首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
神经管闭合缺陷 (NTDs)是一种严重的先天畸形疾病,在新生儿中有千分之一的发病率。神经管融合前后,多种组织参与形态发生运动。神经管一经融合,神经嵴细胞就会向背侧中线方向产生单极突出并向此方向迁移形成神经管的顶部。与此同时,神经管从腹侧开始发生辐射状切入以实现单层化。在此,我们在非洲爪蟾的移植体中机械阻断神经管的闭合以检测其细胞运动及随后的图式形成。结果显示神经管闭合缺陷的移植体不能形成单层化的神经管,并且神经嵴细胞滞留在侧面区域不能向背侧中线迁移,而对神经前体标记基因的检测显示神经管的背腹图式形成并未受到影响。以上结果表明神经管的融合对于辐射状切入和神经嵴细胞向背侧中线方向的迁移过程是必需的,而对于神经管的沿背腹轴方向的图式形成是非必需的。  相似文献   

2.
During vertebrate neurulation, cranial neural crest cells (CNCCs) undergo epithelial to mesenchymal transition (EMT), delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL) receptor-related protein 5 (Lrp5) plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton.  相似文献   

3.
Collective cell migration is an essential feature both in embryonic development and cancer progression. The molecular mechanisms of these coordinated directional cell movements still need to be elucidated. The migration of cranial neural crest (CNC) cells during embryogenesis is an excellent model for collective cell migration in vivo. These highly motile and multipotent cells migrate directionally on defined routes throughout the embryo. Interestingly, local cell-cell interactions seem to be the key force for directionality. CNC cells can change their migration direction by a repulsive cell response called contact inhibition of locomotion (CIL). Cell protrusions collapse upon homotypic cell-cell contact and internal repolarization leads to formation of new protrusions toward cell-free regions. Wnt/PCP signaling was shown to mediate activation of small RhoGTPase RhoA and inhibition of cell protrusions at the contact side. However, the mechanism how a cell recognizes the contact is poorly understood. Here, we demonstrate that Xenopus cadherin-11 (Xcad-11) mediated cell-cell adhesion is necessary in CIL for directional and collective migration of CNC cells. Reduction of Xcad-11 adhesive function resulted in higher invasiveness of CNC due to loss of CIL. Additionally, transplantation analyses revealed that CNC migratory behaviour in vivo is non-directional and incomplete when Xcad-11 adhesive function is impaired. Blocking Wnt/PCP signaling led to similar results underlining the importance of Xcad-11 in the mechanism of CIL and directional migration of CNC.  相似文献   

4.
Coordinated cell migration during development is crucial for morphogenesis and largely relies on cells of the neural crest lineage that migrate over long distances to give rise to organs and tissues throughout the body. Recent studies of protein arginylation implicated this poorly understood posttranslational modification in the functioning of actin cytoskeleton and in cell migration in culture. Knockout of arginyltransferase (Ate1) in mice leads to embryonic lethality and severe heart defects that are reminiscent of cell migration–dependent phenotypes seen in other mouse models. To test the hypothesis that arginylation regulates cell migration during morphogenesis, we produced Wnt1-Cre Ate1 conditional knockout mice (Wnt1-Ate1), with Ate1 deletion in the neural crest cells driven by Wnt1 promoter. Wnt1-Ate1 mice die at birth and in the first 2–3 weeks after birth with severe breathing problems and with growth and behavioral retardation. Wnt1-Ate1 pups have prominent defects, including short palate and altered opening to the nasopharynx, and cranial defects that likely contribute to the abnormal breathing and early death. Analysis of neural crest cell movement patterns in situ and cell motility in culture shows an overall delay in the migration of Ate1 knockout cells that is likely regulated by intracellular mechanisms rather than extracellular signaling events. Taken together, our data suggest that arginylation plays a general role in the migration of the neural crest cells in development by regulating the molecular machinery that underlies cell migration through tissues and organs during morphogenesis.  相似文献   

