首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to gain some information regarding Ca2+-dependent ATPase, the enzyme was purified from cardiac sarcolemma and its properties were compared with Ca2+-ATPase activity of myosin purified from rat heart. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by Ca2+ but the maximal activation of Ca2+-dependent ATPase required 4 mM Ca2+ whereas that of myosin ATPase required 10 mM Ca2+. These ATPases were also activated by other divalent cations in the order of Ca2+ > Mn2+ > Sr2+ > Br2+ > Mg2+; however, there was a marked difference in the pattern of their activation by these cations. Unlike the myosin ATPase, the ATP hydrolysis by Ca2+-dependent ATPase was not activated by actin. The pH optima of Ca2+-dependent ATPase and myosin ATPase were 9.5 and 6.5 respectively. Na+ markedly inhibited Ca2+-dependent ATPase but had no effect on the myosin ATPase activity. N-ethylmaleimide inhibited Ca2+-dependent ATPase more than myosin ATPase whereas the inhibitory effect of vanadate was more on myosin ATPase than Ca2+-dependent ATPase. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by K-EDTA and NH4-EDTA. When myofibrils were treated with trypsin and passed through columns similar to those used for purifying Ca2+-ATPase from sarcolemma, an enzyme with ATPase activity was obtained. This myofibrillar ATPase was maximally activated at 3–4 mM Ca2+ and 3 to 4 mM ATP like sarcolemmal Ca2+-dependent ATPase. K+ stimulated both ATPase activities in the absence of Ca2+ and inhibited in the presence of Ca2+. Both enzymes were inhibited by Na+, Mg2+, La3+, and azide similarly. However, Ca2+ ATPase from myofibrils showed three peptide bands in SDS polyacrylamide gel electrophoresis whereas Ca2+ ATPase from sarcolemma contained only two bands. Sarcolemmal Ca2+-ATPase had two affinity sites for ATP (0.012 mM and 0.23 mM) while myofibrillar Ca2+-ATPase had only one affinity site (0.34 mM). Myofibrillar Ca2+-ATPase was more sensitive to maleic anhydride and iodoacetamide than sarcolemmal Ca2+-ATPase. These observations suggest that Ca2+-dependent ATPase may be a myosin like protein in the heart sarcolemma and is unlikely to be a tryptic fragment of myosin present in the myofibrils.  相似文献   

2.
Troponin C was removed almost completely from the porcine cardiac myofibrils by the same extraction procedure using CDTA as that previously reported for the rabbit skeletal myofibrils (Morimoto, S. & Ohtsuki, I. (1987) J. Biochem. 101, 291-301), and the effects of substitution of troponin C in cardiac myofibrils with rabbit skeletal troponin C or bovine brain calmodulin were examined. While the ATPase activity of intact cardiac myofibrils or cardiac troponin C-reconstituted cardiac myofibrils was activated at only a little higher concentration of Sr2+ than Ca2+, the skeletal troponin C-substituted cardiac myofibrils, as well as intact rabbit skeletal myofibrils, required more than 10 times higher concentration of Sr2+ than Ca2+ for activation of the myofibrillar ATPase activity. However, the concentrations of Ca2+ and Sr2+ required for the activation of the ATPase activity of the skeletal troponin C-substituted cardiac myofibrils were both about 5 times higher than those of intact skeletal myofibrils. The skeletal troponin C-substituted cardiac myofibrils, as well as intact skeletal myofibrils, also showed higher cooperativity in the Ca2+-activation of the ATPase activity than intact or cardiac troponin C-reconstituted cardiac myofibrils. The ATPase activity of calmodulin-substituted cardiac myofibrils was activated at a several times lower concentration of Ca2+ or Sr2+ than that of calmodulin-substituted skeletal myofibrils, while the ratios of the concentration of Sr2+ to Ca2+ required for activation were almost the same in both cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We investigated the effects of two purported calcium sensitizing agents, MCI-154 and DPI 201–106, and a known calcium sensitizer caffeine on Mg-ATPase (myofibrillar ATPase) and myosin ATPase activity of left ventricular myofibrils isolated from non-failing, idiopathic (IDCM) and ischemic cardiomyopathic (ISCM) human hearts (i.e. failing hearts). The myofibrillar ATPase activity of non-failing myofibrils was higher than that of diseased myofibrils. MCI-154 increased myofibrillar ATPase Ca2+ sensitivity in myofibrils from non-failing and failing human hearts. Effects of caffeine similarly increased Ca2+ sensitivity. Effects of DPI 201–106 were, however, different. Only at the 10–6 M concentration was a significant increase in myofibrillar ATPase calcium sensitivity seen in myofibrils from non-failing human hearts. In contrast, in myofibrils from failing hearts, DPI 201–106 caused a concentration-dependent increase in myofibrillar ATPase Ca2+ sensitivity. Myosin ATPase activity in failing myocardium was also decreased. In the presence of MCI-154, myosin ATPase activity increased by 11, 19, and 24% for non-failing, IDCM, and ISCM hearts, respectively. DPI 201–106 caused an increase in the enzymatic activity of less than 5% for all preparations, and caffeine induced an increase of 4, 11, and 10% in non-failing, IDCM and ISCM hearts, respectively. The mechanism of restoring the myofibrillar Ca2+ sensitivity and myosin enzymatic activity in diseased human hearts is most likely due to enhancement of the Ca2+ activation of the contractile apparatus induced by these agents. We propose that myosin light chain-related regulation may play a complementary role to the troponin-related regulation of myocardial contractility.  相似文献   

