamir et al., 2014; Luna et al., 2014), JA (Ton and Mauch-Mani, 2004), and ABA, which primes ROS and callose deposition (Ton and Mauch-Mani, 2004; Pastor et al., 2013). However, among all these studies, there is increasing controversy about the exact signaling pathways and defense responses contributing to plant resistance against P. cucumerina. While it is clear that JA and ethylene contribute to basal resistance against the fungus, the exact roles of SA, ABA, and ROS in P. cucumerina resistance vary between studies (Thomma et al., 1998; Ton and Mauch-Mani, 2004; Sánchez-Vallet et al., 2012; Gamir et al., 2014).This study is based on the observation that the disease phenotype during P. cucumerina infection differs according to the inoculation method used. We provide evidence that the fungus follows a hemibiotrophic infection strategy when infecting from relatively low spore densities on the leaf surface. By contrast, when challenged by localized host defense to relatively high spore densities, the fungus switches to a necrotrophic infection program. Our study has uncovered a novel strategy by which plant-pathogenic fungi can take advantage of the early immune response in the host plant.  相似文献   

4.
Starch is a biologically and commercially important polymer of glucose and is synthesized to form starch grains (SGs) inside amyloplasts. Cereal endosperm accumulates starch to levels that are more than 90% of the total weight, and most of the intracellular space is occupied by SGs. The size of SGs differs depending on the plant species and is one of the most important factors for industrial applications of starch. However, the molecular machinery that regulates the size of SGs is unknown. In this study, we report a novel rice (Oryza sativa) mutant called substandard starch grain4 (ssg4) that develops enlarged SGs in the endosperm. Enlargement of SGs in ssg4 was also observed in other starch-accumulating tissues such as pollen grains, root caps, and young pericarps. The SSG4 gene was identified by map-based cloning. SSG4 encodes a protein that contains 2,135 amino acid residues and an amino-terminal amyloplast-targeted sequence. SSG4 contains a domain of unknown function490 that is conserved from bacteria to higher plants. Domain of unknown function490-containing proteins with lengths greater than 2,000 amino acid residues are predominant in photosynthetic organisms such as cyanobacteria and higher plants but are minor in proteobacteria. The results of this study suggest that SSG4 is a novel protein that influences the size of SGs. SSG4 will be a useful molecular tool for future starch breeding and biotechnology.Plastids originated from the endosymbiosis of cyanobacteria and can differentiate into several forms depending on their intracellular functions during the plant life cycle (Sakamoto et al., 2008). The amyloplast is a terminally differentiated plastid responsible for starch synthesis and storage. Starch forms insoluble particles in amyloplasts, referred to as starch grains (SGs). SGs are easily visualized by staining with iodine solution, and they can be observed using a light microscope. SGs are observed in storage organs such as seed endosperm, potato (Solanum tuberosum) tubers, and pollen grains. Nonstorage tissues such as endodermis and root caps also contain SGs (Morita, 2010).Cereal endosperm accumulates high levels of starch in amyloplasts. The volume of SGs is approximately the same as the volume of amyloplasts that fill most of the intracellular space. SGs in rice (Oryza sativa) endosperm are normally 10 to 20 μm in diameter (Matsushima et al., 2010). One amyloplast contains a single SG that is assembled of several dozen smaller starch granules. Each starch granule is a sharp-edged polyhedron with a typical diameter of 3 to 8 μm. This type of SG is called a compound SG (Tateoka, 1962). For compound SGs, starch granules are assembled (but not fused) to form a single SG, which is easily separated by conventional purification procedures. By contrast, simple SGs contain a single starch granule. Simple SGs are produced in several important crops, such as maize (Zea mays), sorghum (Sorghum bicolor), barley (Hordeum vulgare), and wheat (Triticum aestivum; Tateoka, 1962; Matsushima et al., 2010, 2013).The size of SGs in cereal endosperm is diverse. Maize and sorghum SGs have a uniform size distribution of approximately 10 μm in diameter (Jane et al., 1994; Matsushima et al., 2010; Ai et al., 2011). In barley and wheat, SGs of two discrete size classes (approximately 15−25 μm and less than 10 μm) coexist in the same cells (Evers, 1973; French, 1984; Jane et al., 1994; Matsushima et al., 2010). In Bromus species, intrageneric size variations of SGs are observed in which even phylogenetic neighbors develop distinctly sized SGs (Matsushima et al., 2013). The size of