首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nischarin, a novel intracellular protein, was originally identified as a binding partner for the alpha5beta1 integrin. Here we show that Nischarin also interacts with members of the PAK family of kinases. The amino terminus of Nischarin preferentially binds to the carboxy-terminal domain of PAK1 when the kinase is in its activated conformation. Nischarin binding to PAK1 is enhanced by active Rac, with the three proteins forming a complex, while expression of the alpha5beta1 integrin also increases the Nischarin/PAK1 association. Interaction with Nischarin strongly inhibits the ability of PAK1 to phosphorylate substrates. This effect on PAK kinase activity closely parallels Nischarin's ability to inhibit cell migration. Conversely, reduction of endogenous levels of Nischarin by RNA interference promotes cell migration. In addition, PAK1 and Nischarin colocalize in membrane ruffles, structures known to be involved in cell motility. Thus, Nischarin may regulate cell migration by forming inhibitory complexes with PAK family kinases.  相似文献   

2.
Nischarin regulates Rac1-dependent cell motility by interaction with and inhibition of the p21-activated kinase (PAK1). In addition to regulating the activation of PAK1, Rac1 controls multiple downstream pathways to regulate cell growth and differentiation, as well as cell motility. Signaling by a constitutively activated Rac1 mutant deficient in PAK binding (Rac1Q61L-40C) was examined to determine whether Nischarin impinges on these other Rac1 effector pathways. Nischarin formed immunoprecipitatable complexes with Rac1Q61L and Rac1Q61L-40C when the proteins were co-expressed. In NIH3T3 cells, Rac1Q61L and Rac1Q61L-40C stimulation of a minimal NF-kappaB response element or the cyclin D1 promoter, a downstream target of NF-kappaB, was inhibited by co-expression of Nischarin. Additionally, suppression of endogenous Nischarin protein with small interfering RNA in PC12 cells enhanced Rac1Q61L and Rac1Q61L-40C activation of NF-kappaB. In further support of Nischarin suppressing PAK independent Rac signaling, foci formation in monolayers of NIH3T3 cells by Rac1Q61L-40C in cooperation with c-Raf/CAAX was inhibited by the presence of Nischarin. Nischarin alters the cellular localization of Rac1Q61L and Rac1Q61L-40C to vesicles and this positively correlates with the repression of the Rac1 signal. Thus, Nischarin, in addition to regulating the PAK strand of Rac1 signaling, can also regulate other links in the web of Rac1 signaling pathways.  相似文献   

3.
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder, characterized by progressive microcephaly, growth retardation, immunodeficiency, and pre-disposition to tumor formation. To investigate the functions of the NBS gene product, NBS1, on neurons, PC12 cells overexpressing NBS1 and related mutants and primary cortical neuronal culture were used in the present study. Small interfering RNA (siRNA) was applied to repress the expression of endogenous Nbs1 in PC12 cells and primary cortical neurons. We demonstrated that overexpression of NBS1 increases cellular proliferation and decreases the apoptosis of PC12 cells in serum withdrawal and ionizing irradiation, through the activation of phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. Overexpression of NBS1 also decreases neurite elongation on PC12 cells under nerve growth factor stimulation. Transfection of NBS1-overexpressing PC12 cells with a dominant negative Akt mutant attenuates the neuroprotection and cellular proliferation effects of NBS1 while having no effect on neurite elongation. PC12 cells overexpressing NBS657del5 and NBS653 mutants, in which the major NBS1 protein in cells are truncated proteins, have decreased cellular proliferation, increased cell death, and decreased neurite elongation compared with those of control PC12 cells. Repression of Nbs1 by siRNA decreases the PI 3-kinase activity and Akt phosphorylation levels, and induces neurite elongation in PC12 cells even without nerve growth factor stimulation. Repression of Nbs1 by siRNA in primary cortical neurons also increased neurite elongation, but increased neuronal death. We conclude that NBS1 can regulate neuronal proliferation and neuroprotection via PI 3-kinase/Akt pathway while regulating neuronal differentiation in a different pathway. Excessive accumulation of truncated protein secondary to 657del5 mutation may be detrimental to neurons, leading to defective neuronal proliferation and differentiation.  相似文献   

