首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A simple coarse-grained model of mucus structure and dynamics is proposed and evaluated. The model is based on simple cubic, face-centered lattice representation. Mucins are simulated as lattice chains in which each bead of the model chains represents a mucin domain, equivalent to its Kuhn segment. The remaining lattice sites are considered to be occupied by the solvent. Model mucins consist of three types of domains: polar (glycosylated central segments), hydrophobic, and cysteine-rich, located at the terminal part of the mucin chains. The sequence of these domains mimics the sequence of real mucins. Static and dynamic properties of the system were studied by means of Monte Carlo dynamics. It was shown that the model system undergoes sol-gel transition and that the interactions between hydrophobic domains are responsible for the transition and characteristic properties of the dynamic network in the gel phase. Cysteine-rich domains are essential for frictional properties of the system. Structural and dynamic properties of the model mucus observed in simulations are in qualitative agreement with known experimental facts and provide mechanistic explanation of complex properties of real mucus.  相似文献   

2.
Previous work has shown the presence of different mucin gene products and glycosylated species in gastric mucus secretions, however, the functional relevance of these differences is unclear. This study aimed to investigate rheologically, differences in the gel behaviour within gastric mucus samples using a pig model. Rheological measurements were made on a Bohlin CVO50 rheometer. Mucins were characterised by antigenicity, lectin reactivity and proteolytic fragmentation patterns. Two distinct mucus gel secretions, one compliant with and the other resistant to shear stress, were removed from the gastric mucosa. The two gels had different rheological behaviour profiles and exhibited structural differences in their constituent mucins. The shear-compliant mucus was located superficially to the adherent shear-resistant mucus layer and was shown not to be a proteolytic product of the latter. This study has demonstrated that there are two rheologically distinct mucus gel secretions with structural/compositional differences in the stomach. Rheological properties suggest that the adherent, shear-resistant gel could provide the mucus barrier in vivo while the shear-compliant gel could act primarily as a lubricant.  相似文献   

3.
Cystic fibrosis (CF) is the most lethal genetic disorder in Caucasians and is characterized by the production of excessive amounts of viscous mucus secretions in the airways of patients, leading to airway obstruction, chronic bacterial infections, and respiratory failure. Previous studies indicate that CF-derived airway mucins are glycosylated and sulfated differently compared with mucins from nondiseased (ND) individuals. To address unresolved questions about mucin glycosylation and sulfation, we examined O-glycan structures in mucins purified from mucus secretions of two CF donors versus two ND donors. All mucins contained galactose (Gal), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), fucose (Fuc), and sialic acid (Neu5Ac). However, CF mucins had higher sugar content and more O-glycans compared with ND mucins. Both ND and CF mucins contained GlcNAc-6-sulfate (GlcNAc-6-Sul), Gal-6-Sul, and Gal-3-Sul, but CF mucins had higher amounts of the 6-sulfated species. O-glycans were released from CF and ND mucins and derivatized with 2-aminobenzamide (2-AB), separated by ion exchange chromatography, and quantified by fluorescence. There was nearly a two-fold increase in sulfation and sialylation in CF compared with ND mucin. High performance liquid chromatography (HPLC) profiles of glycans showed differences between the two CF samples compared with the two ND samples. Glycan compositions were defined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Unexpectedly, 260 compositional types of O-glycans were identified, and CF mucins contained a higher proportion of sialylated and sulfated O-glycans compared with ND mucins. These profound structural differences in mucin glycosylation in CF patients may contribute to inflammatory responses and increased pathogenesis by Pseudomonas aeruginosa.  相似文献   

4.
Mucus secretions form a protective barrier in the mucosa of the auditory, gastrointestinal, respiratory, and urogenital systems, and the conjunctiva in the eyes. A family of glycoproteins known as gel forming mucins is the major component of the mucus. Gel-forming mucins are among the largest and most complex proteins known. Their polypeptide chains comprise thousands of amino acid residues organized into different domains with diverse post-translational modifications, including O- and N-glycosylation, sulfation, proteolysis, and likely C-mannosylation. Moreover, these glycoproteins form disulfide-linked oligomers/multimers with molecular weights in the millions. Molecular polydispersity in terms of length, carbohydrate content and composition, is an invariable feature of purified mucins. This structural complexity makes it technically very difficult to study mucin biochemical and physical properties. It is not surprising, therefore, that our knowledge on mucin structure, biosynthesis and function still is incomplete. During the last decade, the use of recombinant mucins has allowed researchers to study the biochemical properties of protein domains, peptide motifs and amino acid residues common to all gel-forming mucins, and to propose specific roles for them. We review here the relative impact that these in vitro studies have had for our current understanding of two of the most important features of these macromolecules: formation of disulfide linked oligomers and mucin intragranular packaging.  相似文献   