SGs can be controlled by manipulating the activity of starch synthetic enzymes using transgenic plants or genetic mutants (Gutiérrez et al., 2002; Bustos et al., 2004; Ji et al., 2004; Stahl et al., 2004; Matsushima et al., 2010). However, the molecular mechanism that controls the interspecific size variations of SGs has not been resolved.The SG occupies most of the amyloplast interior, because the SG is approximately the same size as the amyloplast. The size of amyloplasts may affect the size of SGs, or vice versa. Amyloplasts and chloroplasts both develop from proplastids. The size of chloroplasts is controlled by the chloroplast binary fission division machinery, especially by the ring structures that form at the division sites (Miyagishima, 2011). Proteins involved in the ring structures have been isolated, including Filamenting temperature-sensitive mutantZ (FtsZ), Minicell locusD (MinD), MinE, and ACCUMULATION AND REPLICATIONS OF CHLOROPLAST5 (ARC5). Arabidopsis (Arabidopsis thaliana) mutants that are defective in these proteins have defects in chloroplast division and contain enlarged and dumbbell-shaped chloroplasts. In contrast to the binary fission of chloroplasts, amyloplasts divide at multiple sites and generate a beads-on-a-string structure (Yun and Kawagoe, 2009). The inhibition of the chloroplast division machinery does not result in enlarged amyloplasts (Yun and Kawagoe, 2009).We recently developed a rapid method to prepare thin sections of endosperm (Matsushima et al., 2010). Using this method, SGs in mature endosperm can be easily and clearly observed. We performed genetic screening for rice mutants defective in SG morphology and size. One of the isolated mutants, substandard starch grain4 (ssg4), develops enlarged SGs in its endosperm. In this study, we characterized ssg4 phenotypes and identified the responsible gene. SSG4 encodes a protein containing 2,135 amino acid residues and an N-terminal plastid-targeted sequence. The domain of unknown function 490 (DUF490) was found at the C terminus of SSG4, where the ssg4 mutation was located. This suggests that SSG4 is a novel factor that influences the size of SGs and has potential as a molecular tool for starch breeding and biotechnology.  相似文献   

5.
6.
Gene duplications are an important factor in plant evolution, and lineage-specific expanded (LSE) genes are of particular interest. Receptor-like kinases expanded massively in land plants, and leucine-rich repeat receptor-like kinases (LRR-RLK) constitute the largest receptor-like kinases family. Based on the phylogeny of 7,554 LRR-RLK genes from 31 fully sequenced flowering plant genomes, the complex evolutionary dynamics of this family was characterized in depth. We studied the involvement of selection during the expansion of this family among angiosperms. LRR-RLK subgroups harbor extremely contrasting rates of duplication, retention, or loss, and LSE copies are predominantly found in subgroups involved in environmental interactions. Expansion rates also differ significantly depending on the time when rounds of expansion or loss occurred on the angiosperm phylogenetic tree. Finally, using a dN/dS-based test in a phylogenetic framework, we searched for selection footprints on LSE and single-copy LRR-RLK genes. Selective constraint appeared to be globally relaxed at LSE genes, and codons under positive selection were detected in 50% of them. Moreover, the leucine-rich repeat domains, and specifically four amino acids in them, were found to be the main targets of positive selection. Here, we provide an extensive overview of the expansion and evolution of this very large gene family.Receptor-like kinases (RLKs) constitute one of the largest gene families in plants and expanded massively in land plants (Embryophyta; Lehti-Shiu et al., 2009, 2012). For plant RLK gene families, the functions of most members are often not known (especially in recently expanded families), but some described functions include innate immunity (Albert et al., 2010), pathogen response (Dodds and Rathjen, 2010), abiotic stress (Yang et al., 2010), development (De Smet et al., 2009), and sometimes multiple functions (Lehti-Shiu et al., 2012). The RLKs usually consist of three domains: an N-terminal extracellular domain, a transmembrane domain, and a C-terminal kinase domain (KD). In plants, the KD usually has a Ser/Thr specificity (Shiu and Bleecker, 2001), but Tyr-specific RLKs were also described (e.g. BRASSINOSTEROID INSENSITIVE1; Oh et al., 2009). Interestingly, it was estimated that approximately 20% of RLKs contain a catalytically inactive KD (e.g. STRUBBELIG and CORYNE; Chevalier et al., 2005; Castells and Casacuberta, 2007; Gish and Clark, 2011). In Arabidopsis (Arabidopsis thaliana), 44 RLK subgroups (SGs) were defined by inferring the phylogenetic relationships between