首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 10-year-old boy with congenital adrenal hyperplasia and associated hyperplastic testicular adrenal rests had high serum concentrations of 17-OH progesterone (17-OHP), estradiol (E2), testosterone (T), and basal and TRH-stimulated TSH and PRL, but normal thyroid hormones (T3, T4, FT3, FT4) and thyroxine-binding globulin (TBG). Upon dexamethasone therapy, steroid hormones returned progressively toward normal as did both PRL and TSH; PRL declined faster than TSH. Serum E2 correlated better with PRL than with TSH. Therefore, the responsiveness of the thyrotrophs to the ambient concentration of E2 is lower and slower than that of the lactotrophs. In the context of the inconclusive data on the role of estrogens in controlling the secretion of TSH in humans, our case suggests that E2 does stimulate the secretion of basal and TRH-elicited both TSH and PRL, and that this positive action is unopposed by T. In contrast, T antagonizes the estrogen-induced increase in serum TBG. We also postulate that E2 might impair the bioactivity of TSH, in order to explain (i) the approximate 3-fold increase in serum TSH coexisting with a normally sized (rather than enlarged) thyroid and normal (rather than increased) serum thyroid hormones, and (ii) the inability of TRH-stimulated TSH to acutely raise FT3 serum levels.  相似文献   

2.
Metabolism of the thyroid hormones   总被引:2,自引:0,他引:2  
This review covers the current knowledge about the various metabolic pathways involved in the conversion of thyroid hormones to the thyromimetically active and inactive iodothyronines. The concerted mechanism of systemic and local production of iodothyronines by tissue-specific iodothyronine deiodinase isozymes will ultimately determine the expression of thyroid hormone action. This is exemplified for the regulation of synthesis and release of TSH by iodothyronines at the pituitary level. Iodothyronine metabolites, e.g. Triac, rT3 and T3 amine may modulate TSH secretion, and alterations of local pituitary deiodination (e.g. iopanoate inhibition) influence diurnal TSH secretion without changing TRH-dependent episodic TSH secretion pattern. A summary of structure-activity relationships of greater than 200 naturally occurring and synthetic ligands of rat liver type I iodothyronine deiodinase isozyme propylthiouracil-sensitive) in vitro allows the design of iodothyronine analogues which either serve as specific substrates or antagonists of iodothyronine binding and metabolizing proteins. Furthermore, a complete picture of the ligand-complementary active site of the type I isozyme can be derived. A synthetic 'structurally optimized' iodothyronine-analogue flavonoid inhibitor of the type I deiodinase is able to displace T4 from binding to thyroxine-binding prealbumin and leads to unexpected organ-specific alterations of thyroid hormone metabolism and expression of thyroid hormone actions in an animal model. Therefore, for a complete understanding of thyroid hormone metabolism and action, thyroid hormone transport, cellular compartmentalization, and alternate pathways also have to be considered.  相似文献   

3.
RECENTLY, hypothalamic releasing factors have been isolated from two different species (porcine and ovine) and their structures elucidated1–5. These factors stimulate the secretion of pituitary hormones and have been shown to be small polypeptides. Thyrotropin releasing factor (TRF) for both species is the tripeptide pyroglutamyl-histidyl-proline amide (pGlu-His-Pro-amide)1,2. TRF acts on pituitary thyrotrophs to stimulate the secretion of thyroid stimulating hormone (TSH). The structure of a hypothalamic factor which stimulates the secretion of the pituitary gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH) has been determined. This gonadotropin releasing factor, referred to as LRF, is a decapeptide and, like TRF, has both terminals blocked; in both species its primary sequence is pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-amide3–5.  相似文献   