5.
Horses frequently suffer from respiratory diseases, which, irrespective of etiology, are often associated with airway mucus accumulation. Studies on human airways have shown that the key structural components of the mucus layer are oligomeric mucins, which can undergo changes of expression and properties in disease. However, there is little information on these gel-forming glycoproteins in horse airways mucus. Therefore, the aims of this study were to isolate equine airways oligomeric mucins, characterize their macromolecular properties, and identify their gene products. To this end, pooled tracheal washes, collected from healthy horses and horses suffering from respiratory diseases, were solubilized with 6 M guanidinium chloride (GdmCl). The oligomeric mucins were purified by density gradient centrifugation followed by size exclusion chromatography. Biochemical and biophysical analyses showed the mucins were stiffened random coils in solution that were polydisperse in size (M(r) = 6-20 MDa, average M(r) = 14 MDa) and comprised of disulfide-linked subunits (average M(r) = 7 MDa). Agarose gel electrophoresis showed that the pooled mucus sample contained at least two populations of oligomeric mucins. Electrospray ionization tandem mass spectrometry of tryptic digests of the unfractionated mucin preparation showed that the oligomeric mucins Muc5b and Muc5ac were present. In summary, we have shown that equine airways mucus is a mixture of Muc5b and Muc5ac mucins that have a similar macromolecular organization to their human counterparts. This study will form the basis for future studies to analyze the contribution of these two mucins to equine airways pathology associated with mucus accumulation.  相似文献   

6.
K V Chace  M Flux  G P Sachdev 《Biochemistry》1985,24(25):7334-7341
The major nonreduced mucus glycoproteins (mucins) from sputa of cystic fibrosis (CF) and asthmatic patients have been purified to electrophoretic homogeneity and subjected to physical and chemical characterization. The sputum specimens were solubilized in buffer containing 0.22 M KSCN and fractionated on Bio-Gel A-5m, followed by digestion with DNase, rechromatography on the same column, and chromatography on hydroxylapatite. Sodium dodecyl sulfate gel electrophoresis of purified mucins gave a single band. Carbohydrate analyses of the purified mucins showed no significant differences in the sugar components from the two mucins. However, the CF mucin contained substantially higher (11%) sulfate content than that observed for the asthmatic mucin (5.9%). Amino acid analyses indicated that the CF mucin had higher levels of serine plus threonine (35%) as compared to the asthmatic mucin (29%). In contrast, CF mucin contained a lower content of aspartate, glutamate, and glycine than that observed for the asthmatic mucin. Molecular weights of 3.8 X 10(6) and 3.5 X 10(6) were obtained for CF and asthmatic mucins, respectively, from light-scattering studies of mucins in the presence of 6 M guanidine hydrochloride. Reduction of the disulfide bonds of the two mucins did not alter their molecular weights. Liquid chromatographic studies on Sepharose CL2B showed that CF mucin forms aggregates sufficiently large to be excluded from the gel. As compared to the CF mucin, the asthmatic mucin formed fewer of these large aggregates under identical experimental conditions. Reduction and alkylation of the mucins resulted in their inability to form aggregates. The higher state of aggregation of CF mucin may influence the viscoelastic properties of the CF lung's mucus secretions.  相似文献   

7.
Mucosal protection of the gallbladder is vital yet we know very little about the mechanisms involved. In domestic dogs, an emergent syndrome referred to as gallbladder mucocele formation is characterized by excessive secretion of abnormal mucus that results in obstruction and rupture of the gallbladder. The cause of gallbladder mucocele formation is unknown. In these first mechanistic studies of this disease, we investigated normal and mucocele-forming dog gallbladders to determine the source, identity, biophysical properties, and protein associates of the culprit mucins with aim to identify causes for abnormal mucus behavior. We established that mucocele formation involves an adoptive excess secretion of gel forming mucins with abnormal properties by the gallbladder epithelium. The mucus is characterized by a disproportionally significant increase in Muc5ac relative to Muc5b, defective mucin un-packaging, and mucin-interacting innate defense proteins that are capable of dramatically altering the physical and functional properties of mucus. These findings provide an explanation for abnormal mucus behavior and based on similarity to mucus observed in the airways of people with cystic fibrosis, suggest that abnormal mechanisms for maintenance of gallbladder epithelial hydration may be an instigating factor for mucocele formation in dogs.  相似文献   