the KDs (Shiu and Bleecker, 2001). Interestingly, different SGs show different duplication/retention rates (Lehti-Shiu et al., 2009). Specifically, RLKs involved in stress responses show a high number of tandemly duplicated genes whereas those involved in development do not (Shiu et al., 2004), which suggests that some RLK genes are important for the responses of land plants to a changing environment (Lehti-Shiu et al., 2012). There seem to be relatively few RLK pseudogenes compared with other large gene families, and copy retention was argued to be driven by both drift and selection (Zou et al., 2009; Lehti-Shiu et al., 2012). As most SGs are relatively old and RLK subfamilies expanded independently in several plant lineages, duplicate retention cannot be explained by drift alone, and natural selection is expected to be an important driving factor in RLK gene family retention (Lehti-Shiu et al., 2009).Leucine-rich repeat-receptor-like kinases (LRR-RLKs), which contain up to 30 leucine-rich repeat (LRRs) in their extracellular domain, constitute the largest RLK family (Shiu and Bleecker, 2001). Based on the KD, 15 LRR-RLK SGs have been established in Arabidopsis (Shiu et al., 2004; Lehti-Shiu et al., 2009). So far, two major functions have been attributed to them: defense against pathogens and development (Tang et al., 2010b). LRR-RLKs involved in defense are predominantly found in lineage-specific expanded (LSE) gene clusters, whereas LRR-RLKs involved in development are mostly found in nonexpanded groups (Tang et al., 2010b). It was also discovered that the LRR domains are significantly less conserved than the remaining domains of the LRR-RLK genes (Tang et al., 2010b). In addition, a study of four plant genomes (Arabidopsis, grape [Vitis vinifera], poplar [Populus trichocarpa], and rice [Oryza sativa]) showed that LRR-RLK genes from LSE gene clusters show significantly more indications of positive selection or relaxed constraint than LRR-RLKs from nonexpanded groups (Tang et al., 2010b).The genomes of flowering plants (angiosperms) have been shown to be highly dynamic compared with most other groups of land plants (Leitch and Leitch, 2012). This dynamic is mostly caused by the frequent multiplication of genetic material, followed by a complex pattern of differential losses (i.e. the fragmentation process) and chromosomal rearrangements (Langham et al., 2004; Leitch and Leitch, 2012). Most angiosperm genomes sequenced so far show evidence for at least one whole-genome multiplication event during their evolution (Jaillon et al., 2007; D’Hont et al., 2012; Tomato Genome Consortium, 2012). At a smaller scale, tandem and segmental duplications are also very common in angiosperms (Arabidopsis Genome Initiative, 2000; International Rice Genome Sequencing Project, 2005; Rizzon et al., 2006). Although the most common fate of duplicated genes is to be progressively lost, in some cases they can be retained in the genome, and adaptive as well as nonadaptive scenarios have been discussed to play a role in this preservation process (for review, see Moore and Purugganan, 2005; Hahn, 2009; Innan, 2009; Innan and Kondrashov, 2010). Whole-genome sequences also revealed that the same gene may undergo several rounds of duplication and retention. These LSE genes were shown to evolve under positive selection more frequently than single-copy genes in angiosperms (Fischer et al., 2014). That study analyzed general trends over whole genomes. Here, we ask if, and to what extent, this trend is observable at LRR-RLK genes. As this gene family is very dynamic and large, and in accordance with the results of Tang et al. (2010b), we expect the effect of positive selection to be even more pronounced than in the whole-genome average.We analyzed 33 Embryophyta genomes to investigate the evolutionary history of the LRR-RLK gene family in a phylogenetic framework. Twenty LRR-RLK SGs were identified, and from this data set, we deciphered the evolutionary dynamics of this family within angiosperms. The expansion/reduction rates were contrasted between SGs and species as well as in ancestral branches of the angiosperm phylogeny. We then focused on genes whose number increased dramatically in an SG- and/or species-specific manner (i.e. LSE genes). Those genes are likely to be involved in species-specific cellular processes or adaptive interactions and were used as a template to infer the potential occurrence of positive selection. This led to the identification of sites at which positive selection likely acted. We discuss our results in the light of angiosperm genome evolution and current knowledge of LRR-RLK functions. Positive selection footprints identified in LSE genes highlight the importance of combining evolutionary analysis and functional knowledge to guide further investigations.  相似文献   

7.