4.
Role of calcium (Ca2+) in the effects of thyroliberin (TRH) and somatostatin (SRIF) on the release of growth hormone (GH), prolactin (PRL) and thyroid stimulating hormone (TSH) from the rat adenohypophyseal cells in primary monolayer cultures has been studied. Decrease of extracellular Ca2+ diminished the stimulatory effects of TRH on TSH and PRL release. Ca2+ is also an important factor in the mechanism of SRIF action. Data obtained in the experiments with high Ca2+ levels in the medium indicate that some antagonistic interrelationship exists between Ca2+ and SRIF. These results suggest that the participation of cAMP alone is not sufficient for stimulus-secretion coupling. Another messenger, namely Ca2+, is necessary for the effects of hypothalamic hormones. On the other hand, the contribution of Ca2+ to the secretory process in mammotrophs, somatotrophs and thyrotrophs is not equal. PRL and TSH secretion is more dependent on the presence of extracellular Ca2+ than the release of GH.  相似文献   

5.
Unique association of hypothyrotropinemia with euthyroidism was described in 2 children of short stature. Both had a history of intrauterine growth retardation (IUGR), but showed an appropriate growth rate after infancy (5 cm/y). Growth hormone secretion after provocation tests was normal, whereas TSH response to TRH was absent. With a highly sensitive TSH radioimmunoassay (RIA) and a specific RIA for TSH-alpha-subunit, both responded to a high dose of TRH stimulation. Serum thyroid hormones were within the normal range, while prolactin response to TRH was exaggerated. Exogenous thyroxine (T4) supplement in case 1 did not improve his growth rate, indicating absence of hypothyroidism. Case 2 was treated with stanozolol, which accelerated his growth velocity to 8 cm/y. During the treatment, serum T4 gradually decreased to 50% of the initial level, but blunted TSH response to TRH remained unchanged. These results indicate that their thyrotrophs are resistant to TRH stimulation and the pituitary setpoint of TSH release is unusually high. The exact mechanism involved in maintaining euthyroidism despite hypothyrotropinemia remains to be elucidated, but a common history of IUGR appears to play a role in producing this pituitary-thyroid state.  相似文献   

6.
A girl aged 4 years with goiter and accelerated physical and skeletal growth was found to be hyperthyroid on the basis of elevated serum thyroid hormone level, nevertheless both the basal TSH and TSH responsiveness to TRH were maintained within the normal range. Serum TSH was suppressed by exogenous T3 and dexamethasone administration, but not significantly changed after propylthiouracil (PTU) treatment. The diurnal rhythmicity of anterior pituitary hormones was preserved with the high nocturnal peak of TSH and prolactin. Clinically, neither thyrotoxic signs nor evidences of pituitary tumor were observed. Her accelerated growth and elevated thyroid hormone level appeared to be induced by inappropriate secretion of TSH. In view of the literature, this is the first case of the syndrome of inappropriate secretion of TSH excluding the neoplastic origin in Japan.  相似文献   

7.
14 years ago, a 5.7-year-old healthy girl was treated with desiccated thyroid for a goiter and elevated TSH levels. The goiter disappeared and TSH levels were normalized. However, hyperthyroidism appeared. Without therapy, the goiter reappeared and hyperthyroidism aggravated. Based on hormone values, TSH-induced hyperthyroidism was diagnosed. After exclusion of neoplastic TSH secretion, treatment with dextrothyroxine (DT4) was initiated at age of 10 years and continued during the last 10 years (except for short periods). The girl became euthyroid, has no goiter and normal TSH values. Since thyrotrophs and peripheral tissues are probably normally sensitive to T4, we postulate that her hypothalamopituitary-thyroid control is operating on a higher set point level for T4.  相似文献   