4.
Valproate, an anticonvulsant drug used to treat bipolar disorder, was studied for its ability to promote neurogenesis from embryonic rat cortical or striatal primordial stem cells. Six days of valproate exposure increased by up to fivefold the number and percentage of tubulin beta III-immunopositive neurons, increased neurite outgrowth, and decreased by fivefold the number of astrocytes without changing the number of cells. Valproate also promoted neuronal differentiation in human fetal forebrain stem cell cultures. The neurogenic effects of valproate on rat stem cells exceeded those obtained with the neurotrophins brain-derived growth factor (BDNF) or NT-3, and slightly exceeded the effects obtained with another mood stabilizer, lithium. No effect was observed with carbamazepine. Most of the newly formed neurons were GABAergic, as shown by 10-fold increases in neurons that immunostained for GABA and the GABA-synthesizing enzyme GAD65/67. Double immunostaining for bromodeoxyuridine and tubulin beta III showed that valproate increased by four- to fivefold the proliferation of neuronal progenitors derived from rat stem cells and increased cyclin D2 expression. Valproate also regulated the expression of survival genes, Bad and Bcl-2, at different times of treatment. The expression of prostaglandin E synthase, analyzed by quantitative RT-PCR, was increased by ninefold as early as 6 h into treatment by valproate. The enhancement of GABAergic neuron numbers, neurite outgrowth, and phenotypic expression via increases in the neuronal differentiation of neural stem cell may contribute to the therapeutic effects of valproate in the treatment of bipolar disorder.  相似文献   

5.
6.
Wang TC  Chiu H  Chang YJ  Hsu TY  Chiu IM  Chen L 《PloS one》2011,6(10):e26433
SH2B adaptor protein family members (SH2B1-3) regulate various physiological responses through affecting signaling, gene expression, and cell adhesion. SH2B1 and SH2B2 were reported to enhance nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells, a well-established neuronal model system. In contrast, SH2B3 was reported to inhibit cell proliferation during the development of immune system. No study so far addresses the role of SH2B3 in the nervous system. In this study, we provide evidence suggesting that SH2B3 is expressed in the cortex of embryonic rat brain. Overexpression of SH2B3 not only inhibits NGF-induced differentiation of PC12 cells but also reduces neurite outgrowth of primary cortical neurons. SH2B3 does so by repressing NGF-induced activation of PLCγ, MEK-ERK1/2 and PI3K-AKT pathways and the expression of Egr-1. SH2B3 is capable of binding to phosphorylated NGF receptor, TrkA, as well as SH2B1β. Our data further demonstrate that overexpression of SH2B3 reduces the interaction between SH2B1β and TrkA. Consistent with this finding, overexpressing the SH2 domain of SH2B3 is sufficient to inhibit NGF-induced neurite outgrowth. Together, our data demonstrate that SH2B3, unlike the other two family members, inhibits neuronal differentiation of PC12 cells and primary cortical neurons. Its inhibitory mechanism is likely through the competition of TrkA binding with the positive-acting SH2B1 and SH2B2.  相似文献   

7.
Nischarin is a protein known to inhibit breast cancer cell motility by regulating the signaling of the Rho GTPase family. However, little is known about its location and function in the nervous system. The aim of the present study was to investigate the regional and cellular expression and functions of Nischarin in the adult rodent brain. As assessed by real-time PCR, Western blot analysis and immunostaining, we found that Nischarin was widely distributed throughout the brain, with a higher expression in the cerebral cortex and hippocampus. Double-labeling showed that Nischarin was expressed in neurons and was mainly located in the perinuclear region and F-actin-rich protrusions. The expression pattern of Nischarin in the brain was thought to be closely associated with its function. This was verified by our findings from cell migration assays that Nischarin regulated neuronal migration. These results provide a preliminary survey of the distribution of Nischarin in different regions and cell types in the rat brain. This might help to elucidate its physiological roles, and to evaluate its potential clinical implications.  相似文献   

