首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nck is a ubiquitously expressed adaptor protein containing Src homology 2 (SH2) and Src homology 3 (SH3) domains. It integrates downstream effector proteins with cell membrane receptors, such as the epidermal growth factor receptor (EGFR). EGFR plays a critical role in cellular proliferation and differentiation. The 45-residue juxtamembrane domain of EGFR (JM), located between the transmembrane and kinase domains, regulates receptor activation and trafficking to the basolateral membrane of polarized epithelia through a proline-rich motif that resembles a consensus SH3 domain binding site. We demonstrate here that the JM region can bind to Nck, showing a notable binding preference for the second SH3 domain. To elucidate the structural determinants for this interaction, we have determined the NMR solution structures of both the first and second Nck SH3 domains (Nck1-1 and Nck1-2). These domains adopt a canonical SH3 beta-barrel-like fold, containing five antiparallel strands separated by three loop regions and one 3 10-helical turn. Chemical shift perturbation studies have identified the residues that form the binding cleft of Nck1-2, which are primarily located in the RT and n-Src loops. JM binds to Nck1-2 with an affinity of approximately 80 microM through a positively charged sequence near the N-terminus, as opposed to the polyproline sequence. The two Nck SH3 domains exhibit both steric and electrostatic differences in their RT-Src and n-Src loops, and a model of the Nck1-2 domain complexed with the JM highlights the factors that define the putative binding mode for this ligand.  相似文献   

2.
The erythropoietin receptor (EpoR) is crucial for erythrocyte formation. The x-ray crystal structures of the EpoR extracellular domain lack the juxtamembrane (JM) region and the junction to the transmembrane (TM) domain. Yet the JM-TM regions are important for transmitting the conformational change imposed on the receptor dimer by Epo binding. Cysteine-scanning mutagenesis of the JM-TM regions identified three novel constitutively active mutants, demonstrating close disulfide-bonded juxtapositioning of these residues in the JM (L223C) and N-terminal TM domain (L226C, I227C). Chemical cross-linking defined the interface of the active helical TM dimer and revealed that the JM-TM segment encompassing Leu(226)-Leu(230) is non-helical. Molecular dynamics and NMR studies indicated that the TM-JM junction forms an N-terminal helix cap. This structure is important for EpoR function because replacement of this motif by consecutive leucines rendered the receptor constitutively active.  相似文献   

3.
Transmembrane (TM) helix and juxtamembrane (JM) domains (TM-JM) bridge the extracellular and intracellular domains of single-pass membrane proteins, including epidermal growth factor receptor (EGFR). TM-JM dimerization plays a crucial role in regulation of EGFR kinase activity at the cytoplasmic side. Although the interaction of JM with membrane lipids is thought to be important to turn on EGF signaling, and phosphorylation of Thr654 on JM leads to desensitization, the underlying kinetic mechanisms remain unclear. In particular, how Thr654 phosphorylation regulates EGFR activity is largely unknown. Here, combining single-pair FRET imaging and nanodisc techniques, we showed that phosphatidylinositol 4,5-bis phosphate (PIP2) facilitated JM dimerization effectively. We also found that Thr654 phosphorylation dissociated JM dimers in the membranes containing acidic lipids, suggesting that Thr654 phosphorylation electrostatically prevented the interaction with basic residues in JM and acidic lipids. Based on the single-molecule experiment, we clarified the kinetic pathways of the monomer (inactive state)-to-dimer (active state) transition of JM domains and alteration in the pathways depending on the membrane lipid species and Thr654 phosphorylation.  相似文献   

