首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diatoms are unicellular algae of crucial importance as they belong to the main primary producers in aquatic ecosystems. Several diatom species produce polyunsaturated aldehydes (PUAs) that have been made responsible for chemically mediated interactions in the plankton. PUA-effects include chemical defense by reducing the reproductive success of grazing copepods, allelochemical activity by interfering with the growth of competing phytoplankton and cell to cell signaling. We applied a PUA-derived molecular probe, based on the biologically highly active 2,4-decadienal, with the aim to reveal protein targets of PUAs and affected metabolic pathways. By using fluorescence microscopy, we observed a substantial uptake of the PUA probe into cells of the diatom Phaeodactylum tricornutum in comparison to the uptake of a structurally closely related control probe based on a saturated aldehyde. The specific uptake motivated a chemoproteomic approach to generate a qualitative inventory of proteins covalently targeted by the α,β,γ,δ-unsaturated aldehyde structure element. Activity-based protein profiling revealed selective covalent modification of target proteins by the PUA probe. Analysis of the labeled proteins gave insights into putative affected molecular functions and biological processes such as photosynthesis including ATP generation and catalytic activity in the Calvin cycle or the pentose phosphate pathway. The mechanism of action of PUAs involves covalent reactions with proteins that may result in protein dysfunction and interference of involved pathways.  相似文献   

2.
Climate change is expected to bring about alterations in the marine physical and chemical environment that will induce changes in the concentration of dissolved CO2 and in nutrient availability. These in turn are expected to affect the physiological performance of phytoplankton. In order to learn how phytoplankton respond to the predicted scenario of increased CO2 and decreased nitrogen in the surface mixed layer, we investigated the diatom Phaeodactylum tricornutum as a model organism. The cells were cultured in both low CO2 (390 μatm) and high CO2 (1000 μatm) conditions at limiting (10 μmol L−1) or enriched (110 μmol L−1) nitrate concentrations. Our study shows that nitrogen limitation resulted in significant decreases in cell size, pigmentation, growth rate and effective quantum yield of Phaeodactylum tricornutum, but these parameters were not affected by enhanced dissolved CO2 and lowered pH. However, increased CO2 concentration induced higher rETRmax and higher dark respiration rates and decreased the CO2 or dissolved inorganic carbon (DIC) affinity for electron transfer (shown by higher values for K1/2 DIC or K1/2 CO2). Furthermore, the elemental stoichiometry (carbon to nitrogen ratio) was raised under high CO2 conditions in both nitrogen limited and nitrogen replete conditions, with the ratio in the high CO2 and low nitrate grown cells being higher by 45% compared to that in the low CO2 and nitrate replete grown ones. Our results suggest that while nitrogen limitation had a greater effect than ocean acidification, the combined effects of both factors could act synergistically to affect marine diatoms and related biogeochemical cycles in future oceans.  相似文献   

3.
长链不饱和脂肪酸(LC-PUFAs)对人类健康具有重要作用,通过转基因植物生产LC-PUFAs具有低成本、可持续、污染少等诸多优势。本文简要介绍了LC-PUFAs的作用、来源及其植物生物合成途径,综述了转基因植物合成LC-PUFAs的研究进展,并对如何进一步提高LC-PUFAs产量进行了探讨。  相似文献   

4.
5.
Ocean acidification (OA) due to atmospheric CO2 rise is expected to influence marine primary productivity. In order to investigate the interactive effects of OA and light changes on diatoms, we grew Phaeodactylum tricornutum, under ambient (390 ppmv; LC) and elevated CO2 (1000 ppmv; HC) conditions for 80 generations, and measured its physiological performance under different light levels (60 µmol m−2 s−1, LL; 200 µmol m−2 s−1, ML; 460 µmol m−2 s−1, HL) for another 25 generations. The specific growth rate of the HC-grown cells was higher (about 12–18%) than that of the LC-grown ones, with the highest under the ML level. With increasing light levels, the effective photochemical yield of PSII (Fv′/Fm′) decreased, but was enhanced by the elevated CO2, especially under the HL level. The cells acclimated to the HC condition showed a higher recovery rate of their photochemical yield of PSII compared to the LC-grown cells. For the HC-grown cells, dissolved inorganic carbon or CO2 levels for half saturation of photosynthesis (K1/2 DIC or K1/2 CO2) increased by 11, 55 and 32%, under the LL, ML and HL levels, reflecting a light dependent down-regulation of carbon concentrating mechanisms (CCMs). The linkage between higher level of the CCMs down-regulation and higher growth rate at ML under OA supports the theory that the saved energy from CCMs down-regulation adds on to enhance the growth of the diatom.  相似文献   