We have established an efficient transient expression system with several vacuolar reporters to study the roles of endosomal sorting complex required for transport (ESCRT)-III subunits in regulating the formation of intraluminal vesicles of prevacuolar compartments (PVCs)/multivesicular bodies (MVBs) in plant cells. By measuring the distributions of reporters on/within the membrane of PVC/MVB or tonoplast, we have identified dominant negative mutants of ESCRT-III subunits that affect membrane protein degradation from both secretory and endocytic pathways. In addition, induced expression of these mutants resulted in reduction in luminal vesicles of PVC/MVB, along with increased detection of membrane-attaching vesicles inside the PVC/MVB. Transgenic Arabidopsis (Arabidopsis thaliana) plants with induced expression of ESCRT-III dominant negative mutants also displayed severe cotyledon developmental defects with reduced cell size, loss of the central vacuole, and abnormal chloroplast development in mesophyll cells, pointing out an essential role of the ESCRT-III complex in postembryonic development in plants. Finally, membrane dissociation of ESCRT-III components is important for their biological functions and is regulated by direct interaction among Vacuolar Protein Sorting-Associated Protein20-1 (VPS20.1), Sucrose Nonfermenting7-1, VPS2.1, and the adenosine triphosphatase VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1.Endomembrane trafficking in plant cells is complicated such that secretory, endocytic, and recycling pathways are usually integrated with each other at the post-Golgi compartments, among which, the trans-Golgi network (TGN) and prevacuolar compartment (PVC)/multivesicular body (MVB) are best studied (Tse et al., 2004; Lam et al., 2007a, 2007b; Müller et al., 2007; Foresti and Denecke, 2008; Hwang, 2008; Otegui and Spitzer, 2008; Robinson et al., 2008; Richter et al., 2009; Ding et al., 2012; Gao et al., 2014). Following the endocytic trafficking of a lipophilic dye, FM4-64, the TGN and PVC/MVB are sequentially labeled and thus are defined as the early and late endosome, respectively, in plant cells (Lam et al., 2007a; Chow et al., 2008). While the TGN is a tubular vesicular-like structure that may include several different microdomains and fit its biological function as a sorting station (Chow et al., 2008; Kang et al., 2011), the PVC/MVB is 200 to 500 nm in size with multiple luminal vesicles of approximately 40 nm (Tse et al., 2004). Membrane cargoes destined for degradation are sequestered into these tiny luminal vesicles and delivered to the lumen of the lytic vacuole (LV) via direct fusion between the PVC/MVB and the LV (Spitzer et al., 2009; Viotti et al., 2010; Cai et al., 2012). Therefore, the PVC/MVB functions between the TGN and LV as an intermediate organelle and decides the fate of membrane cargoes in the LV.In yeast (Saccharomyces cerevisiae), carboxypeptidase S (CPS) is synthesized as a type II integral membrane protein and sorted from the Golgi to the lumen of the vacuole (Spormann et al., 1992). Genetic analyses on the trafficking of CPS have led to the identification of approximately 17 class E genes (Piper et al., 1995; Babst et al., 1997, 2002a, 2002b; Odorizzi et al., 1998; Katzmann et al., 2001) that constitute the core endosomal sorting complex required for transport (ESCRT) machinery. The evolutionarily conserved ESCRT complex consists of several functionally different subcomplexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III and the ESCRT-III-associated/Vacuolar Protein Sorting4 (VPS4) complex. Together, they form a complex protein-protein interaction network that coordinates sorting of cargoes and inward budding of the membrane on the MVB (Hurley and Hanson, 2010; Henne et al., 2011). Cargo proteins carrying ubiquitin signals are thought to be passed from one ESCRT subcomplex to the next, starting with their recognition by ESCRT-0 (Bilodeau et al., 2002, 2003; Hislop and von Zastrow, 2011; Le Bras et al., 2011; Shields and Piper, 