8.
We designed a simple coarse-grained model of the glycocalyx layer, or adhesive mucus layer (AML), covered by mucus gel (luminal mucus layer) using a polymer lattice model and stochastic sampling (replica exchange Monte Carlo) for canonical ensemble simulations. We assumed that mucin MUC16 is responsible for the structural properties of the AML. Other mucins that are much smaller in size and less relevant for layer structure formation were not included. We further assumed that the system was in quasi-equilibrium. For systems with surface coverage and concentrations of model mucins mimicking physiological conditions, we determined the equilibrium distribution of inert nanoparticles within the mucus layers using an efficient replica exchange Monte Carlo sampling procedure. The results show that the two mucus layers penetrate each other only marginally, and the bilayer imposes a strong barrier for nanoparticles, with the AML layer playing a crucial role in the mucus barrier.  相似文献   

9.
A longstanding question in obstructive airway disease is whether observed changes in mucin composition and/or posttranslational glycosylation are due to genetic or to environmental factors. We tested whether the mucins secreted by second-passage primary human bronchial epithelial cell cultures derived from noncystic fibrosis (CF) or CF patients have intrinsically different specific mucin compositions, and whether these mucins are glycosylated differently. Both CF and non-CF cultures produced MUC5B, predominantly, as judged by quantitative agarose gel Western blots with mucin-specific antibodies: MUC5B was present at approximately 10-fold higher levels than MUC5AC, consistent with our previous mRNA studies (Bernacki SH, Nelson AL, Abdullah L, Sheehan JK, Harris A, William DC, and Randell SH. Am J Respir Cell Mol Biol 20: 595-604, 1999). O-linked oligosaccharides released from purified non-CF and CF mucins and studied by HPLC mass spectrometry had highly variable glycan structures, and there were no observable differences between the two groups. Hence, there were no differences in either the specific mucins or their O-glycans that correlated with the CF phenotype under the noninfected/noninflammatory conditions of cell culture. We conclude that the differences observed in the mucins sampled directly from patients are most likely due to environmental factors relating to infection and/or inflammation.  相似文献   

10.
Our current understanding of cystic fibrosis (CF) has revealed that the biophysical properties of mucus play a considerable role in the pathogenesis of the disease in view of the fact that most mucus-producing organs are affected in CF patients. In this review, we discuss the potential causal relationship between altered cystic fibrosis transmembrane conductance regulator (CFTR) function and the production of mucus with abnormal biophysical properties in the intestine and lungs, highlighting what has been learned from cell cultures and animal models that mimic CF pathogenesis. A similar cascade of events, including mucus obstruction, infection and inflammation, is common to all epithelia affected by impaired surface hydration. Hence, the main structural components of mucus, namely the polymeric, gel-forming mucins, are critical to the onset of the disease. Defective CFTR leads to epithelial surface dehydration, altered pH/electrolyte composition and mucin concentration. Further, it can influence mucin transition from the intracellular to extracellular environment, potentially resulting in aberrant mucus gel formation. While defective HCO3 production has long been identified as a feature of CF, it has only recently been considered as a key player in the transition phase of mucins. We conclude by examining the influence of mucins on the biophysical properties of CF sputum and discuss existing and novel therapies aimed at removing mucus from the lungs.This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances.  相似文献   

11.
Transposition of intestinal segments is frequently used for bladder reconstruction. Following transposition, bowel segments continue to produce mucus and a correlation between excessive mucus production and complications such as urinary tract infection or catheter blockage has been observed for a long time. However, no information is currently available on the change of mucin expression and glycosylation under these abnormal conditions. In this study, the variable number tandem repeat region and the irregular repeat domain of human MUC2 were isolated as two glycopeptide populations after reduction and trypsin digestion followed by gel chromatography from urine of patients transposed with urinary bladders. After alkaline borohydride treatment, the oligosaccharides released from the whole MUC2 mucin and the two glycosylated domains were investigated by nanoESI Q-TOF MS/MS (electrospray ionization quadrupole time-of-flight tandem mass spectrometry). More than 60 different glycans were identified, mainly based on sialylated core 3 structures. Some core 1, 2 and 4 oligosaccharides were also found. Most of the structures were acidic with NeuAc residues mainly α2–6 linked to the N-acetylgalactosaminitol and sulphate residues exclusively 3-linked to galactose. No expression of blood group A and B or Sda/Cad determinants was observed. Similar patterns of glycosylation were found in the tandem repeat region and the irregular repeat domain and the level of expression of the major oligosaccharides were in the same order of magnitude. The most interesting feature of this study was that sialyl-Tn antigen, which is considered as a tumour antigen, was the oligosaccharide most highly expressed. This result suggests that mucins from intestinal transposed segments are abnormally glycosylated.  相似文献   