5.
Avian embryos provide a unique platform for studying many vertebrate developmental processes, due to the easy access of the embryos within the egg. Chimeric avian embryos, in which quail donor tissue is transplanted into a chick embryo in ovo, combine the power of indelible genetic labeling of cell populations with the ease of manipulation presented by the avian embryo.Quail-chick chimeras are a classical tool for tracing migratory neural crest cells (NCCs)1-3. NCCs are a transient migratory population of cells in the embryo, which originate in the dorsal region of the developing neural tube4. They undergo an epithelial to mesenchymal transition and subsequently migrate to other regions of the embryo, where they differentiate into various cell types including cartilage5-13, melanocytes11,14-20, neurons and glia21-32. NCCs are multipotent, and their ultimate fate is influenced by 1) the region of the neural tube in which they originate along the rostro-caudal axis of the embryo11,33-37, 2) signals from neighboring cells as they migrate38-44, and 3) the microenvironment of their ultimate destination within the embryo45,46. Tracing these cells from their point of origin at the neural tube, to their final position and fate within the embryo, provides important insight into the developmental processes that regulate patterning and organogenesis.Transplantation of complementary regions of donor neural tube (homotopic grafting) or different regions of donor neural tube (heterotopic grafting) can reveal differences in pre-specification of NCCs along the rostro-caudal axis2,47. This technique can be further adapted to transplant a unilateral compartment of the neural tube, such that one side is derived from donor tissue, and the contralateral side remains unperturbed in the host embryo, yielding an internal control within the same sample2,47. It can also be adapted for transplantation of brain segments in later embryos, after HH10, when the anterior neural tube has closed47.Here we report techniques for generating quail-chick chimeras via neural tube transplantation, which allow for tracing of migratory NCCs derived from a discrete segment of the neural tube. Species-specific labeling of the donor-derived cells with the quail-specific QCPN antibody48-56 allows the researcher to distinguish donor and host cells at the experimental end point. This technique is straightforward, inexpensive, and has many applications, including fate-mapping, cell lineage tracing, and identifying pre-patterning events along the rostro-caudal axis45. Because of the ease of access to the avian embryo, the quail-chick graft technique may be combined with other manipulations, including but not limited to lens ablation40, injection of inhibitory molecules57,58, or genetic manipulation via electroporation of expression plasmids59-61, to identify the response of particular migratory streams of NCCs to perturbations in the embryo''s developmental program. Furthermore, this grafting technique may also be used to generate other interspecific chimeric embryos such as quail-duck chimeras to study NCC contribution to craniofacial morphogenesis, or mouse-chick chimeras to combine the power of mouse genetics with the ease of manipulation of the avian embryo.62  相似文献   

6.
Uveal melanoma is the most common intraocular malignancy in adults, representing between about 4% and 5% of all melanomas. High expression levels of Protein Tyrosine Phosphatase 4A3, a dual phosphatase, is highly predictive of metastasis development and PTP4A3 overexpression in uveal melanoma cells increases their in vitro migration and in vivo invasiveness. Melanocytes, including uveal melanocytes, are derived from the neural crest during embryonic development. We therefore suggested that PTP4A3 function in uveal melanoma metastasis may be related to an embryonic role during neural crest cell migration. We show that PTP4A3 plays a role in cephalic neural crest development in Xenopus laevis. PTP4A3 loss of function resulted in a reduction of neural crest territory, whilst gain of function experiments increased neural crest territory. Isochronic graft experiments demonstrated that PTP4A3-depleted neural crest explants are unable to migrate in host embryos. Pharmacological inhibition of PTP4A3 on dissected neural crest cells significantly reduced their migration velocity in vitro. Our results demonstrate that PTP4A3 is required for cephalic neural crest migration in vivo during embryonic development.  相似文献   

7.
Highlights? Cnn2 is expressed in NCCs and required for their migration in frogs and chicks ? Cnn2 is inactivated by noncanonical Wnt signaling ? Loss of Cnn2 causes a switch from cortical actin to central stress fibers ? Cnn2 polarizes the actin cytoskeleton downstream of PCP  相似文献   

8.
During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3–Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.  相似文献   