4.
Mustafa M  Mirza A  Kannan N 《Proteins》2011,79(1):99-114
The catalytic domain of epidermal growth factor receptor (EGFR) is activated by dimerization, which requires allosteric coupling between distal dimerization and catalytic sites. Although crystal structures of EGFR kinases, solved in various conformational states, have provided important insights into EGFR activation by dimerization, the atomic details of how dimerization signals are dynamically coupled to catalytic regions of the kinase core are not fully understood. In this study, we have performed unrestrained and targeted molecular dynamics simulations on the active and inactive states of EGFR, followed by principal component analysis on the simulated trajectories, to identify correlated motions in the EGFR kinase domain upon dimerization. Our analysis reveals that the conformational changes associated with the catalytic functions of the kinase core are highly correlated with motions in the juxtamembrane (JM) and C-terminal tail, two flexible structural elements that play an active role in EGFR kinase activation and dimerization. In particular, the opening and closing of the ATP binding lobe relative to the substrate binding lobe is highly correlated with motions in the JM and C-terminal tail, suggesting that ATP and substrate binding can be coordinated with dimerization through conformational changes in the JM and C-terminal tail. Our study pinpoints key residues involved in this conformational coupling, and provides new insights into the role of the JM and C-terminal tail segments in EGFR kinase functions.  相似文献   

5.
Craddock BP  Cotter C  Miller WT 《FEBS letters》2007,581(17):3235-3240
The juxtamembrane (JM) regions of several receptor tyrosine kinases are involved in autoinhibitory interactions that maintain the low basal activity of the receptors; mutations can give rise to constitutive kinase activity and signaling. In this report, we show that the JM region of the human insulin-like growth factor I receptor (IGF1R) plays a role in kinase regulation. We mutated JM residues that were conserved in this subfamily of receptor tyrosine kinases, and expressed and purified the cytoplasmic domains using the Sf9/baculovirus system. We show that a kinase-proximal mutation (Y957F) and (to a lesser extent) a mutation in the central part of the JM region (N947A) increase the autophosphorylation activity of the kinase. Steady-state kinetic measurements show the mutations cause an increase in V(max) for phosphorylation of peptide substrates. When the holoreceptors were expressed in fibroblasts derived from IGF1R-deficient mice, the Y957F mutation led to a large increase in basal and in IGF1-stimulated receptor autophosphorylation. Together, these data demonstrate that the JM region of IGF1R plays an important role in limiting the basal activity of the receptor.  相似文献   

6.
The EGFR/HER receptor family of an epidermal growth factor represents an important class of the receptor tyrosine kinases playing the key role in the control of cell growth and differentiation in mammalian cells, as well as in the development of a number of pathological processes, including oncogenesis. Binding of a ligand to the extracellular domains initiates switching of the EGFR/HER receptor between the alternative dimeric states that causes the allosteric activation of kinase domains in cell cytoplasm. The transmembrane (TM) domain and adjacent flexible regions alternatively interacting with either membrane surface or kinase domains are directly involved in the complex conformational transition in EGFR/HERs. Here we report on a highly efficient system of the cell free production of the EGFR/HER TM domains with functionally important juxtamembrane (JM) regions for the investigation of the molecular basis of biochemical signal transduction across the cell membrane. To increase the efficiency of synthesis of the EGFR/HER TM-JM fragments of the receptors, we used two N-terminal expression tags, which significantly increased the protein yield. In the case of the TM-JM fragments of EGFR (residues 638–692) and HER2 (residues 644–700), the method allowed us to obtain milligram quantities of the 13C,15N-labeled protein for structural and biophysical investigations in the membrane-mimicking environments using high-resolution heteronuclear NMR spectroscopy.  相似文献   