12.
Mucus glycoproteins (mucins), the principal determinants of mucus protective qualities and mucosal defense, are studied extensively to define pathological aberrations in the relation to gastrointestinal disease and to develop the mucous barrier strengthening agents. Recent work from our laboratory provided evidence as to the initial stages of the gastrointestinal mucin synthesis, molecular size of the apomucin, its macromolecular organization and interaction with other elements of gastrointestinal mucus. Using monoclonal antibodies against apomucin (clone 1H7), O-glycosylated with N-acetylgalactosamine apomucin (clone 2B4), and that against carboxyl terminal of the apomucin (clone 3G12), the mucin synthesizing polysomes were isolated and glycosylated peptides ranging in size from 6-60 kDa identified. The in vitro synthesis in the cell-free system also afforded 60-64 kDa products recognized by 1H7 and 3G12 antimucin MAbs. The obtained results provided evidence that the mucin core consists of 60 kDa peptide which at cotranslational stage is O-glycosylated with N-acetylgalactosamine. Studies on mucin polymer assembly revealed that mucin preparations prepared by equilibrium density gradient centrifugation and Sepharose 2B chromatography (Mantle, M., Mantle, D., and Allen, A. (1981) Biochem. J. 195, 277-285) are not completely purified and contain DNA and extraneous proteins. The evidence was obtained that so called mucin "link protein", 118 kDa glycopeptide, is a N-glycosylated fragment of fibronectin, whereas the supposedly native undegraded mucin isolated by Carlstedt et al. (Biochem. J. (1983) 211, 13-22) was found to contain mucin-fibronectin-DNA complexes. The general picture that emerged from the studies is that the pure mucin consists of 60 kDa glycosylated peptides only. The carboxyl terminal (8-12 kDa fragment) of these peptides is not glycosylated (naked) and is responsible for mucin interaction with fibronectin and other fibronectin-like extracellular matrix proteins. While the formation of the mucosal coat depends on many other factors and extracellular components, our findings on mucin structure and interaction with the extracellular matrix proteins provide explanation as to the possible mechanism of mucin adherence to the epithelial surfaces.  相似文献   

13.
The existence of mucus plugs, containing mucins, bacteria, and neutrophils, blocking the lower airways in the lung of cystic fibrosis (CF) patients has raised the possibility that production of "abnormal" mucins is a critical characteristic of this disease. The molecular nature, if any, of this abnormality is unknown. Recent studies suggest that CF lung disease progression is characterized by an early phase in which airway surface liquid (ASL) increased dehydration is accompanied by altered pH and levels of reduced glutathione (GSH). In a later phase, bacterial infection and neutrophil invasion lead to increased ASL of concentrations myeloperoxidase and hypochlorous acid (HOCl). Independent studies indicate that gel-forming mucins, the key components of airway mucus, form disulfide-linked polymers through a pH-dependent, likely self-catalyzed mechanism. In this article, we present the hypothesis that increased mucus concentration (dehydration) and altered pH, and levels of GSH, myeloperoxidase, and/or HOCl result in the extracellular formation of additional interchain bonds among airway mucins. These novel interactions would create an atypical mucin network with abnormal viscoelastic and adhesive properties.  相似文献   