9.
Loss of cell adhesion and enhancement of cell motility contribute to epithelial-to-mesenchymal transition during development. These processes are related to a) rearrangement of cell-cell and cell-substrate adhesion molecules; b) cross talk between extra-cellular matrix and internal cytoskeleton through focal adhesion molecules. Focal adhesions are stringently regulated transient structures implicated in cell adhesion, spreading and motility during tissue development. Importantly, despite the extensive elucidation of the molecular composition of focal adhesions, the complex regulation of their dynamics is largely unclear. Here, we demonstrate, using live-imaging in medaka, that the microRNA miR-204 promotes both mesenchymal neural crest and lens cell migration and elongation. Overexpression of miR-204 results in upregulated cell motility, while morpholino-mediated ablation of miR-204 activity causes abnormal lens morphogenesis and neural crest cell mislocalization. Using a variety of in vivo and in vitro approaches, we demonstrate that these actions are mediated by the direct targeting of the Ankrd13A gene, which in turn controls focal cell adhesion formation and distribution. Significantly, in vivo restoration of abnormally elevated levels of Ankrd13A resulting from miR-204 inactivation rescued the aberrant lens phenotype in medaka fish. These data uncover, for the first time in vivo, the role of a microRNA in developmental control of mesenchymal cell migration and highlight miR-204 as a “master regulator” of the molecular networks that regulate lens morphogenesis in vertebrates.  相似文献   

10.
Neural crest cells (NCCs) are a transient population of cells present in vertebrate development that emigrate from the dorsal neural tube (NT) after undergoing an epithelial-mesenchymal transition 1,2. Following EMT, NCCs migrate large distances along stereotypic pathways until they reach their targets. NCCs differentiate into a vast array of cell types including neurons, glia, melanocytes, and chromaffin cells 1-3. The ability of NCCs to reach and recognize their proper target locations is foundational for the appropriate formation of all structures containing trunk NCC-derived components 3. Elucidating the mechanisms of guidance for trunk NCC migration has therefore been a matter of great significance. Numerous molecules have been demonstrated to guide NCC migration 4. For instance, trunk NCCs are known to be repelled by negative guidance cues such as Semaphorin, Ephrin, and Slit ligands 5-8. However, not until recently have any chemoattractants of trunk NCCs been identified 9. Conventional in vitro approaches to studying the chemotactic behavior of adherent cells work best with immortalized, homogenously distributed cells, but are more challenging to apply to certain primary stem cell cultures that initially lack a homogenous distribution and rapidly differentiate (such as NCCs). One approach to homogenize the distribution of trunk NCCs for chemotaxis studies is to isolate trunk NCCs from primary NT explant cultures, then lift and replate them to be almost 100% confluent. However, this plating approach requires substantial amounts of time and effort to explant enough cells, is harsh, and distributes trunk NCCs in a dissimilar manner to that found in in vivo conditions. Here, we report an in vitro approach that is able to evaluate chemotaxis and other migratory responses of trunk NCCs without requiring a homogenous cell distribution. This technique utilizes time-lapse imaging of primary, unperturbed trunk NCCs inside a modified Zigmond chamber (a standard Zigmond chamber is described elsewhere10). By exposing trunk NCCs at the periphery of the culture to a chemotactant gradient that is perpendicular to their predicted natural directionality, alterations in migratory polarity induced by the applied chemotactant gradient can be detected. This technique is inexpensive, requires the culturing of only two NT explants per replicate treatment, avoids harsh cell lifting (such as trypsinization), leaves trunk NCCs in a more similar distribution to in vivo conditions, cuts down the amount of time between explantation and experimentation (which likely reduces the risk of differentiation), and allows time-lapse evaluation of numerous migratory characteristics.  相似文献   