4.
The effect of Mg2+ on the Ca2+ binding to rabbit fast skeletal troponin C and the CA2+ dependence of myofibrillar ATPase activity was studied in the physiological state where troponin C was incorporated into myofibrils. The Ca2+ binding to troponin C in myofibrils was measured directly by 45Ca using the CDTA-treated myofibrils as previously reported (Morimoto, S. and Ohtsuki, I. (1989) J. Biochem. 105, 435-439). It was found that the Ca2+ binding to the low and high affinity sites of troponin C in myofibrils was affected by Mg2+ competitively and the Ca2(+)- and Mg2(+)-binding constants were 6.20 x 10(6) and 1.94 x 10(2) M-1, respectively, for the low affinity sites, and 1.58 x 10(8) and 1.33 x 10(3) M-1, respectively, for the high affinity sites. The Ca2+ dependence of myofibrillar ATPase was also affected by Mg2+, with the apparent Ca2(+)- and Mg2(+)-binding constants of 1.46 x 10(6) and 276 x 10(2) M-1, respectively, suggesting that the myofibrillar ATPase was modulated through a competitive action of Mg2+ on Ca2+ binding to the low affinity sites, though the Ca2+ binding to the low affinity sites was not simply related to the myofibrillar ATPase.  相似文献   

5.
The ability of CASF (Ca2+-activated sarcoplasmic factor), a proteolytic enzyme that has recently been isolated from muscle and that removes Z-disks from myofibrils, to remove soluble material from myofibrils and to alter the Mg2+-modified ATPase activity of myofibrils was studied. A new assay involving determination of soluble material released from myofibrils was developed to measure CASF activity quantitatively. Optimum pH and optimum Ca2+ concentration for CASF activity as determined by this new assay were 7.0 and 1 mm, respectively. Proteolytic activity of CASF on myofibrils was prevented completely by excess EDTA. CASF treatment of myofibrils at CASF to myofibril ratios of 1: 20 by weight for 30 min caused a 20~25% increase in Mg2+-modified ATPase activity. CASF treatment for 360 min under these same conditions caused a decrease in Mg2+-modified ATPase activity at the highest ionic strengths used in this study (46.7 and 66.7 mm KCI). The increase in Mg2+-modified ATPase activity may originate from CASF degradation of troponin, whereas the decrease in Mg2+- modified ATPase activity may be due to CASF destruction or release of α-actinin from myofibrils. Digestion of myofibrils by CASF causes in the myofibrils (degradation of Z-lines, increase of ATPase activity) that are very similar to the changes caused by postmortem storage.  相似文献   