2011; Urbé, 2011). ESCRT-0 recruits the ESCRT-I complex, a heterotetramer of VPS23, VPS28, VPS37, and MVB12, from the cytosol to the endosomal membrane (Katzmann et al., 2001, 2003). The C terminus of VPS28 interacts with the N terminus of VPS36, a member of the ESCRT-II complex (Kostelansky et al., 2006; Teo et al., 2006). Then, cargoes passed from ESCRT-I and ESCRT-II are concentrated in certain membrane domains of the endosome by ESCRT-III, which includes four coiled-coil proteins and is sufficient to induce the membrane invagination (Babst et al., 2002b; Saksena et al., 2009; Wollert et al., 2009). Finally, the ESCRT components are disassociated from the membrane by the adenosine triphosphatase (ATPase) associated with diverse cellular activities (AAA) VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1 (SKD1) before releasing the internal vesicles (Babst et al., 1997, 1998).Putative homologs of ESCRT-I–ESCRT-III and ESCRT-III-associated components have been identified in plants, except for ESCRT-0, which is only present in Opisthokonta (Winter and Hauser, 2006; Leung et al., 2008; Schellmann and Pimpl, 2009). To date, only a few plant ESCRT components have been studied in detail. The Arabidopsis (Arabidopsis thaliana) AAA ATPase SKD1 localized to the PVC/MVB and showed ATPase activity that was regulated by Lysosomal Trafficking Regulator-Interacting Protein5, a plant homolog of Vps Twenty Associated1 Protein (Haas et al., 2007). Expression of the dominant negative form of SKD1 caused an increase in the size of the MVB and a reduction in the number of internal vesicles (Haas et al., 2007). This protein also contributes to the maintenance of the central vacuole and might be associated with cell cycle regulation, as leaf trichomes expressing its dominant negative mutant form lost the central vacuole and frequently contained multiple nuclei (Shahriari et al., 2010). Double null mutants of CHARGED MULTIVESICULAR BODY PROTEIN, chmp1achmp1b, displayed severe growth defects and were seedling lethal. This may be due to the mislocalization of plasma membrane (PM) proteins, including those involved in auxin transport such as PINFORMED1, PINFORMED2, and AUXIN-RESISTANT1, from the vacuolar degradation pathway to the tonoplast of the LV (Spitzer et al., 2009).Plant ESCRT components usually contain several homologs, with the possibility of functional redundancy. Single mutants of individual ESCRT components may not result in an obvious phenotype, whereas knockout of all homologs of an ESCRT component by generating double or triple mutants may be lethal to the plant. As a first step to carry out systematic analysis on each ESCRT complex in plant cells, here, we established an efficient analysis system to monitor the localization changes of four vacuolar reporters that accumulate either in the lumen (LRR84A-GFP, EMP12-GFP, and aleurain-GFP) or on the tonoplast (GFP-VIT1) of the LV and identified several ESCRT-III dominant negative mutants. We reported that ESCRT-III subunits were involved in the release of PVC/MVB’s internal vesicles from the limiting membrane and were required for membrane protein degradation from secretory and endocytic pathways. In addition, transgenic Arabidopsis plants with induced expression of ESCRT-III dominant negative mutants showed severe cotyledon developmental defects. We also showed that membrane dissociation of ESCRT-III subunits was regulated by direct interaction with SKD1.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