11.
12.
13.
The neural crest (NC) is a transient dorsal neural tube cell population that undergoes an epithelium-to-mesenchyme transition (EMT) at the end of neurulation, migrates extensively towards various organs, and differentiates into many types of derivatives (neurons, glia, cartilage and bone, pigmented and endocrine cells). In this protocol, we describe how to dissect the premigratory cranial NC from Xenopus laevis embryos, in order to study NC development in vivo and in vitro. The frog model offers many advantages to study early development; abundant batches are available, embryos develop rapidly, in vivo gain and loss of function strategies allow manipulation of gene expression prior to NC dissection in donor and/or host embryos. The NC explants can be plated on fibronectin and used for in vitro studies. They can be cultured for several days in a serum-free defined medium. We also describe how to graft NC explants back into host embryos for studying NC migration and differentiation in vivo.  相似文献   

14.
The receptor tyrosine kinase Ror2 acts as a receptor or coreceptor for Wnt5a to mediate Wnt5a-induced activation of the Wnt/JNK pathway and inhibition of the β-catenin-dependent canonical Wnt pathway. However, little is known about how Ror2 cooperates with another receptor component(s) to mediate Wnt5a signaling. We show here that Ror2 regulates Wnt5a-induced polymerization of Dishevelled (Dvl) and that this Ror2-mediated regulation of Dvl is independent of the cytoplasmic region of Ror2. Ror2 can associate with Frizzled7 (Fz7) via its extracellular cysteine-rich domain to form a receptor complex that is required for the regulation of Dvl and activation of the AP-1 promoter after Wnt5a stimulation. Suppressed expression of Fz7 indeed results in the inhibition of Wnt5a-induced polymerization of Dvl and AP-1 activation. Interestingly, both the DIX and the DEP domains of Dvl are indispensable for Dvl polymerization and subsequent AP-1 activation after Wnt5a stimulation. We further show that polymerized Dvl is colocalized with Rac1 and that suppressed expression of Rac1 inhibits Wnt5a-induced AP-1 activation. Collectively, our results indicate that Ror2/Fz receptor complex plays an important role in the Wnt5a/Rac1/AP-1 pathway by regulating the polymerization of Dvl.Wnt proteins can elicit β-catenin-dependent and -independent signaling pathways (2, 20, 46). Ror2 is a member of the Ror family of receptor tyrosine kinases and plays essential roles in developmental morphogenesis (21, 26, 31, 32, 44). Ror2 has been shown to act as a receptor or coreceptor for Wnt5a to activate the β-catenin-independent signaling pathway, involving JNK/c-Jun (AP-1), Src and Ca2+, which are essential for cell polarity, migration, and cancer cell invasion (8, 14, 28-31, 37). Wnt5a/Ror2 signaling also plays a crucial role in inhibiting the β-catenin-dependent signaling pathway (25). Structure-function analyses of Ror2 revealed that Ror2 mediates Wnt5a signaling through distinct mechanisms dependent on and independent of its kinase activity, i.e., Wnt5a-induced migration of fibroblast cells requires the cytoplasmic C-terminal portion of Ror2 but not its intrinsic kinase activity (28), whereas the intrinsic kinase activity of Ror2 is indispensable for extracellular matrix (ECM) degradation of osteosarcoma cells (8). In addition, inhibition of the β-catenin-dependent signaling pathway by Wnt5a also requires the intrinsic kinase activity of Ror2 (24). Importantly, the Caenorhabditis elegans ortholog of Ror2, CAM-1, also has the kinase activity-dependent and -independent functions (9, 12, 13). Furthermore, CAM-1 exhibits the cytoplasmic region-independent functions, including cell migration (17), synaptic transmission at the neuromuscular junction (10), and inhibition of the β-catenin-dependent signaling pathway (11), although their underlying molecular mechanisms remain to be determined. However, it is unknown whether or not Ror2 also exhibits the cytoplasmic region-independent functions in other organisms.Dishevelled (Dvl) is an essential mediator of both the β-catenin-dependent and -independent signaling pathways. We have previously reported that both Ror2 and Dvl are required for Wnt5a-induced cell migration (28). However, the relationship between Ror2 and Dvl in Wnt5a signaling remains unclear. It has been reported that Dvl has an ability to form dynamic polymers, which are crucial for activating the β-catenin-dependent signaling pathway probably by serving as a scaffold for Axin recruitment (39, 41). However, there is no direct evidence showing that Wnt stimulation indeed induces dynamic formation of Dvl polymers. In addition, it remains unclear whether or not the polymerization of Dvl is involved in the β-catenin-independent signaling pathway.In the present study we show that Wnt5a induces dynamic polymerization of Dvl2 via a receptor complex containing both Ror2 and Frizzled (Fz)7, even in the absence of the cytoplasmic region of Ror2. We further provide evidence indicating that Ror2/Fz7 receptor complex plays an important role in Wnt5a/Rac1/AP-1 pathway by regulating polymerization of Dvl2.  相似文献   