8.
Zhang J  Abdel-Rahman AA 《FEBS letters》2006,580(13):3070-3074
Gene matching shows that Nischarin is a mouse homologue of human imidazoline receptor antisera-selective (IRAS) protein, a viable candidate of the imidazoline (I1) receptor. Nischarin and IRAS share the functions of enhancing cell survival, growth and migration. Bioinformatics modeling indicates that the IRAS and Nischarin may be transmembrane proteins and the convergence information raises the interesting possibility that Nischarin might serve as the I1-receptor. To test this hypothesis, we developed antibodies against the Nischarin protein, and conducted signal transduction (functional) studies with the I1-receptor agonist rilmenidine in the presence and absence of Nischarin antisense oligodeoxynucleotides (ODNs). NIH3T3 cells transfected with the Nischarin cDNA and incubated with the newly synthesized antibody expressed a 190 kD band. The antibody identified endogenous Nischarin in differentiated PC12 cells around 210 kD, which is consistent with reported findings in other cells of neuronal origin. The immunoflourescence findings showed the targeted protein to be associated with the cell membrane in PC12 cells. Nischarin ODNs abolished the expression of Nischarin in PC12 cells. Equally important, the Nischarin ODNs eliminated the production of MAPK(p42/44), a recognized signal transduction product generated by I1-receptor activation in differentiated PC12 cells. Together, the present findings suggest that Nischarin may serve as the functional I1-receptor or at least share a common signaling pathway in the differentiated PC12 cells.  相似文献   

9.
The novel Ras-like small GTPase Rin is expressed prominently in adult neurons, and binds calmodulin (CaM) through its COOH-terminal-binding motif. It might be involved in calcium/CaM-mediated neuronal signaling, but Rin-mediated signal transduction pathways have not yet been elucidated. Here, we show that expression of Rin induces neurite outgrowth without nerve growth factor or mitogen-activated protein kinase activation in rat pheochromocytoma PC12 cells. Rin-induced neurite outgrowth was markedly inhibited by coexpression with dominant negative Rac/Cdc42 protein or CaM inhibitor treatment. We also found that expression of Rin elevated the endogenous Rac/Cdc42 activity. Rin mutant proteins, in which the mutation disrupted association with CaM, failed to induce neurite outgrowth irrespective of Rac/Cdc42 activation. Disruption of endogenous Rin function inhibited the neurite outgrowth stimulated by forskolin and extracellular calcium entry through voltage-dependent calcium channel evoked by KCl. These findings suggest that Rin-mediated neurite outgrowth signaling requires not only endogenous Rac/Cdc42 activation but also Rin-CaM association, and that endogenous Rin is involved in calcium/CaM-mediated neuronal signaling pathways.  相似文献   

10.
Rho-family GTPases regulate cytoskeletal dynamics in various cell types. p21-activated kinase 1 (PAK1) is one of the downstream effectors of Rac and Cdc42 which has been implicated as a mediator of polarized cytoskeletal changes in fibroblasts. We show here that the extension of neurites induced by nerve growth factor (NGF) in the neuronal cell line PC12 is inhibited by dominant-negative Rac2 and Cdc42, indicating that these GTPases are required components of the NGF signaling pathway. While cytoplasmically expressed PAK1 constructs do not cause efficient neurite outgrowth from PC12 cells, targeting of these constructs to the plasma membrane via a C-terminal isoprenylation sequence induced PC12 cells to extend neurites similar to those stimulated by NGF. This effect was independent of PAK1 ser/thr kinase activity but was dependent on structural domains within both the N- and C-terminal portions of the molecule. Using these regions of PAK1 as dominant-negative inhibitors, we were able to effectively inhibit normal neurite outgrowth stimulated by NGF. Taken together with the requirement for Rac and Cdc42 in neurite outgrowth, these data suggest that PAK(s) may be acting downstream of these GTPases in a signaling system which drives polarized outgrowth of the actin cytoskeleton in the developing neurite.  相似文献   