6.
Conformational changes in the skeletal troponin complex (sTn) induced by rapidly increasing or decreasing the [Ca2+] were probed by 5-iodoacetamidofluorescein covalently bound to Cys-133 of skeletal troponin I (sTnI). Kinetics of conformational changes was determined for the isolated complex and after incorporating the complex into rabbit psoas myofibrils. Isolated and incorporated sTn exhibited biphasic Ca2+-activation kinetics. Whereas the fast phase (kobs∼1000 s−1) is only observed in this study, where kinetics were induced by Ca2+, the slower phase resembles the monophasic kinetics of sTnI switching observed in another study (Brenner and Chalovich. 1999. Biophys. J. 77:2692–2708) that investigated the sTnI switching induced by releasing the feedback of force-generating cross-bridges on thin filament activation. Therefore, the slower conformational change likely reflects the sTnI switch that regulates force development. Modeling reveals that the fast conformational change can occur after the first Ca2+ ion binds to skeletal troponin C (sTnC), whereas the slower change requires Ca2+ binding to both regulatory sites of sTnC. Incorporating sTn into myofibrils increased the off-rate and lowered the Ca2+ sensitivity of sTnI switching. Comparison of switch-off kinetics with myofibril force relaxation kinetics measured in a mechanical setup indicates that sTnI switching might limit the rate of fast skeletal muscle relaxation.  相似文献   

7.
Influence of exercise on cardiac and skeletal muscle myofibrillar proteins   总被引:3,自引:0,他引:3  
The purpose of this study was to examine the Ca2+-Mg2+ myofibrillar ATPase and protein composition of cardiac and skeletal muscle following strenuous activity to voluntary exhaustion. Sprague-Dawley rats (200 g) were assigned to a control and exercised group, with the run group completing 25 m·min–1 and 8% grade for 1 hour. Following activity, the myocardial Ca2+–Mg2+ myofibrillar ATPase activity -pCa relationship had undergone a rightward shift in the curve. Electrophoretic analysis revealed a change in the pattern of cardiac myofibrillar protein bands, particularly in the 38–42 Kdalton region. Enzymatic analysis of myofibrillar proteins from plantaris muscle, revealed no change in Ca2+ regulation following exercise. Electronmicrographic and electrophoretic analysis revealed extensively disrupted sarcomeric structure and a change in the ratio of several plantaris myofibrillar proteins. No difference was observed for myosin: Actin: tropomyosin ratios; however a dramatic reduction in 58 and 95 Kdalton proteins were evident. The results indicate that prolonged running is associated with similar responses in cardiac and skeletal muscle myofibrillar protein compositions. The abnormalities in myofibrillar ultrastructure may implicate force transmission failure as a factor in exercised-induced muscle damage and/or fatigue.  相似文献   

8.
Gary Bailin 《BBA》1976,449(2):310-326
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (±2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37°C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 μM Ca2+ concentration (CaEGTA binding constant = 4.4 · 105 at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6–9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8-and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6–10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle  相似文献   

9.
Fast skeletal and cardiac troponin C (TnC) contain two high affinity Ca2+/Mg2+ binding sites within the C-terminal domain that are thought to be important for association of TnC with the troponin complex of the thin filament. To test directly the function of these high affinity sites in cardiac TnC they were systematically altered by mutagenesis to generate proteins with a single inactive site III or IV (CBM-III and CBM-IV, respectively), or with both sites III and IV inactive (CBM-III-IV). Equilibrium dialysis indicated that the mutated sites did not bind Ca2+ at pCa 4. Both CBM-III and CBM-IV were similar to the wild type protein in their ability to regulate Ca(2+)-dependent contraction in slow skeletal muscle fibers, and Ca(2+)-dependent ATPase activity in fast skeletal and cardiac muscle myofibrils. The mutant CBM-III-IV is capable of regulating contraction in permeabilized slow muscle fibers but only if the fibers are maintained in a contraction solution containing a high concentration of the mutant protein. CBM-III-IV also regulates myofibril ATPase activity in fast skeletal and cardiac myofibrils but only at concentrations 10-100-fold greater than the normal protein. The pCa50 and Hill coefficient values for Ca(2+)-dependent activation of fast skeletal muscle myofibril ATPase activity by the normal protein and all three mutants are essentially the same. Competition between active and inactive forms of cardiac and slow TnC in a functional assay demonstrates that mutation of both sites III and IV greatly reduces the affinity of cardiac and slow TnC for its functionally relevant binding site in the myofibrils. The data indicate that although neither high affinity site is absolutely essential for regulation of muscle contraction in vitro, at least one active C-terminal site is required for tight association of cardiac troponin C with myofibrils. This requirement can be satisfied by either site III or IV.  相似文献   