6.
7.
Marine Biotechnology - Salmon is a rich source of health-promoting omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic...  相似文献   

8.
The flow of long-chain polyunsaturated fatty acids (PUFAs) of the omega-3 family, namely, eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), exported by amphibian metamorphs from water to terrestrial ecosystems in the Medveditsa River floodplain, was quantified for the first time. The total biomass export by three amphibian species (Pelobates fuscus, Bombina bombina, and Pelophylax ridibundus) per unit area of the lake surface was 0.594 g/m2 per year (as a mean for 2 years). The biomass flow per unit area of land was 0.726 g/ha per year (0.302 g/ha per year for organic carbon) in 2015–2016. The average annual total removal of EPA + DHA by amphibians from the floodplain lake was 1.47 mg/m2 of water surface area. Due to the high content of EPA and DHA in biomass, amphibians are potentially a valuable food for terrestrial predators having no access to other sources of essential PUFAs.  相似文献   

9.
10.
Macrophages play a key role in obesity-induced inflammation. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert anti-inflammatory functions in both humans and animal models, but the exact cellular signals mediating the beneficial effects are not completely understood. We previously found that two nutrient sensors AMP-activated protein kinase (AMPK) and SIRT1 interact to regulate macrophage inflammation. Here we aim to determine whether ω-3 PUFAs antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. Treatment of ω-3 PUFAs suppresses lipopolysaccharide (LPS)-induced cytokine expression in macrophages. Luciferase reporter assays, electrophoretic mobility shift assays (EMSA) and Chromatin immunoprecipitation (ChIP) assays show that treatment of macrophages with ω-3 PUFAs significantly inhibits LPS-induced NF-κB signaling. Interestingly, DHA also increases expression, phosphorylation and activity of the major isoform α1AMPK, which further leads to SIRT1 over-expression. More importantly, DHA mimics the effect of SIRT1 on deacetylation of the NF-κB subunit p65, and the ability of DHA to deacetylate p65 and inhibit its signaling and downstream cytokine expression require SIRT1. In conclusion, ω-3 PUFAs negatively regulate macrophage inflammation by deacetylating NF-κB, which acts through activation of AMPK/SIRT1 pathway. Our study defines AMPK/SIRT1 as a novel cellular mediator for the anti-inflammatory effects of ω-3 PUFAs.  相似文献   

11.
12.
13.
14.
Monoclonal antibodies (mAbs) represent actually the major class of biopharmaceuticals. They are produced recombinantly using living cells as biofactories. Among the different expression systems currently available, microalgae represent an emerging alternative which displays several biotechnological advantages. Indeed, microalgae are classified as generally recognized as safe organisms and can be grown easily in bioreactors with high growth rates similarly to CHO cells. Moreover, microalgae exhibit a phototrophic lifestyle involving low production costs as protein expression is fueled by photosynthesis. However, questions remain to be solved before any industrial production of algae-made biopharmaceuticals. Among them, protein heterogeneity as well as protein post-translational modifications need to be evaluated. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals including mAbs are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. In this paper, we assess the quality of the first recombinant algae-made mAbs produced in the diatom, Phaeodactylum tricornutum. We are focusing on the characterization of their C- and N-terminal extremities, their signal peptide cleavage and their post-translational modifications including N-glycosylation macro- and microheterogeneity. This study brings understanding on diatom cellular biology, especially secretion and intracellular trafficking of proteins. Overall, it reinforces the positioning of P. tricornutum as an emerging host for the production of biopharmaceuticals and prove that P. tricornutum is suitable for producing recombinant proteins bearing high mannose-type N-glycans.  相似文献   