7.
Calcium-calmodulin (CaM) binding to the epidermal growth factor receptor (EGFR) has been shown to both inhibit and stimulate receptor activity. CaM binds to the intracellular juxtamembrane (JM) domain (Met645-Phe688) of EGFR. Protein kinase C (PKC) mediated phosphorylation of Thr654 occurs within this domain. CaM binding to the JM domain inhibits PKC phosphorylation and conversely PKC mediated phosphorylation of Thr654 or Glu substitution of Thr654 inhibits CaM binding. A second threonine residue (Thr669) within the JM domain is phosphorylated by the mitogen-activated protein kinase (MAPK). Previous results have shown that CaM interferes with EGFR-induced MAPK activation. If and how phosphorylation of Thr669 affects CaM-EGFR interaction is however not known.In the present study we have used surface plasmon resonance (BIAcore) to study the influence of Thr669 phosphorylation on real time interactions between the intracellular juxtamembrane (JM) domain of EGFR and CaM. The EGFR-JM was expressed as GST fusion proteins in Escherichia coli and phosphorylation was mimicked by generating Glu substitutions of either Thr654 or Thr669. Purified proteins were coupled to immobilized anti-GST antibodies at the sensor surface and increasing concentration of CaM was applied. When mutating Thr654 to Glu654 no specific CaM binding could be detected. However, neither single substitutions of Thr669 (Gly669 or Glu669) nor double mutants Gly654/Gly669 or Gly654/Glu669 influenced the binding of CaM to the EGFR-JM. This clearly shows that PKC may regulate EGF-mediated CaM signalling through phosphorylation of Thr654 whereas phosphorylation of Thr669 seems to play a CaM independent regulatory role. The role of both residues in the EGFR-calmodulin interaction was also studied in silico. Our modelling work supports a scenario where Thr654 from the JM domain interacts with Glu120 in the calmodulin molecule. Phosphorylation of Thr654 or Glu654 substitution creates a repulsive electrostatic force that would diminish CaM binding to the JM domain. These results are in line with the Biacore experiments showing a weak binding of the CaM to the JM domain with Thr654 mutated to Glu. Furthermore, these results provide a hypothesis to how CaM binding to EGFR might both positively and negatively interfere with EGFR-activity.  相似文献   

8.
Asymmetric dimer formation of epidermal growth factor receptor (EGFR) is crucial for EGF-induced receptor activation. Even though autophosphorylation is important for activation, its role remains elusive in the context of regulating dimers. In this study, employing overlapping time series analysis to raster image correlation spectroscopy (RICS), we observed time-dependent transient dynamics of EGFR dimerization and found EGFR kinase activity to be essential for dimerization. As a result of which, we hypothesized that phosphorylation could influence dimerization. Evaluating this point, we observed that one of the tyrosine residues (Y954) located in the C-terminal lobe of the activator kinase domain was important to potentiate dimerization. Functional imaging to monitor Ca2+ and ERK signals revealed a significant role of Y954 in influencing downstream signaling cascade. Crucial for stabilization of EGFR asymmetric dimer is a “latch” formed between kinase domains of the binding partners. Because Y954 is positioned adjacent to the latch binding region on the kinase domain, we propose that phosphorylation strengthened the latch interaction. On the contrary, we identified that threonine phosphorylation (T669) in the latch domain negatively regulated EGFR dimerization and the downstream signals. Overall, we have delineated the previously anonymous role of phosphorylation at the latch interface of kinase domains in regulating EGFR dimerization.  相似文献   

9.
It is widely accepted that receptor protein-tyrosine kinases (RTKs) are activated upon dimerization by binding to their extracellular ligands. However, EGF receptor (EGFR) dimerization per se does not require ligand binding. Instead, its cytoplasmic kinase domains have to form characteristic head-to-tail asymmetric dimers to become active, where one 'activator' domain activates the other 'receiver' domain. The non-catalytic, cytoplasmic regions of RTKs, namely the juxtamembrane and carboxy terminal portions, also regulate kinase activity. For instance, the juxtamembrane region of the RTK MuSK inhibits the kinase domain probably together with a cellular factor(s). These findings suggest that RTKs could be activated by cytoplasmic proteins. Indeed, Dok-7 and cytohesin have recently been identified as such activators of MuSK and EGFR, respectively. Given that failure of Dok-7 signaling causes myasthenia, and inhibition of cytohesin signaling reduces the proliferation of EGFR-dependent cancer cells, cytoplasmic activators of RTKs may provide new therapeutic targets.  相似文献   