10.
Calsequestrin is the major Ca2+-binding protein localized in the terminal cisternae of the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle cells. Calsequestrin has been purified and cloned from both skeletal and cardiac muscle in mammalian, amphibian, and avian species. Two different calsequestrin gene products namely cardiac and fast have been identified. Fast and cardiac calsequestrin isoforms have a highly acidic amino acid composition. The amino acid composition of the cardiac form is very similar to the skeletal form except for the carboxyl terminal region of the protein which possess variable length of acidic residues and two phosphorylation sites. Circular dichroism and NMR studies have shown that calsequestrin increases its -helical content and the intrinsic fluorescence upon binding of Ca2+. Calsequestrin binds Ca2+ with high-capacity and with moderate affinity and it functions as a Ca2+ storage protein in the lumen of the SR. Calsequestrin has been found to be associated with the Ca2+ release channel protein complex of the SR through protein-protein interactions. The human and rabbit fast calsequestrin genes have been cloned. The fast gene is skeletal muscle specific and transcribed at different rates in fast and slow skeletal muscle but not in cardiac muscle. We have recently cloned the rabbit cardiac calsequestrin gene. Heart expresses exclusively the cardiac calsquestrin gene. This gene is also expressed in slow skeletal muscle. No change in calsequestrin mRNA expression has been detected in animal models of cardiac hypertrophy and in failing human heart.  相似文献   

11.
Protein kinase A (PKA)-dependent phosphorylation of troponin (Tn)I represents a major physiological mechanism during β-adrenergic stimulation in myocardium for the reduction of myofibrillar Ca2+ sensitivity via weakening of the interaction with TnC. By taking advantage of thin filament reconstitution, we directly investigated whether or not PKA-dependent phosphorylation of cardiac TnI (cTnI) decreases Ca2+ sensitivity in different types of muscle: cardiac (porcine ventricular) and fast skeletal (rabbit psoas) muscles. PKA enhanced phosphorylation of cTnI at Ser23/24 in skinned cardiac muscle and decreased Ca2+ sensitivity, of which the effects were confirmed after reconstitution with the cardiac Tn complex (cTn) or the hybrid Tn complex (designated as PCRF; fast skeletal TnT with cTnI and cTnC). Reconstitution of cardiac muscle with the fast skeletal Tn complex (sTn) not only increased Ca2+ sensitivity, but also abolished the Ca2+-desensitizing effect of PKA, supporting the view that the phosphorylation of cTnI, but not that of other myofibrillar proteins, such as myosin-binding protein C, primarily underlies the PKA-induced Ca2+ desensitization in cardiac muscle. Reconstitution of fast skeletal muscle with cTn decreased Ca2+ sensitivity, and PKA further decreased Ca2+ sensitivity, which was almost completely restored to the original level upon subsequent reconstitution with sTn. The essentially same result was obtained when fast skeletal muscle was reconstituted with PCRF. It is therefore suggested that the PKA-dependent phosphorylation or dephosphorylation of cTnI universally modulates Ca2+ sensitivity associated with cTnC in the striated muscle sarcomere, independent of the TnT isoform.  相似文献   

12.
Troponin C molecules from fast skeletal muscle of the following fish species (trout, whiting, lungfish, tilapia, and cod) have been purified to homogeneity. Upon binding of Ca2+ or Mg2+, lungfish troponin C is the only troponin C from fish white muscle to show the typical increase of tyrosine fluorescence emission quantum yield reported for rabbit fast skeletal muscle troponin C. The increase of tyrosine fluorescence signal occurring upon Ca2+ and Mg2+ titration of lungfish troponin C has been used to determine the corresponding affinity constants. With K(Ca) = 7.0 107 M−1 and K(Mg) = 3.6 103 M−1, the sites probed by the tyrosine residue of lungfish troponin C are typical of the COOH-terminal domain of fast skeletal troponin C's. The amino acid sequencing of the tyrosine containing tryptic peptides has allowed us to position the single tyrosine residue at position 7 in the Ca2+ binding loop of the third site, in identical position to Tyr109 of troponin C from rabbit fast skeletal muscle. Metal ion binding studies followed by intrinsic fluorescence or Tb3+ luminescence indicate that the conformation of the structural domain of lungfish troponin C with one metal ion bound is close to the physiological conformation of this domain.  相似文献   