15.
Cell migration requires dynamic regulation of cell–cell signaling and cell adhesion. Both of these processes involve endocytosis, lysosomal degradation, and recycling of ligand–receptor complexes and cell adhesion molecules from the plasma membrane. Neural crest (NC) cells in vertebrates are highly migratory cells, which undergo an epithelial–mesenchymal transition (EMT) to leave the neural epithelium and migrate throughout the body to give rise to many different derivatives. Here we show that the v-ATPase interacting protein, Rabconnectin-3a (Rbc3a), controls intracellular trafficking events and Wnt signaling during NC migration. In zebrafish embryos deficient in Rbc3a, or its associated v-ATPase subunit Atp6v0a1, many NC cells fail to migrate and misregulate expression of cadherins. Surprisingly, endosomes in Rbc3a- and Atp6v0a1-deficient NC cells remain immature but still acidify. Rbc3a loss-of-function initially downregulates several canonical Wnt targets involved in EMT, but later Frizzled-7 accumulates at NC cell membranes, and nuclear B-catenin levels increase. Presumably due to this later Wnt signaling increase, Rbc3a-deficient NC cells that fail to migrate become pigment progenitors. We propose that Rbc3a and Atp6v0a1 promote endosomal maturation to coordinate Wnt signaling and intracellular trafficking of Wnt receptors and cadherins required for NC migration and cell fate determination. Our results suggest that different v-ATPases and associated proteins may play cell-type-specific functions in intracellular trafficking in many contexts.  相似文献   

16.
The extracellular matrix plays a critical role in neural crest (NC) cell migration. In this study, we characterize the contribution of the novel GPI-linked matrix metalloproteinase (MMP) zebrafish mmp17b. Mmp17b is expressed post-gastrulation in the developing NC. Morpholino inactivation of mmp17b function, or chemical inhibition of MMP activity results in aberrant NC cell migration with minimal change in NC proliferation or apoptosis. Intriguingly, a GPI anchored protein with metalloproteinase inhibitor properties, Reversion-inducing-Cysteine-rich protein with Kazal motifs (RECK), which has previously been implicated in NC development, is expressed in close apposition to NC cells expressing mmp17b, raising the possibility that these two gene products interact. Consistent with this possibility, embryos silenced for mmp17b show defective development of the dorsal root ganglia (DRG), a crest-derived structure affected in RECK mutant fish sensory deprived (sdp). Taken together, this study has identified the first pair of MMP, and their putative MMP inhibitor RECK that functions together in NC cell migration.  相似文献   

17.
Directional migration of neural crest (NC) cells is essential for patterning the vertebrate embryo, including the craniofacial skeleton. Extensive filopodial protrusions in NC cells are thought to sense chemo-attractive/repulsive signals that provide directionality. To test this hypothesis, we generated null mutations in zebrafish fascin1a (fscn1a), which encodes an actin-bundling protein required for filopodia formation. Homozygous fscn1a zygotic null mutants have normal NC filopodia due to unexpected stability of maternal Fscn1a protein throughout NC development and into juvenile stages. In contrast, maternal/zygotic fscn1a null mutant embryos (fscn1a MZ) have severe loss of NC filopodia. However, only a subset of NC streams display migration defects, associated with selective loss of craniofacial elements and peripheral neurons. We also show that fscn1a-dependent NC migration functions through cxcr4a/cxcl12b chemokine signaling to ensure the fidelity of directional cell migration. These data show that fscn1a-dependent filopodia are required in a subset of NC cells to promote cell migration and NC derivative formation, and that perdurance of long-lived maternal proteins can mask essential zygotic gene functions during NC development.  相似文献   