In plants, K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) is the largest potassium (K) transporter family; however, few of the members have had their physiological functions characterized in planta. Here, we studied OsHAK5 of the KT/HAK/KUP family in rice (Oryza sativa). We determined its cellular and tissue localization and analyzed its functions in rice using both OsHAK5 knockout mutants and overexpression lines in three genetic backgrounds. A β-glucuronidase reporter driven by the OsHAK5 native promoter indicated OsHAK5 expression in various tissue organs from root to seed, abundantly in root epidermis and stele, the vascular tissues, and mesophyll cells. Net K influx rate in roots and K transport from roots to aerial parts were severely impaired by OsHAK5 knockout but increased by OsHAK5 overexpression in 0.1 and 0.3 mm K external solution. The contribution of OsHAK5 to K mobilization within the rice plant was confirmed further by the change of K concentration in the xylem sap and K distribution in the transgenic lines when K was removed completely from the external solution. Overexpression of OsHAK5 increased the K-sodium concentration ratio in the shoots and salt stress tolerance (shoot growth), while knockout of OsHAK5 decreased the K-sodium concentration ratio in the shoots, resulting in sensitivity to salt stress. Taken together, these results demonstrate that OsHAK5 plays a major role in K acquisition by roots faced with low external K and in K upward transport from roots to shoots in K-deficient rice plants.Potassium (K) is one of the three most important macronutrients and the most abundant cation in plants. As a major osmoticum in the vacuole, K drives the generation of turgor pressure, enabling cell expansion. In the vascular tissue, K is an important participant in the generation of root pressure (for review, see Wegner, 2014 [including his new hypothesis]). In the phloem, K is critical for the transport of photoassimilates from source to sink (Marschner, 1996; Deeken et al., 2002; Gajdanowicz et al., 2011). In addition, enhancing K absorption and decreasing sodium (Na) accumulation is a major strategy of glycophytes in salt stress tolerance (Maathuis and Amtmann, 1999; Munns and Tester, 2008; Shabala and Cuin, 2008).Plants acquire K through K-permeable proteins at the root surface. Since available K concentration in the soil may vary by 100-fold, plants have developed multiple K uptake systems for adapting to this variability (Epstein et al., 1963; Grabov, 2007; Maathuis, 2009). In a classic K uptake experiment in barley (Hordeum vulgare), root K absorption has been described as a high-affinity and low-affinity biphasic transport process (Epstein et al., 1963). It is generally assumed that the low-affinity transport system (LATS) in the roots mediates K uptake in the millimolar range and that the activity of this system is insensitive to external K concentration (Maathuis and Sanders, 1997; Chérel et al., 2014). In contrast, the high-affinity transport system (HATS) was rapidly up-regulated when the supply of exogenous K was halted (Glass, 1976; Glass and Dunlop, 1978).The membrane transporters for K flux identified in plants are generally classified into three channels and three transporter families based on phylogenetic analysis (Mäser et al., 2001; Véry and Sentenac, 2003; Lebaudy et al., 2007; Alemán et al., 2011). For K uptake, it was predicted that, under most circumstances, K transporters function as HATS, while K-permeable channels mediate LATS (Maathuis and Sanders, 1997). However, a root-expressed K channel in Arabidopsis (Arabidopsis thaliana), Arabidopsis K Transporter1 (AKT1), mediates K absorption over a wide range of external K concentrations (Sentenac et al., 1992; Lagarde et al., 1996; Hirsch et al., 1998; Spalding et al., 1999), while evidence is accumulating that many K transporters, including members of the K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) family, are low-affinity K transporters (Quintero and Blatt, 1997; Senn et al., 2001), implying that functions of plant K channels and transporters overlap at different K concentration ranges.Out of the three families of K transporters, cation proton antiporter (CPA), high affinity K/Na transporter (HKT), and KT/HAK/KUP, CPA was characterized as a K+(Na+)/H+ antiporter, HKT may cotransport Na and K or transport Na only (Rubio et al., 1995; Uozumi et al., 2000), while KT/HAK/KUP were predicted to be H+-coupled K+ symporters (Mäser et al., 2001; Lebaudy et al., 2007). KT/HAK/KUP were named by different researchers