10.
The thyrotropin (TSH) receptor belongs to a family of guanine nucleotide protein-coupled receptors with seven transmembrane-spanning regions joined regulatory together by extracellular and intracellular loops. The cytoplasmic domain comprises three cytoplasmic loops and a cytoplasmic tail that are likely to be important in coupling of the receptor to the guanine nucleotide proteins. To address the question of which portions of the cytoplasmic domain of the TSH receptor are important in this process, we have altered groups of amino acids in the region of the TSH receptor by site-directed mutagenesis. Because of the low affinity of TSH binding to the TSH receptor mutated in the amino terminus of the second cytoplasmic loop and the amino terminus of the cytoplasmic tail, definitive conclusions cannot be made regarding the roles of these regions in signal transduction. However, our data indicate that the first cytoplasmic loop (residues 441-450), the carboxyl-terminal region of the second cytoplasmic loop (residues 528-537), and the carboxyl-terminal (but not the amino-terminal) region of the third cytoplasmic loop (residues 617-625) are important in the ability of the TSH receptor to mediate an increase in intracellular cAMP production. Furthermore, two-thirds of the carboxyl-terminal end of the cytoplasmic tail (residues 709-764; corresponding to the region not conserved between the TSH and lutropin/chorionic gonadotropin receptors) can be removed without functional impairment of the TSH receptor.  相似文献   

11.
Parrish W  Eilers M  Ying W  Konopka JB 《Genetics》2002,160(2):429-443
The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors.  相似文献   

12.
13.
Comparative modeling studies on conserved regions of the gastric H(+)K(+)-ATPase reveal that the E1-E2 conformational transition induces significant tertiary structural changes while conserving the secondary structure. The residues 516-530 of the cytoplasmic domain and TM10 within the transmembrane (TM) regions undergo maximum tertiary structural changes. The luminal regions exhibit comparatively lesser tertiary structural deviations. Residues 249-304 show maximum secondary structural deviation in the conformational transition. The Cys-815 and Cys-323 residues involved in inhibitor binding are found to have smaller buried side chain areas in the E1 conformation compared to E2. Retention of activity correlates well with the buried side chain area when selected amino acid residues in TM6 are mutated using modeling techniques with bulkier amino acid residues. Conformational specificity for ion binding is corroborated with the fraction of side chains exposed to polar atoms of the residues E345, D826, V340, A341, V343, and E822.  相似文献   

14.
The mechanism of UV-radiation-induced EGF receptor (EGFR) internalization remains to be established. In the present study, we found UV-radiation-mediated internalization of the EGFR to be dependent on the cytoplasmic carboxy-terminal region. UV radiation was unable to induce internalization of EGFR carboxy-terminal truncation mutants where all or four of the five major autophosphorylation sites were missing (963- and 1028-EGFR, respectively). Mutational removal of serine residues 1046, 1047, 1057 and 1142 within the carboxy-terminal receptor region was also sufficient to abolish UV-radiation-induced internalization of the EGFR. Furthermore, the UV-radiation-induced internalization was abrogated for an EGFR mutated in tyrosine 1045 (Y1045F), the major c-Cbl binding site. However, UV radiation did not induce phosphorylation at tyrosine 1045, in contrast to the prominent phosphorylation induced by EGF. Our results suggest a mechanism for UV-radiation-induced internalization of EGFR involving a conformational change that is dependent on structural elements formed by specific serine and tyrosine residues in the carboxy-terminal domain.  相似文献   