13.
In resting muscle, cytoplasmic Ca2+ concentration is maintained at a low level by active Ca2+ transport mediated by the Ca2+ ATPase from sarcoplasmic reticulum. The region of the protein that contains the catalytic site faces the cytoplasmic side of the membrane, while the transmembrane helices form a channel-like structure that allows Ca2+ translocation across the membrane. When the coupling between the catalytic and transport domains is lost, the ATPase mediates Ca2+ efflux as a Ca2+ channel. The Ca2+ efflux through the ATPase channel is activated by different hydrophobic drugs and is arrested by ligands and substrates of the ATPase at physiological pH. At acid pH, the inhibitory effect of cations is no longer observed. It is concluded that the Ca2+ efflux through the ATPase may be sufficiently fast to support physiological Ca2+ oscillations in skeletal muscle, that occur mainly in conditions of intracellular acidosis.  相似文献   

14.
A Ca2+-activated proteolytic enzyme 1 that partially degrades myofibrials was isolated from hind limb muscles of normal rabbits and rabbits undergoing rapid muscle atrophy as a result of vitamin E deficiency. Extractable Ca2+-activated protease activity was 3.6 times higher in muscle tissue from vitamin E-deficient rabbits than from muscle tissue of control rabbits. Ultrastructural studies of muscle from vitamin E-deficient rabbits showed that the Z disk was the first myofibrillar structure to show degradative changes in atrophying muscle. Myofibris prepared from muscles vitamin E-deficient rabbits showed partial or complete loss of Z-disk density. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the amount of troponin-T (37 000 daltons) and α-actinin (96 000 daltons) was reduced in myofibrils from atrophying muscle as compared to myofibrils prepared from control muscle. In vitro treatment of purified myofibrils with purified Ca2+-activated proteolytic enzyme produced alterations in myofibrillar ultrastructure that were identical to the initial alterations occuring in myofibrils from atrophying muscle (i.e. weakening and subsequent removal of Z disks). Additionally the electrophoretic banding pattern of Ca2+-activated proteolytic enzyme-treated myofibrils is very similar to that of myofibrils prepared from muscles atrophying as a result of nutritional vitamin E deficiency. The possible role of Ca2+-activated proteolytic enzyme in disassembly and degradation of the myofibril is discussed.  相似文献   

15.
In both cardiac and slow-twitch skeletal muscle sarcoplasmic reticulum (SR) there are several systems involved in the regulation of Ca2+-ATPase function. These include substrate level regulation, covalent modification via phosphorylation-dephosphorylation of phospholamban by both cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase (CaM kinase) as well as direct CaM kinase phosphorylation of the Ca2+-ATPase. Studies comparing, the effects of PKA and CaM kinase on cardiac Ca2+-ATPase function have yielded differing results; similar studies have not been performed in slow-twitch skeletal muscle. It has been suggested recently, however, that phospholamban is not tightly coupled to the Ca2+-ATPase in SR vesicles from slow-twitch skeletal muscle. Our results indicate that assay conditions strongly influence the extent of CaM kinase-dependent Ca2+-ATPase stimulation seen in both cardiac and slow-twitch skeletal muscle. Addition of calmodulin (0.2 M) directly to the Ca2+ transport assay medium results in minimal ( 112–130% of control) stimulation of Ca2+ uptake activity when the Ca2+ uptake reaction is initiated by the addition of either ATP or Ca2+/EGTA. On the other hand, prephosphorylation of the SR by the endogenous CaM kinase and subsequent transfer of the membranes to the Ca2+ transport assay medium results in stimulation of Ca2+ uptake activity (202% of control). These effects are observable in both cardiac and slow-twitch skeletal muscle SR. PKA stimulates Ca2+ uptake markedly (215% of control) when the Ca2+ uptake reaction is initiated by the addition of prephosphorylated SR membranes or by Ca2+/EGTA but minimally (130% of control) when the Ca2+ uptake reaction is initiated by the addition of ATP. These findings imply that (a) phospholamban is coupled to the Ca2+-ATPase in slow-twitch skeletal muscle SR (as in cardiac SR), and (b) the amount of Ca2+ uptake stimulation seen upon the addition of calmodulin or PKA depends strongly on the assay conditions employed. Our observations help to explain the wide range of effects of calmodulin or PKA addition reported in previous studies. It should be noted that, since CaM kinase is now known to phosphorylate the Ca2+-ATPase in addition to phospholamban, further studies are required to determine the relative contributions of phospholambanversus Ca2+-ATPase phosphorylation in the stimulation of Ca2+-ATPase function by CaM kinase. Also, earlier studies attributing all of the effects of CaM kinase stimulation of Ca2+ uptake and Ca2+-ATPase activity to phospholamban phosphorylation need to be re-examined.  相似文献   