18.
The receptor-tyrosine kinase Ror2 acts as an alternative receptor or co-receptor for Wnt5a and mediates Wnt5a-induced convergent extension movements during embryogenesis in mice and Xenopus as well as the polarity and migration of several cell types during development. However, little is known about whether Ror2 function is conserved in other vertebrates or is involved in other non-canonical Wnt ligands in vivo. In this study we demonstrated that overexpression of dominant-negative ror2 (ror2-TM) mRNA in zebrafish embryos resulted in convergence and extension defects and incompletely separated eyes, which is consistent with observations from slb/wnt11 mutants or wnt11 knockdown morphants. Moreover, the co-injection of ror2-TM mRNA and a wnt11 morpholino or the coexpression of ror2 and wnt11 in zebrafish embryos synergetically induced more severe convergence and extension defects. Transplantation studies further demonstrated that the Ror2 receptor responded to the Wnt11 ligand and regulated cell migration and cell morphology during gastrulation. DnRor2 inhibited the action of Wnt11, which was revealed by a decreased percentage of Wnt11-induced convergence and extension defects. Ror2 physically interacts with Wnt11. The intracellular Tyr-647 and Ser-863 sites of Ror2 are essential for mediating the action of Wnt11. Dishevelled and RhoA act downstream of Wnt11-Ror2 to regulate convergence and extension movements. Overall, our data suggest an important role of Ror2 in mediating Wnt11 signaling and in regulating convergence and extension movements in zebrafish.  相似文献   

19.
The vertebrate neural crest is a population of migratory cells that originates in the dorsal aspect of the embryonic neural tube. These cells undergo an epithelial-to-mesencyhmal transition (EMT), delaminate from the neural tube and migrate extensively to generate an array of differentiated cell types. Elucidating the gene regulatory networks involved in neural crest cell induction, migration and differentiation are thus crucial to understanding vertebrate development. To this end, we have identified Annexin A6 as an important regulator of chick midbrain neural crest cell emigration. Annexin proteins comprise a family of calcium-dependent, membrane-binding molecules that mediate a variety of cellular and physiological processes including cell adhesion, migration and invasion. Our data indicate that Annexin A6 is expressed in the proper spatio-temporal pattern in the chick midbrain to play a potential role in neural crest cell ontogeny. To investigate Annexin A6 function, we have depleted or overexpressed Annexin A6 in the developing midbrain neural crest cell population. Our results show that knock-down or overexpression of Annexin A6 reduces or expands the migratory neural crest cell domain, respectively. Importantly, this phenotype is not due to any change in cell proliferation or cell death but can be correlated with changes in the size of the premigratory neural crest cell population and with markers associated with EMT. Taken together, our data indicate that Annexin A6 plays a pivotal role in modulating the formation of cranial migratory neural crest cells during vertebrate development.  相似文献   

20.
Hindbrain (vagal) neural crest cells become relatively uniformly distributed along the embryonic intestine during the rostral to caudal colonization wave which forms the enteric nervous system (ENS). When vagal neural crest cells are labeled before migration in avian embryos by in ovo electroporation, the distribution of labeled neural crest cells in the ENS varies vastly. In some cases, the labeled neural crest cells appear evenly distributed and interspersed with unlabeled neural crest cells along the entire intestine. However, in most specimens, labeled cells occur in relatively discrete patches of varying position, area, and cell number. To determine reasons for these differences, we use a discrete cellular automata (CA) model incorporating the underlying cellular processes of neural crest cell movement and proliferation on a growing domain, representing the elongation of the intestine during development. We use multi-species CA agents corresponding to labeled and unlabeled neural crest cells. The spatial distributions of the CA agents are quantified in terms of an index. This investigation suggests that (i) the percentage of the initial neural crest cell population that is labeled and (ii) the ratio of cell proliferation to motility are the two key parameters producing the extreme differences in spatial distributions observed in avian embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号