8.
Light regulates numerous physiological functions and synchronizes them with the environment, in part by adjusting secretion of different hormones. We hypothesized that constant light (CL) would disturb pituitary‐thyroid axis. Our aim was to determine morphological and functional changes in this endocrine system in such extreme conditions and, based on the obtained results, to propose the underlying mechanism(s). Starting from the thirtieth postnatal day, female Wistar rats were exposed to CL (600 lx) for the following 95 days. The controls were maintained under the regular laboratory lighting conditions. After decapitation, pituitaries and thyroids were prepared for further histomorphometric, immunohistochemical, and immunofluorescence examinations. Concentration of thyroid stimulating hormone (TSH), total T4 and T3 (TH) were determined. Thyroid tissue of light‐treated rats was characterized by microfollicular structure. We detected no change in total thyroid volume, localization and accumulation of thyroglobulin, thyroid peroxidase, and sodium‐iodide symporter in the follicular epithelium of CL rats. The volume of follicular epithelium and activation index were increased, while volume of the colloid and serum levels of TH decreased. In the pituitary, the relative intensity of TSH β‐immunofluorescence signal within the cytoplasm of thyrotrophs increased, but their average cell volume and the relative volume density decreased. Serum TSH was unaltered. We conclude that exposure of female rats to CL induced alterations in pituitary‐thyroid axis. Thyroid tissue was characterized by microfollicular structure. Serum TH levels were reduced without accompanying increase in serum TSH. We hypothesize that increased secretion and clearance of TH together with unchanged or even decreased hormonal synthesis, resulted in decreased serum TH levels in CL group. We assume this decrease consequently led to increased synthesis and/or accumulation of pituitary TSH. However, decreased average TSH cell volume and relative volume density, together with unchanged serum TSH, point to additional, negative regulation of thyrotrophs. J. Morphol. 275:1161–1172, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Hypothalamic thyrotropin-releasing hormone (TRH) stimulates thyroid-stimulating hormone (TSH) secretion from the anterior pituitary. TSH then initiates thyroid hormone (TH) synthesis and release from the thyroid gland. Although opposing TRH and TH inputs regulate the hypothalamic-pituitary-thyroid axis, TH negative feedback is thought to be the primary regulator. This hypothesis, however, has yet to be proven in vivo. To elucidate the relative importance of TRH and TH in regulating the hypothalamic-pituitary-thyroid axis, we have generated mice that lack either TRH, the beta isoforms of TH receptors (TRbeta KO), or both (double KO). TRbeta knock-out (KO) mice have significantly higher TH and TSH levels compared with wild-type mice, in contrast to double KO mice, which have reduced TH and TSH levels. Unexpectedly, hypothyroid double KO mice also failed to mount a significant rise in serum TSH levels, and pituitary TSH immunostaining was markedly reduced compared with all other hypothyroid mouse genotypes. This impaired TSH response, however, was not due to a reduced number of pituitary thyrotrophs because thyrotroph cell number, as assessed by counting TSH immunopositive cells, was restored after chronic TRH treatment. Thus, TRH is absolutely required for both TSH and TH synthesis but is not necessary for thyrotroph cell development.  相似文献   

10.
Porcine thyroid follicles cultured in suspension for 96 h synthesized and secreted thyroid hormones in the presence of thyrotropin (TSH). The secretion of newly synthesized hormones was assessed by determining the contents of thyroxine (T4) and triiodothyronine (T3) in the media and by paperchromatographic analysis of 125I-labelled hormones in the media where the follicles were cultured in the presence and absence of inhibitors of hormone synthesis. The hormone synthesis and secretion was modified by exogenously added NaI (0.1-100 microM). The maximal response was obtained at 1 microM. Thyroid peroxidase (TPO) activity in the cultured follicles with TSH for 96 h was dose-dependently inhibited by NaI. One hundred microM of NaI completely inhibited TSH-induced TPO activity. Moreover, both epidermal growth factor (EGF: 10(-9) and 10(-8) M) and phorbol 12-myristate 13-acetate (PMA: 10(-8) and 10(-7) M) inhibited de novo hormone synthesis. An induction of TPO activity by TSH was also inhibited by either agent. These data provide direct evidences that thyroid hormone synthesis is regulated by NaI as well as TSH at least in part via regulation of TPO activity and also that both EGF and PMA are inhibitory on thyroid hormone formation.  相似文献   

11.
The antithyrotropic activity of freeze-dried-extracts from Lithospermum officinale (Lith. off. FDE) was investigated in the rat. When administered together with TSH, Lith. off. FDE blocked the TSH-induced increase in endocytotic activity of the thyroid glands followed by a strong decline of thyroid hormone levels. Furthermore, when Lith. off. FDE was injected alone it caused a decline in endogenous TSH-levels as well as in thyroidal secretion and thyroid hormone levels. The efficacy of the extract in blocking thyroid secretion was compared to that of potassium iodide and it was found that the effect of Lith. off. FDE was of more rapid onset and of longer duration, suggesting that the FDE may have a different mode of action from that of KJ. A specific interaction between TSH and the active constituents of the plant extract is discussed. Experiments on thyroidectomized and T4 substituted rats have demonstrated as an additional pharmacodynamic effect of Lith. off. FDE an inhibition of peripheral T4-deiodination.  相似文献   