15.
Using peptides epidermal growth factor receptor (EGFR)-13 and EGFR-14, which correspond to residues 645-657 and 679-692, respectively, in the juxtamembrane, cytosolic region of the epidermal growth factor receptor (EGFR) we have investigated the role of specific regions of the receptor in regulating its autophosphorylation and protein tyrosine kinase activity. EGFR-13, but not EGFR-14, increased autophosphorylation (by twofold) of the full-length and two truncated forms (Delta1022-1186 and a constitutively active receptor kinase domain) of the EGFR. EGFR-13 increased the stoichiometry of tyrosine phosphorylation of the full-length receptor from 4.2 to 10.1 mol Pi/mol EGFR and that of EGFRDelta1022-1186 from 1.0 to 2 mol Pi/mol receptor. Increased receptor autophosphorylation in the presence of EGFR-13 cannot solely be attributed to an increase in tyrosine kinase activity because EGFR-14 and polylysine increased tyrosine kinase activity of EGFRDelta1022-1186 and full-length EGFR, respectively, to the same extent as EGFR-13 without any effects on receptor autophosphorylation. Phosphorylation of EGFR-13 (P-EGFR-13) on the threonine residue corresponding to Thr654 in EGFR obliterated the ability of the peptide to increase autophosphorylation and markedly diminished its capacity to increase receptor tyrosine kinase activity. Additionally, EGFR-13, but not EGFR-14 or P-EGFR-13, decreased the migration of the receptor on nondenaturing gels, indicating that EGFR-13 induces some conformational change. Phosphopeptide maps of the EGFR phosphorylated in the presence of EGFR-13 or pp60(c-src) demonstrated that the additional sites phosphorylated in the presence of EGFR-13 were the same as those phosphorylated by pp60(c-src) (i.e., Y803, Y845, Y891, Y920, and Y1101). Thus, we conclude that EGFR-13, but not EGFR-14 or P-EGFR-13, competes to disrupt interactions between amino acids 645-657 and some other region(s) on the EGFR to either alleviate a conformational constraint or alter dimer conformation. This change increases the protein tyrosine kinase activity of the EGFR and provides access to additional tyrosine autophosphorylation sites in the receptor.  相似文献   

16.
YscD is an essential component of the plasmid pCD1-encoded type III secretion system (T3SS) of Yersinia pestis. YscD has a single transmembrane (TM) domain that connects a small N-terminal cytoplasmic region (residues 1 to 121) to a larger periplasmic region (residues 143 to 419). Deletion analyses established that both the N-terminal cytoplasmic region and the C-terminal periplasmic region are required for YscD function. Smaller targeted deletions demonstrated that a predicted cytoplasmic forkhead-associated (FHA) domain is also required to assemble a functional T3SS; in contrast, a predicted periplasmic phospholipid binding (BON) domain and a putative periplasmic "ring-building motif" domain of YscD could be deleted with no significant effect on the T3S process. Although deletion of the putative "ring-building motif" domain did not disrupt T3S activity per se, the calcium-dependent regulation of the T3S apparatus was affected. The extreme C-terminal region of YscD (residues 354 to 419) was essential for secretion activity and had a strong dominant-negative effect on the T3S process when exported to the periplasm of the wild-type parent strain. Coimmunoprecipitation studies demonstrated that this region of YscD mediates the interaction of YscD with the outer membrane YscC secretin complex. Finally, replacement of the YscD TM domain with a TM domain of dissimilar sequence had no effect on the T3S process, indicating that the TM domain has no sequence-specific function in the assembly or function of the T3SS.  相似文献   

17.
Two families of actin regulatory proteins are the tropomodulins and tropomyosins. Tropomodulin binds to tropomyosin (TM) and to the pointed end of actin filaments and "caps" the pointed end (i.e., inhibits its polymerization and depolymerization). Tropomodulin 1 has two distinct actin-capping regions: a folded C-terminal domain (residues 160-359), which does not bind to TM, and a conserved, N-terminal region, within residues 1-92 that binds TM and requires TM for capping activity. NMR and circular dichroism were used to determine the structure of a peptide containing residues 1-92 of tropomodulin (Tmod1(1-92)) and to define its TM binding site. Tmod1(1-92) is mainly disordered with only one helical region, residues 24-35. This helix forms part of the TM binding domain, residues 1-35, which become more ordered upon binding a peptide containing the N-terminus of an alpha-TM. Mutation of L27 to E or G in the Tmod helix reduces TM affinity. Residues 49-92 are required for capping but do not bind TM. Of these, residues 67-75 have the sequence of an amphipathic helix, but are not helical. Residues 55-62 and 76-92 display negative 1H-15N heteronuclear Overhauser enhancements showing they are flexible. The conformational dynamics of these residues may be important for actin capping activity.  相似文献   