14.
The mucus filling the human cervical opening blocks the entry to the uterus, but this has to be relative and allow for the sperm to penetrate at ovulation. We studied this mucus, its content of proteins and mucins, and the mucin O-glycosylation in cervical secretions before, during, and after ovulation. Cervical mucosal secretions from 12 subjects were collected, reduced-alkylated, separated with polyacrylamide or agarose/polyacrylamide gel electrophoresis, and stained with silver, Alcian blue, or Coomassie Blue stain. Protein and mucin bands from before and during ovulation were digested and subsequently analyzed by nano-LC-FT-ICR MS and MS/MS. We identified 194 proteins after searches against the NCBI non-redundant protein database and an in-house mucin database. Three gel-forming (MUC5B, MUC5AC, and MUC6) and two transmembrane mucins (MUC16 and MUC1) were identified. For the analysis of mucin O-glycosylation, separated mucins from six individuals were blotted to PVDF membranes, and the O-glycans were released by reductive beta-elimination and analyzed with capillary HPLC-MS and -MS/MS. At least 50 neutral, sialic acid-, and sulfate-containing oligosaccharides were found. An increase of GlcNAc-6GalNAcol Core 2 structures and a relative decrease of NeuAc residues are typical for ovulation, and NeuAc-6GalNAcol and NeuAc-3Gal- epitopes are typical for the non-ovulatory phases. The cervical mucus at ovulation is thus characterized by a relative increase in neutral fucosylated oligosaccharides. This comprehensive characterization of the mucus during the menstrual cycle suggests mucin glycosylation as the major alteration at ovulation, but the relation to the altered physicochemical properties and sperm penetrability is still not understood.  相似文献   

15.
Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.  相似文献   

16.
Kesimer M  Sheehan JK 《Glycobiology》2008,18(6):463-472
Glyconjugates such as mucins, proteoglycans, and polysaccharides form the structural basis of protective cell-surface layers. In particular gel-forming mucins define a zone between the epithelial cell layer and the environment. Such molecules are of extreme molecular weight 5-100 x 10(6) and size (Rg 20-300 nm). On this account their biochemistry is inseparable from their physical biochemistry. Combining laser light scattering and quartz crystal mass balance with dissipation methods (QCM-D) we have investigated the properties of the MUC5B mucin and its cognate fragments when bound to a hydrophobic surface. MUC5B forms the basis of gels responsible for the protection of the oral cavity, lung, and cervical canal surfaces. Here we show, by analyzing dissipative interactions of hydrophobic, gold, and polystyrene surfaces, with the intact MUC5B molecule, its reduced subunits, and glycosylated tryptic fragments (obtained after reduction), the formation of 40- to 100-nm-thick highly structured, hydrated interfaces. These interfaces are dominated in their geometry and dissipative properties by the negatively charged carbohydrate-rich domains of the molecule, the naked protein domains being responsible for attachment. These carbohydrate-rich surfaces have well-defined absorptive properties and permit the entry and entrapment of albumin-coated micro-beads into the absorbed layer at and below a size of 60 nm. However beads larger than 100 nm are completely excluded from the surfaces. These absorptive phenomena correlate with large changes in film dissipation and thus may not only be important in biological functions, e.g. binding viruses, but could also be informative to the surfaces (often ciliated) onto which such mucus films are attached.  相似文献   

17.
The MUC family: an obituary   总被引:23,自引:0,他引:23  
Mucins are glycoproteins that are common on the surfaces of many epithelial cells; they are deemed to mediate many interactions between these cells and their milieu. Several of these mucins form the mucus layer that is found in many hollow organs. The biophysical properties of mucins are related to their extensive O-linked glycosylation rather than directly to their polypeptide sequences. Despite the frequent absence of sequence homology, many human genes encoding mucins have been named MUC followed by a number, unjustly suggesting the existence of one large gene family. In this article, it is suggested that the mucin genes be renamed according to their sequence homologies.  相似文献   

18.
19.
Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria.  相似文献   

20.
Complex structure of human bronchial mucus glycoprotein   总被引:8,自引:0,他引:8  
Human bronchial mucus glycoproteins or mucins were isolated from the sputum of two patients by a method avoiding reducing agents and involving water extraction and gel filtration on Sepharose CL-2B in 6 M guanidinium chloride. The chemical analysis indicated approximately 25-40% lipid. The amino acid and carbohydrate analysis differ quantitatively from that of mucins purified after prior reduction of mucus. These fractions also have a higher proportion of aspartic and glutamic acids than that of the mucins from reduced sputum. These mucins are still contaminated by small amounts of peptides but do not seem to contain disulfide-attached cross-linking protein. Human bronchial mucins have a strong tendency to form aggregates except in 6 M guanidinium chloride. Electron microscopy performed with various procedures indicates the presence of both micelles and flexible threads measuring 200-1000 nm. Delipidation removes most of the micellar forms. Thereafter mucins appear mainly as polydisperse flexible extended threads and also as aggregates. These features of bronchial mucins do not fit with the generally accepted idea of mucin subunits linked by disulfide bridges (unless they are linked end to end) and alternatively favour a model where mucin molecules behave like filaments that could easily aggregate according to the solvent system (mucin concentration, absence of dissociating conditions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号