12.
B Ahrén 《Peptides》1987,8(4):743-745
It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with 125I and thyroxine; the subsequent release of 125I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse.  相似文献   

13.
Thyroid disorders are common and often require lifelong hormone replacement. Treating thyroid disorders involves a fascinating and troublesome delay, in which it takes many weeks for serum thyroid‐stimulating hormone (TSH) concentration to normalize after thyroid hormones return to normal. This delay challenges attempts to stabilize thyroid hormones in millions of patients. Despite its importance, the physiological mechanism for the delay is unclear. Here, we present data on hormone delays from Israeli medical records spanning 46 million life‐years and develop a mathematical model for dynamic compensation in the thyroid axis, which explains the delays. The delays are due to a feedback mechanism in which peripheral thyroid hormones and TSH control the growth of the thyroid and pituitary glands; enlarged or atrophied glands take many weeks to recover upon treatment due to the slow turnover of the tissues. The model explains why thyroid disorders such as Hashimoto''s thyroiditis and Graves'' disease have both subclinical and clinical states and explains the complex inverse relation between TSH and thyroid hormones. The present model may guide approaches to dynamically adjust the treatment of thyroid disorders.  相似文献   

14.
H. B. Lee  C. Faiman 《CMAJ》1977,116(5):520-521
Hypothyroidism due to isolated deficiency of thyrotropin (TSH) associated with an enlarged sella turcica, presumably the result of a nonfunctioning pituitary adenoma, occurred in a 58-year-old man. Low serum concentrations of TSH and thyroid hormones, together with the lack of TSH response to administration of thyroid releasing hormone, indicated a pituitary deficiency of TSH. Serum values of other pituitary hormones were normal.  相似文献   

15.
Changes in the pituitary-thyroid axis in patients with Hashimoto's thyroiditis following withdrawal of thyroid suppressive therapy were analyzed. The group of patients with thyroid adenoma served as control (group I). Patients with Hashimoto's thyroiditis were divided into 2 groups on the basis of serum TSH levels 8 weeks after discontinuing the exogenous thyroid hormone (group II, less than 10 microunits/ml; group III, more than 10 microunits/ml). During treatment with L-T4(200 micrograms/day) or L-T3(50 micrograms/day), there was no significant difference in serum T4-I and T3 levels among the three groups. Following L-T4 withdrawal, basal serum TSH levels were higher at 2 to 8 weeks in groups II and III than in group I. Serum TSH response to TRH was greater at 4 to 8 weeks in groups II and III than in group I. Following L-T3 withdrawal, basal serum TSH levels were higher at 1 and 2 weeks in group II than in group I, while those of group III were consistently higher during the study. Higher TSH responses to TRH were observed at 1 to 8 weeks in groups II and III. Neither basal nor TRH-induced prolactin (PRL) secretion differed significantly among the three groups. We have demonstrated that pituitary TSH secretion in patients with Hashimoto's thyroiditis is affected more by withdrawal of thyroid hormone therapy than in patients with thyroid adenoma. In addition, the present findings suggest a difference between the sensitivity of thyrotrophs and lactotrophs in Hashimoto's thyroiditis after prolonged thyroid therapy is discontinued.  相似文献   