11.
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions.  相似文献   

12.
Nischarin, a cytosolic protein that binds the alpha5beta1 integrin, plays an important role in fibroblast migration, and in regulation of the actin cytoskeleton. The effect of Nischarin on Rac induced migration and invasion by breast and colon epithelial cell lines has been determined. In these cells, Rac potently induced migration, as well as invasion of matrix; both of these events were strongly inhibited by overexpression of Nischarin. To understand the mechanism of Nischarin's inhibitory role in Rac induced cell migration, several effector domain mutants of Rac1 were employed. Nischarin was able to inhibit migration induced by Rac effector mutants that can activate PAK and JNK, but not migration stimulated by other Rac mutants. Further, Nischarin inhibited PAK induced cell migration, while not affecting migration induced by MEKK1, a Rac effector in the JNK pathway. In addition, Nischarin failed to inhibit migration induced by MEK1, a downstream effector in the Ras-Raf-MEK-Erk signaling cascade. Furthermore, Nischarin does not affect Rac mediated JNK and PI3K activities. However, Rac induced migration and invasion were effectively blocked by pharmacological inhibitors of PI-3 kinase and MEK. These results suggest that several pathways contribute to cell migration, but that Nischarin selectively inhibits Rac driven signaling cascades that affect migration through PAK.  相似文献   

13.
Transferrin receptor-1 (TfR1) is a cell membrane-associated glycoprotein responsible for incorporation of the iron bound to transferrin through an endocytotic process from the circulating blood. Iron is believed to play a dual role as an active center of the electron transfer system in mitochondria and as an endogenous cytotoxin through promoted generation of reactive oxygen species in different eukaryotic cells. In this study, we evaluated expression profiles of different genes related to iron mobilization across plasma membranes in neuronal cells. Marked mRNA expression was seen for various iron-related genes such as TfR1 in cultured mouse neocortical neurons, while TfR1 mRNA levels were more than doubled during culture from 3 to 6days. In mouse embryonal carcinoma P19 cells endowed to differentiate into neuronal and astroglial lineages, a transient increase was seen in both mRNA and corresponding protein for TfR1 in association with neuronal marker expression during culture with all-trans retinoic acid (ATRA). In neuronal Neuro2A cells cultured with ATRA, moreover, neurite was elongated together with increased expression of both mRNA and protein for TfR1. Overexpression of TfR1 significantly decreased the length of neurite elongated, however, while significant promotion was invariably seen in the neurite elongation in Neuro2A cells transfected with TfR1 siRNA as well as in Neuro2A cells cultured with an iron chelator. These results suggest that TfR1 would be highly expressed by neurons rather than astroglia to play a negative role in the neurite outgrowth after the incorporation of circulating transferrin in the brain.  相似文献   