18.
The epidermal growth factor receptor (EGFR) belongs to the receptor tyrosine kinase (RTK) superfamily and is involved in regulating cell proliferation, differentiation and motility. Growth factor binding induces receptor oligomerization at the plasma membrane, which leads to activation of the intrinsic RTK activity and trans-phosphorylation of tyrosine residues in the intracellular part of the receptor. These residues are docking sites for proteins containing Src homology domain 2 and phosphotyrosine-binding domains that relay the signal inside the cell. In response to EGF attached to beads, lateral propagation of EGFR phosphorylation occurs at the plasma membrane, representing an early amplification step in EGFR signalling. Here we have investigated an underlying reaction network that couples RTK activity to protein tyrosine phosphatase (PTP) inhibition by reactive oxygen species. Mathematical analysis of the chemical kinetic equations of the minimal reaction network detects general properties of this system that can be observed experimentally by imaging EGFR phosphorylation in cells. The existence of a bistable state in this reaction network explains a threshold response and how a high proportion of phosphorylated receptors can be maintained in plasma membrane regions that are not exposed to ligand.  相似文献   

19.
Transmembrane (TM) regions of receptor proteins should have unique structural and/or chemical characteristics if these regions contain residues functional in TM signal transduction. However, in a survey of the membrane-occurring residues in 37 integral membrane proteins, we found that amino acid compositions of TM regions of receptor proteins (n = 11) could not be distinguished statistically from corresponding regions of membrane-anchored proteins (e.g., recognition molecules) with a functional external domain attached to a single hydrophobic membrane-spanning anchor segment (n = 16). TM regions in both categories of proteins differed from the compositions of TM regions in membrane-transport proteins (n = 10). The analysis implies that TM regions in receptor proteins may function mainly to anchor (and position) receptors in their cellular membranes, and therefore residues in receptors that participate in signal transduction need not be restricted to these regions. In addition to mechanisms involving receptor aggregation, ligand-activated conformational perturbation of a receptor external aqueous domain, resulting in membrane penetration of hydrophobic segment(s) of this domain to produce intramembranous contact with its cytoplasmic domain, is hypothesized as a further possible mode of signal transduction.  相似文献   

20.
The binding site of the dopamine D2 receptor, like that of homologous G-protein-coupled receptors (GPCRs), is contained within a water-accessible crevice formed among its seven transmembrane segments (TMSs). Using the substituted-cysteine-accessibility method (SCAM), we are mapping the residues that contribute to the surface of this binding-site crevice. We have mutated to cysteine, one at a time, 21 consecutive residues in the fourth TMS (TM4). Eleven of these mutants reacted with charged sulfhydryl-specific reagents, and bound antagonist protected nine of these from reaction. For the mutants in which cysteine was substituted for residues in the cytoplasmic half of TM4, treatment with the reagents had no effect on binding, consistent with these residues being inaccessible and with the low-resolution structure of the homologous rhodopsin, in which TM3 and TM5 occlude the cytoplasmic half of TM4. Although hydrophobicity analysis positions the C-terminus of TM4 at 4.64, Pro-Pro and Pro-X-Pro motifs, which are known to disrupt alpha-helices, occur at position 4.59 in a number of homologous GPCRs. The SCAM data were consistent with a C-terminus at 4.58, but it is also possible that the alpha-helix extends one additional turn to 4.62 in the D2 receptor, which has a single Pro at 4.59. In homologous GPCRs, the high degree of sequence variation between 4.59 and 4.68 is more characteristic of a loop domain than a helical segment. This region is shown here to be very conserved within functionally related receptors, suggesting an important functional role for this putative nonhelical domain. This inference is supported by observed ligand-specific effects of mutations in this region and by the predicted spatial proximity of this segment to known ligand binding sites in other TMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号