who first identified and cloned them (Quintero and Blatt, 1997; Santa-María et al., 1997). In plants, the KT/HAK/KUP family is the largest K transporter family, including 13 members in Arabidopsis and 27 members in the rice (Oryza sativa) genome (Rubio et al., 2000; Mäser et al., 2001; Bañuelos et al., 2002; Gupta et al., 2008). Sequence alignments show that genes of this family share relatively low homology to each other. The KT/HAK/KUP family was divided into four major clusters (Rubio et al., 2000; Gupta et al., 2008), and in cluster I and II, they were further separated into A and B groups. Genes of cluster I or II likely exist in all plants, cluster III is composed of genes from both Arabidopsis and rice, while cluster IV includes only four rice genes (Grabov, 2007; Gupta et al., 2008).The functions of KT/HAK/KUP were studied mostly in heterologous expression systems. Transporters of cluster I, such as AtHAK5, HvHAK1, OsHAK1, and OsHAK5, are localized in the plasma membrane (Kim et al., 1998; Bañuelos et al., 2002; Gierth et al., 2005) and exhibit high-affinity K uptake in the yeast Saccharomyces cerevisiae (Santa-María et al., 1997; Fu and Luan, 1998; Rubio et al., 2000) and in Escherichia coli (Horie et al., 2011). Transporters of cluster II, like AtKUP4 (TINY ROOT HAIRS1, TRH1), HvHAK2, OsHAK2, OsHAK7, and OsHAK10, could not complement the K uptake-deficient yeast (Saccharomyces cerevisiae) but were able to mediate K fluxes in a bacterial mutant; they might be tonoplast transporters (Senn et al., 2001; Bañuelos et al., 2002; Rodríguez-Navarro and Rubio, 2006). The function of transporters in clusters III and IV is even less known (Grabov, 2007).Existing data suggest that some KT/HAK/KUP transporters also may respond to salinity stress (Maathuis, 2009). The cluster I transporters of HvHAK1 mediate Na influx (Santa-María et al., 1997), while AtHAK5 expression is inhibited by Na (Rubio et al., 2000; Nieves-Cordones et al., 2010). Expression of OsHAK5 in tobacco (Nicotiana tabacum) BY2 cells enhanced the salt tolerance of these cells by accumulating more K without affecting their Na content (Horie et al., 2011).There are only scarce reports on the physiological function of KT/HAK/KUP in planta. In Arabidopsis, mutation of AtKUP2 (SHORT HYPOCOTYL3) resulted in a short hypocotyl, small leaves, and a short flowering stem (Elumalai et al., 2002), while a loss-of-function mutation of AtKUP4 (TRH1) resulted in short root hairs and a loss of gravity response in the root (Rigas et al., 2001; Desbrosses et al., 2003; Ahn et al., 2004). AtHAK5 is the only system currently known to mediate K uptake at concentrations below 0.01 mm (Rubio et al., 2010) and provides a cesium uptake pathway (Qi et al., 2008). AtHAK5 and AtAKT1 are the two major physiologically relevant molecular entities mediating K uptake into roots in the range between 0.01 and 0.05 mm (Pyo et al., 2010; Rubio et al., 2010). AtAKT1 may contribute to K uptake within the K concentrations that belong to the high-affinity system described by Epstein et al. (1963).Among all 27 members of the KT/HAK/KUP family in rice, OsHAK1, OsHAK5, OsHAK19, and OsHAK20 were grouped in cluster IB (Gupta et al., 2008). These four rice HAK members share 50.9% to 53.4% amino acid identity with AtHAK5. OsHAK1 was expressed in the whole plant, with maximum expression in roots, and was up-regulated by K deficiency; it mediated high-affinity K uptake in yeast (Bañuelos et al., 2002). In this study, we examined the tissue-specific localization and the physiological functions of OsHAK5 in response to variation in K supply and to salt stress in rice. By comparing K uptake and translocation in OsHAK5 knockout (KO) mutants and in OsHAK5-overexpressing lines with those in their respective wild-type lines supplied with different K concentrations, we found that OsHAK5 not only mediates high-affinity K acquisition but also participates in root-to-shoot K transport as well as in K-regulated salt tolerance.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号