14.
Histone deacetylase inhibitors (HDACi)—valproic acid (VPA) and trichostatin A (TSA) promote neurogenesis, neurite outgrowth, synaptic plasticity and neuroprotection. In this study, we investigated whether VPA and TSA promote post-ischemic neuroprotection and neuronal restoration in rat primary cortical neurons. On 6 days in vitro (DIV), cortical neurons were exposed to oxygen-glucose deprivation for 90 min. Cells were returned to normoxic conditions and cultured for 1, 3, or 7 days with or without VPA and TSA. Control cells were cultured in normoxic conditions only. On 7, 9, and 13 DIV, cells were measured neurite outgrowth using the Axiovision program and stained with Tunel staining kit. Microtubule associated protein-2 immunostaining and tunel staining showed significant recovery of neurite outgrowth and post-ischemic neuronal death by VPA or TSA treatment. We also determined levels of acetylated histone H3, PSD95, GAP 43 and synaptophysin. Significant increases in all three synaptic markers and acetylated histone H3 were observed relative to non-treated cells. Post-ischemic HDACi treatment also significantly raised levels of brain derived neurotrophic factor (BDNF) expression and secreted BDNF. Enhanced BDNF expression by HDACi treatment might have been involved in the post-ischemic neuroprotection and neuronal restorative effects. Our findings suggest that both VPA and TSA treatment during reoxygenation after ischemia may help post-ischemic neuroprotection and neuronal regeneration via increased BDNF expression and activation.  相似文献   

15.
The heparin-binding neurotrophic factor midkine (MK) has been proposed to mediate neuronal cell adhesion and neurite outgrowth promotion by interacting with cell-surface heparan sulfate. We have observed that over-sulfated chondroitin sulfate (CS) D and CS-E show neurite outgrowth-promoting activity in embryonic day (E) 18 rat hippocampal neurons (Nadanaka, S., Clement, A., Masayama, K., Faissner, A., and Sugahara, K. (1998) J. Biol. Chem. 273, 3296-3307). In the present study, various CS isoforms were examined for their ability to inhibit the MK-mediated cell adhesion of cortical neuronal cells in comparison with heparin from porcine intestine and heparan sulfate from bovine kidney. E17-18 rat cortical neuronal cells were cultured on plates coated with recombinant MK in a grid pattern. The cells attached to and extended their neurites along the MK substratum. Cell adhesion was inhibited by squid cartilage over-sulfated CS-E as well as by heparin, but not by heparan sulfate or other CS isoforms. Direct interactions of MK with various glycosaminoglycans were then evaluated using surface plasmon resonance, showing that CS-E bound MK as strongly as heparin, followed by other over-sulfated CS isoforms, CS-H and CS-K. Furthermore, E18 rat brain extracts showed an E disaccharide unit, GlcUAbeta1-3GalNAc(4,6-O-disulfate). These findings indicate that CS chains containing the E unit as well as heparin-like glycosaminoglycans may be involved in the expression and/or modulation of the multiple neuroregulatory functions of MK such as neuronal adhesion and migration and promotion of neurite outgrowth.  相似文献   

16.
17.
We previously showed that p21-activated kinase 2 (PAK2), a major PAK isoform expressed in PC12 cells, mediates neurite outgrowth via Rac1 GTPase. RhoGDI1 forms a complex with Rac1, resulting in its inhibition. Rac1 activation requires dissociation from RhoGDI1. Here, we show that PAK2 mediates basic fibroblast growth factor (bFGF)-stimulated neurite outgrowth via phosphorylation of RhoGDI1. RhoGDI1 was shown to be associated with PAK2, with phosphorylation of Ser34 and Ser101 by active PAK2 evident in vitro and in vivo. A RhoGDI1 phosphomimetic mutant (S34E/S101E) was dissociated from Rac1/Cdc42, whereas the wild-type or a nonphosphorylatable mutant (S34A/S101A) formed a tight complex. Consistent with this, PC12 cells expressing the phosphomimetic mutant displayed Rac1/Cdc42 activation in response to bFGF stimulation. Neurite outgrowth was also enhanced in PC12 cells expressing the phosphomimetic mutant. These results suggest that PAK2-mediated RhoGDI1 phosphorylation stimulates dissociation of RhoGDI1-Rac1/Cdc42 complex accompanied by relief of inhibitory effect on Rac1/Cdc42, which promotes neuronal differentiation.  相似文献   