15.
Dietary fish must be assessed for benefits and risks to formulate risk management strategies. This article demonstrates that Laurentian Great Lakes (GL) freshwater species are good sources of omega-3 fatty acids using new data from a small sample (n = 7) of Lake Superior siscowet lake trout (Salvelinus namaycush siscowet) and five other GL fish species’ data. For Lake Superior (LS) siscowets, the saturates, mono-unsaturates, and poly-unsaturates composed 20.1, 40.7, and 39.1% of total lipid weight, respectively. Omega-3 poly-unsaturates (PUFAs) in these fish were more than twice the omega-6 (omega 3/6 ratio = 2.4). The LS lake trout data were combined with earlier LS data collected during the 1980s for eight other species and from five species of Lake Erie fish. All the GL freshwater species were compared with seven other published marine and freshwater fish studies from other global regions. PUFAs were compared based on latitude and marine versus freshwater origin. Differences between marine and freshwater species in omega-3 fatty acid were less at higher latitudes. GL freshwater fish species can be a good source of beneficial fats like marine fish and must be accounted in effective risk communications involving persistent bioaccumulative toxicants in dietary fish.  相似文献   

16.
Nutritional enhancement of crops using genetic engineering can potentially affect herbivorous pests. Recently, oilseed crops have been genetically engineered to produce the long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at levels similar to that found in fish oil; to provide a more sustainable source of these compounds than is currently available from wild fish capture. We examined some of the growth and development impacts of adding EPA and DHA to an artificial diet of Pieris rapae, a common pest of Brassicaceae plants. We replaced 1% canola oil with EPA: DHA (11:7 ratio) in larval diets, and examined morphological traits and growth of larvae and ensuing adults across 5 dietary treatments. Diets containing increasing amounts of EPA and DHA did not affect developmental phenology, larval or pupal weight, food consumption, nor larval mortality. However, the addition of EPA and DHA in larval diets resulted in progressively heavier adults (F 4, 108 = 6.78; p = 0.011), with smaller wings (p < 0.05) and a higher frequency of wing deformities (R = 0.988; p = 0.001). We conclude that the presence of EPA and DHA in diets of larval P. rapae may alter adult mass and wing morphology; therefore, further research on the environmental impacts of EPA and DHA production on terrestrial biota is advisable.  相似文献   

17.
Omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential nutrients for human health. However, vertebrates, including humans, have lost the abilities to synthesize EPA and DHA de novo, majorly due to the genetic absence of delta-12 desaturase and omega-3 desaturase genes. Fishes, especially those naturally growing marine fish, are major dietary source of EPA and DHA. Because of the severe decline of marine fishery and the decrease in n-3 LC-PUFA content of farmed fishes, it is highly necessary to develop alternative sources of n-3 LC-PUFA. In the present study, we utilized transgenic technology to generate n-3 LC-PUFA-rich fish by using zebrafish as an animal model. Firstly, fat1 was proved to function efficiently in fish culture cells, which showed an effective conversion of n-6 PUFA to n-3 PUFA with the n-6/n-3 ratio that decreased from 7.7 to 1.1. Secondly, expression of fat1 in transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.8- and 2.4-fold, respectively. Third, co-expression of fat2, a fish codon-optimized delta-12 desaturase gene, and fat1 in fish culture cell significantly promoted n-3 PUFA synthesis with the decreased n-6/n-3 ratio from 7.7 to 0.7. Finally, co-expression of fat1 and fat2 in double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.7- and 2.8-fold, respectively. Overall, we generated two types of transgenic zebrafish rich in endogenous n-3 LC-PUFA, fat1 transgenic zebrafish and fat1/fat2 double transgenic zebrafish. Our results demonstrate that application of transgenic technology of humanized fat1 and fat2 in farmed fishes can largely improve the n-3 LC-PUFA production.  相似文献   