16.
Changes in TSH secretion in six acromegalic patients were studied before and after transsphenoidal adenomectomy (Hardy's method) and compared to normal subjects and six patients with prolactinoma. Basal serum GH levels ranging from 5 to over 250 ng/ml before adenomectomy decreased to below 5 ng/ml after the operation, and the abnormal responses of GH to TRH observed initially in three of the six patients almost disappeared in the post-adenomectomy period. The response of serum TSH to TRH in acromegalic patients improved in each of the six patients after the operation. The TRH-stimulated TSH secretion in patients with prolactinoma of a size and grade similar to those in acromegalic patients was not so extremely low as that in the acromegalic subjects. As indicators of thyroid function, serum triiodothyronine (T3), thyroxine (T4), T3-uptake levels and free T4 indices did not change significantly after adenomectomy as compared with those before the operation in five of the six patients tested. Serum T3, T4 and T3-uptake levels and free T4 indices before adenomectomy were normal or subnormal in each patient except for a high serum T4 level and free T4 index before the operation in only one patient. Thus, it is difficult to conclude that the function of thyrotrophs was decreased by pressure upon the intact pituitary gland by the tumor, or that the thyroid gland also became hypertrophic secondary to the elevated GH, resulting in a large quantity of thyroid hormone being secreted, which caused a suppression of TSH secretion by negative feedback.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A rare case is presented of a woman with spontaneous recovery from hypopituitarism following postpartum hemorrhage. One month after delivery, serum thyroid hormone, TSH, LH and FSH levels were low, and their secretion from the pituitary gland responded poorly to the TRH and LH-RH tests. Pituitary TSH response was normal 3 months after delivery. In the LH-RH test, pituitary LH and FSH response returned to normal at 2 months. Pituitary GH secretion and serum cortisol levels induced by ITT already responded normally one month postpartum. Excessive secretion of pituitary PRL was observed 3 months after delivery and improved gradually thereafter. These results indicate that the secretion of pituitary tropic hormones was sensitive to pituitary ischemia in the following order: TSH, gonadotropin, GH and ACTH. The disturbance of these hormones also persisted in the same order.  相似文献   

18.
Cholera toxin, through adenylate cyclase activation reproduced cyclic AMP-mediated effects of thyroid-stimulating hormone (TSH) in dog thyroid slices, i.e. protein iodination, [1-14C]glucose-oxidation and hormone secretion. Iodide and carbamylcholine decreased the cyclic AMP accumulation induced by cholera toxin as well as by TSH, which supports the hypothesis of an action of these agents beyond the steps of hormone-receptor and receptor-adenylate cyclase interaction. Cooling to 20 degrees C did not impair the TSH induced cyclic AMP accumulation in thyroid slices, but completely suppressed the cholera toxin effect. This observation has been extended to other hormones and target tissues, such as the parathyroid hormone (PTH) (kidney cortex), adrenocorticotropic hormone (ACTH) (adrenal cortex) and luteinizing hormone (LH) (ovary systems). As in thyroid, cooling dissociated the cholera toxin and hormonal effects on cyclic AMP accumulation. In homogenate, cooling decreased cyclic AMP generation in the presence of cholera toxin but at 20 degrees C and 16 degrees C a cholera toxin stimulation was still observed. These results bear strongly against the hypothesis that the glycoprotein hormones TSH and LH acetivate adenylate cyclase by a mechanism identical to cholera toxin.  相似文献   

19.
Plasma TSH levels were measured on 114 occasions in 96 patients treated for differentiated thyroid cancer. Prior to thyroid surgery, plasma TSH levels were within the range of normal. Plasma TSH levels increased slightly following partial thyroid resection and definitely after total thyroid ablation. In patients where the removal of normal thyroid induced hormonogenesis in thyroid tumours, plasma TSH levels were dependent on the hormonal secretion of the tumour as shown by inverse relationship between TSH and both PBI and 131I uptake. The increase of radioiodide uptake following stimulation by exogenous bovine TSH was inversely related to the plasma thyrotropin levels. The suppressibility of enhanced thyrotropin levels was complete with individually adjusted doses of synthetic thyroid hormones. With the exception of patients on suppressive treatment, TRH administration induced increase in plasma TSH levels. The findings are discussed with regard to the role played by TSH in the induction of hormonogenesis in thyroid tumours. The practical values of TSH estimation and TRH stimulation seem to be low; the measurements of thyrotropin levels may be important for the estimation of the suppressive effect in the course of and following withdrawal of treatment with thyroid hormones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号