18.
Hallmarks of neuronal differentiation are neurite sprouting, extension, and branching. We previously showed that increased expression of CTP:phosphocholine cytidylyltransferase beta2 (CTbeta2), an isoform of a key phosphatidylcholine (PC) biosynthetic enzyme, accompanies neurite outgrowth (Carter, J. M., Waite, K. A., Campenot, R. B., Vance, J. E., and Vance, D. E. (2003) J. Biol. Chem. 278, 44988-44994). CTbeta2 mRNA is highly expressed in the brain. We show that CTbeta2 is abundant in axons of rat sympathetic neurons and retinal ganglion cells. We used RNA silencing to decrease CTbeta2 expression in PC12 cells differentiated by nerve growth factor. In CTbeta2-silenced cells, numbers of primary and secondary neurites were markedly reduced, suggesting that CTbeta2 facilitates neurite outgrowth and branching. However, the length of individual neurites was significantly increased, and the total amount of neuronal membrane was unchanged. Neurite branching of PC12 cells is known to be inhibited by activation of Akt and promoted by the Akt inhibitor LY294002. Our experiments showed that LY294002 increases neurite sprouting and branching in control PC12 cells but not in CTbeta2-deficient cells. CTbeta2 was not phosphorylated in vitro by Akt. However, inhibition of Cdk5 by roscovitine blocked CTbeta2 phosphorylation and reduced neurite outgrowth and branching. These results highlight the importance of CTbeta2 in neurons for promoting neurite outgrowth and branching and represent the first identification of a lipid biosynthetic enzyme that facilitates these functions.  相似文献   

19.
Nischarin is a novel protein that regulates cell migration by inhibiting p21-activated kinase (PAK). LIM kinase (LIMK) is a downstream effector of PAK, and it is known to play an important role in cell invasion. Here we show that nischarin also associates with LIMK to inhibit LIMK activation, cofilin phosphorylation, and LIMK-mediated invasion of breast cancer cells, suggesting that nischarin regulates cell invasion by negative modulation of the LIMK/cofilin pathway. The amino terminus of nischarin binds to the PDZ and kinase domains of LIMK. Although LIMK activation enhances the interaction with nischarin, only phosphorylation of threonine 508 of LIMK is crucial for the interaction. Inhibition of endogenous nischarin expression by RNA interference stimulates breast cancer cell invasion. Also, nischarin small interfering RNA (siRNA) enhances cofilin phosphorylation. In addition, knock-down of nischarin showed branched projection actin structures. Collectively these data indicate that nischarin siRNA may enhance random migration, resulting in stimulation of invasion.  相似文献   

20.
Dab2ip (DOC-2/DAB2 interacting protein) is a member of the Ras GTPase-activating protein (GAP) family that has been previously shown to function as a tumor suppressor in several systems. Dab2ip is also highly expressed in the brain where it interacts with Dab1, a key mediator of the Reelin pathway that controls several aspects of brain development and function. We found that Dab2ip is highly expressed in the developing cerebral cortex, but that mutations in the Reelin signaling pathway do not affect its expression. To determine whether Dab2ip plays a role in brain development, we knocked down or over expressed it in neuronal progenitor cells of the embryonic mouse neocortex using in utero electroporation. Dab2ip down-regulation severely disrupts neuronal migration, affecting preferentially late-born principal cortical neurons. Dab2ip overexpression also leads to migration defects. Structure-function experiments in vivo further show that both PH and GRD domains of Dab2ip are important for neuronal migration. A detailed analysis of transfected neurons reveals that Dab2ip down- or up-regulation disrupts the transition from a multipolar to a bipolar neuronal morphology in the intermediate zone. Knock down of Dab2ip in neurons ex-vivo indicates that this protein is necessary for proper neurite development and for the expression of several major neuronal microtubule associated proteins (MAPs), which are important for neurite growth and stabilization. Thus, our study identifies, for the first time, a critical role for Dab2ip in mammalian cortical development and begins to reveal molecular mechanisms that underlie this function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号