18.
Two fish species reared in aquaculture (pink salmon Oncorhynchus gorbuscha and whitefish Coregonus lavaretus) and ten fish species from natural habitats (whitefish C. lavaretus, tugun Coregonus tugun, broad whitefish Coregonus nasus, least cisco Coregonus sardinella, vendace Coregonus albula, boganid charr Salvelinus boganidae, charr Salvelinus alpinus complex, northern pike Esox lucius, sharp-snouted lenok Brachymystax lenok, and taimen Hucho taimen) have been studied. The content of two long-chain polyunsaturated omega-3 fatty acids (PUFAs), eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), in the muscle tissue of the fish and in their food (intestine contents) are compared. In the aquacultures of whitefish and pink salmon, the total content of EPA and DHA is significantly higher in feed than in the muscle tissue of the fish, which indicates losses of PUFA in the two-link food chain of the aquaculture during their transfer to the upper trophic level. EPA and DHA losses in aquaculture, which are confirmed by numerous literature data, mean an inefficient usage of the available sources of PUFAs and the aggravation of the global deficit of these biochemicals in the human diet. A study of natural fish populations reveals the accumulation of EPA and DHA in their biomass compared to food in many cases, although opposite phenomena are also observed. An assumption on the presence of an optimal, physiologically adequate species-specific level of PUFA in the fish muscle tissue has been made based on our data and literature data. If the level of PUFAs in the muscles is lower than optimal, their accumulation (bioaccumulation) from food and/or de novo synthesis are observed. When the optimal level is exceeded, the content of EPA and DHA in biomass approaches maximum species-specific values; however, part of these PUFAs entering from food is not digested or is catabolized. According to the obtained data, the species of the order Salmoniformes have an optimal level of 2 to 6 mg/g of wet weight. It has been found that in aquaculture approaching to maximum values of EPA + DHA content was accompanied by their losses (scattering) in the food chains, while in natural ecosystems the maximum values of PUFA content in the fish biomass are achieved by their accumulation from the lower trophic level. Boganid charr S. boganidae had the highest content of EPA + DHA in the muscle tissue among all known fish species (32.78 mg/g of wet weight).  相似文献   

19.
20.

Background

Omega-3 long-chain polyunsaturated fatty acids (LC-PUFA), especially DHA (docosahexaenonic acid) are essential for brain development and physical health. Low blood Omega-3 LC-PUFA have been reported in children with ADHD and related behavior/learning difficulties, as have benefits from dietary supplementation. Little is known, however, about blood fatty acid status in the general child population. We therefore investigated this in relation to age-standardized measures of behavior and cognition in a representative sample of children from mainstream schools.

Participants

493 schoolchildren aged 7–9 years from mainstream Oxfordshire schools, selected for below average reading performance in national assessments at age seven.

Method

Whole blood fatty acids were obtained via fingerstick samples. Reading and working memory were assessed using the British Ability Scales (II). Behaviour (ADHD-type symptoms) was rated using the revised Conners’ rating scales (long parent and teacher versions). Associations were examined and adjusted for relevant demographic variables.

Results

DHA and eicosapentaenoic acid (EPA), accounted for only 1.9% and 0.55% respectively of total blood fatty acids, with DHA showing more individual variation. Controlling for sex and socio-economic status, lower DHA concentrations were associated with poorer reading ability (std. OLS coeff. = 0.09, p = <.042) and working memory performance (0.14, p = <.001). Lower DHA was also associated with higher levels of parent rated oppositional behavior and emotional lability (−0.175, p = <.0001 and −0.178, p = <.0001).

Conclusions

In these healthy UK children with below average reading ability, concentrations of DHA and other Omega-3 LC-PUFA were low relative to adult cardiovascular health recommendations, and directly related to measures of cognition and behavior. These findings require confirmation, but suggest that the benefits from dietary supplementation with Omega-3 LC-PUFA found for ADHD, Dyspraxia, Dyslexia, and related conditions might extend to the general school population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号