16.
1. Tropomyosin preparations of the Bailey type, and those prepared in the presence of dithiothreitol to prevent oxidation of protein thiol groups, inhibit the Ca2+-activated adenosine triphosphatase (ATPase) of desensitized actomyosin by up to 60%. 2. The inhibitory activity of myofibrillar extracts and tropomyosin survives various agents known to denature proteins but to the action of which tropomyosin is unusually stable, namely heating at 100° and mild tryptic digestion. It is destroyed by prolonged treatment with trypsin. 3. The ethylenedioxybis-(ethyleneamino)tetra-acetic acid (EGTA)-sensitizing factor present in extracts of natural actomyosin and myofibrils could be selectively destroyed, leaving unchanged the inhibitory effect on the Ca2+-activated ATPase. There was no correlation between the EGTA-sensitizing and the Ca2+-activated inhibitory activities of tropomyosin prepared under different conditions. 4. Optimum inhibition was achieved when tropomyosin and the myosin of desensitized actomyosin were present in approximately equimolar proportions. Tropomyosin had no effect on the Ca2+-activated ATPase of myosin measured under similar conditions. 5. Evidence is presented showing that the tropomyosin binds to desensitized actomyosin under the conditions in which the ATPase is inhibited.  相似文献   

17.
The Ca2+-sensitive ATPase activity of rabbit skeletal myofibrils disappeared completely after treatment with a solution containing CDTA, a strong divalent cation chelator, at a low ionic strength. A gel electrophoretic study revealed that all troponin C and about half of myosin light chain 2 were removed from the myofibrils by the CDTA treatment. The CDTA-treated myofibrils, when reconstituted with skeletal troponin C, showed almost exactly the same Ca2+- or Sr2+-sensitive ATPase activity as that of intact myofibrils. The CDTA-treated myofibrils reconstituted with porcine cardiac troponin C showed the same Ca2+- or Sr2+-sensitivity of the ATPase as that of porcine cardiac myofibrils; Sr2+-sensitivity relative to Ca2+-sensitivity was about ten times higher than, and the maximal slope of the activation curve was about half that of skeletal myofibrils. These findings indicate that these characteristic features of divalent cation regulation in the contraction of skeletal and cardiac muscles are determined solely by the species of troponin C. Bovine brain calmodulin hardly activated the ATPase activity of the CDTA-treated myofibrils even in the presence of Ca2+. Excess calmodulin, however, was found to give Ca2+- or Sr2+-sensitivity to the ATPase activity of the CDTA-treated myofibrils. Frog skeletal parvalbumins 1 and 2, even in excess, did not affect the ATPase activity of the CDTA-treated myofibrils.  相似文献   

18.
Cytosol from rabbit heart and slow and fast skeletal muscles was fractionated using (NH4)2SO4 to yield three cytosolic protein fractions, viz., CPF-I (protein precipitated at 30% saturation), CPF-II (protein precipitated between 30 and 60% saturation), and cytosol supernatant (protein soluble at 60% saturation). The protein fractions were dialysed and tested for their effects on ATP-dependent, oxalate-supported Ca2+ uptake by sarcoplasmic reticulum from heart and slow and fast skeletal muscles. CPF-I from heart and slow muscle, but not from fast muscle, caused marked inhibition (up to 95%) of Ca2+ uptake by sarcoplasmic reticulum from heart and from slow and fast muscles. Neither unfractionated cytosol nor CPF-II or cytosol supernatant from any of the muscles altered the Ca2+ uptake activity of sarcoplasmic reticulum. Studies on the characteristics of inhibition of sarcoplasmic reticulum Ca2+ uptake by CPF-I (from heart and slow muscle) revealed the following: (a) Inhibition was concentration- and temperature-dependent (50% inhibition with approx. 80 to 100 μg CPF-I; seen only at temperatures above 20°C). (b) The inhibitor reduced the velocity of Ca2+ uptake without appreciably influencing the apparent affinity of the transport system for Ca2+. (c) Inhibition was uncompetitive with respect to ATP. (d) Sarcoplasmic reticulum washed following exposure to CPF-I showed reduced rates of Ca2+ uptake, indicating that inhibition results from an interaction of the inhibitor with the sarcoplasmic reticulum membrane. (e) Concomitant with the inhibition of Ca2+ uptake, CPF-I also inhibited the Ca2+-ATPase activity of sarcoplasmic reticulum. (f) Heat-treatment of CPF-I led to loss of inhibitor activity, whereas exposure to trypsin appeared to enhance its inhibitory effect. (g) Addition of CPF-I to Ca2+-preloaded sarcoplasmic reticulum vesicles did not promote Ca2+ release from the vesicles. These results demonstrate the presence of a soluble protein inhibitor of sarcoplasmic reticulum Ca2+ pump in heart and slow skeletal muscle but not in fast skeletal muscle. The characteristics of the inhibitor and its apparently selective distribution suggest a potentially important role for it in the in vivo regulation of sarcoplasmic reticulum Ca2+ pump, and therefore in determining the duration of Ca2+ signal in slow-contracting muscle fibers.  相似文献   

19.
In 2 mM MgATP, 0.08 ionic strength and 1 mM free Mg++ cardiac myofibrils bound 3.5 nmoles Ca/mg protein at maximal ATPase activation. Significant amounts of Ca were also bound to cardiac myosin with these same conditions. By subtraction of this myosin-bound Ca we obtained an estimate of 4 moles Ca bound per mole of myofibrillar troponin at maximal ATPase. We found, however, that Ca activation of myofibrillar ATPase could be estimated assuming that only two of troponin's Ca-binding sites are engaged in regulation of crossbridge activity. Increase in MgATP from 0.3 to 5.0 mM raised the free Ca, giving half-maximal isometric tension or ATPase. Although part of this shift is most probably due to changes in the number of rigor (nucleotidefree) actin-myosin linkages, the rightward shift of the free Ca++-activation relation with increase in MgATP from 2 to 5 mM appears to be due to effects of active (nucleotide-containing) actin-myosin linkages.  相似文献   

20.
Combined patch-clamp and Fura-2 measurements were performed on chinese hamster ovary (CHO) cells co-expressing two channel proteins involved in skeletal muscle excitation-contraction (E-C) coupling, the ryanodine receptor (RyR)-Ca2+ release channel (in the membrane of internal Ca2+ stores) and the dihydropyridine receptor (DHPR)-Ca2+ channel (in the plasma membrane). To ensure expression of functional L-type Ca2+ channels, we expressed α2, β, and γ DHPR subunits and a chimeric DHPR α1 subunit in which the putative cytoplasmic loop between repeats II and III is of skeletal origin and the remainder is cardiac. There was no clear indication of skeletal-type coupling between the DHPR and the RyR; depolarization failed to induce a Ca2+ transient (CaT) in the absence of extracellular Ca2+ ([Ca2+]o). However, in the presence of [Ca2+]o, depolarization evoked CaTs with a bell-shaped voltage dependence. About 30% of the cells tested exhibited two kinetic components: a fast transient increase in intracellular Ca2+ concentration ([Ca2+]i) (the first component; reaching 95% of its peak <0.6 s after depolarization) followed by a second increase in [Ca2+]i which lasted for 5–10 s (the second component). Our results suggest that the first component primarily reflected Ca2+ influx through Ca2+ channels, whereas the second component resulted from Ca2+ release through the RyR expressed in the membrane of internal Ca2+ stores. However, the onset and the rate of Ca2+ release appeared to be much slower than in native cardiac myocytes, despite a similar activation rate of Ca2+ current. These results suggest that the skeletal muscle RyR isoform supports Ca2+-induced Ca2+ release but that the distance between the DHPRs and the RyRs is, on average, much larger in the cotransfected CHO cells than in cardiac myocytes. We conclude that morphological properties of T-tubules and/or proteins other than the DHPR and the RyR are required for functional “close coupling” like that observed in skeletal or cardiac muscle. Nevertheless, some of our results imply that these two channels are potentially able to directly interact with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号