首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We learn new motor tasks by trial and error, repeating what works best and avoiding past mistakes. To repeat what works best we must register a satisfactory outcome, and in a study [1] we showed the existence of an evoked activity in the basal ganglia that correlates with accuracy of task performance and is associated with reiteration of successful motor parameters in subsequent movements. Here we report evidence that the signaling of positive trial outcome relies on dopaminergic input to the basal ganglia, by recording from the subthalamic nucleus (STN) in patients with nigrostriatal denervation due to Parkinson's Disease (PD) who have undergone functional neurosurgery. Correlations between subthalamic evoked activities and trial accuracy were weak and behavioral performance remained poor while patients were untreated; however, both improved after the dopamine prodrug levodopa was re-introduced. The results suggest that the midbrain dopaminergic system may be important, not only in signaling explicit positive outcomes or rewards in tasks requiring choices between options [2,3], but also in trial-to-trial learning and in reinforcing the selection of optimal parameters in more automatic motor control.  相似文献   

2.
A basal ganglia central pattern generator (CPG) is developed and its role in voluntary movements on the ground and postural reactions on a disturbed platform are studied and analysed by simulation. Biped dynamics and platform kinematics are utilised. The effects of agonist–antagonist muscular co-activation and joint stiffness are formulated. The implementation of the necessary counter-manoeuvres for maintaining balance and postural stability is studied. A control strategy, applicable to large systems, is formulated. The biped manoeuvres and transitions terminate in pre-specified intervals of time. Gravity is included and compensated for. Certain voluntary and postural adjustment strategies are the same but are initiated differently. Further experimental/computational research may identify the central nervous system and sensory paths that lead to the CPG. All actuator forces linearly evolve in time from their original values to their terminal values. There are no central continuous feedback loops present. Monitoring and sensing, however, are ongoing. The counter-manoeuvres are based on learned human-like voluntary movements that are triggered by the disturbance. The required central inputs to the musculoskeletal system are designed in the CPG. A functional structure for the CPG is proposed. The effect of certain disorders and malfunctions of the CPG are studied by simulation.  相似文献   

3.
4.
Summary Oxidative and hydrolytic enzyme activities are present in the anlage of the human basal ganglia as early as the second month of embryonic life, and acetylcholinesterase activity appears during the sixth month of pre-natal life.Clinical Research Fellow of the Medical Research Council. Presently in the Department of Neurology, Indiana University, Medical School.  相似文献   

5.
6.
7.
8.
The classical notion that the basal ganglia and the cerebellum are dedicated to motor control has been challenged by the accumulation of evidence revealing their involvement in non-motor, cognitive functions. From a computational viewpoint, it has been suggested that the cerebellum, the basal ganglia, and the cerebral cortex are specialized for different types of learning: namely, supervised learning, reinforcement learning and unsupervised learning, respectively. This idea of learning-oriented specialization is helpful in understanding the complementary roles of the basal ganglia and the cerebellum in motor control and cognitive functions.  相似文献   

9.
The basal ganglia, in particular the striatum, are central to theories of behavioral control, and often identified as a seat of action selection. Reinforcement learning (RL) models--which have driven much recent experimental work on this region--cast striatum as a dynamic controller, integrating sensory and motivational information to construct efficient and enriching behavioral policies. Befitting this informationally central role, the BG sit at the nexus of multiple anatomical 'loops' of synaptic projections, connecting a wide range of cortical and subcortical structures. Numerous pioneering anatomical studies conducted over the past several decades have meticulously catalogued these loops, and labeled them according to the inferred functions of the connected regions. The specific cotermina of the projections are highly localized to several different subregions of the striatum, leading to the suggestion that these subregions perform complementary but distinct functions. However, until recently, the dominant computational framework outlined only a bipartite, dorsal/ventral, division of striatum. We review recent computational and experimental advances that argue for a more finely fractionated delineation. In particular, experimental data provide extensive insight into unique functions subserved by the dorsomedial striatum (DMS). These functions appear to correspond well with theories of a 'model-based' RL subunit, and may also shed light on the suborganization of ventral striatum. Finally, we discuss the limitations of these ideas and how they point the way toward future refinements of neurocomputational theories of striatal function, bringing them into contact with other areas of computational theory and other regions of the brain.  相似文献   

10.
In order to control voluntary movements, the central nervous system (CNS) must solve the following three computational problems at different levels: the determination of a desired trajectory in the visual coordinates, the transformation of its coordinates to the body coordinates and the generation of motor command. Based on physiological knowledge and previous models, we propose a hierarchical neural network model which accounts for the generation of motor command. In our model the association cortex provides the motor cortex with the desired trajectory in the body coordinates, where the motor command is then calculated by means of long-loop sensory feedback. Within the spinocerebellum — magnocellular red nucleus system, an internal neural model of the dynamics of the musculoskeletal system is acquired with practice, because of the heterosynaptic plasticity, while monitoring the motor command and the results of movement. Internal feedback control with this dynamical model updates the motor command by predicting a possible error of movement. Within the cerebrocerebellum — parvocellular red nucleus system, an internal neural model of the inverse-dynamics of the musculo-skeletal system is acquired while monitoring the desired trajectory and the motor command. The inverse-dynamics model substitutes for other brain regions in the complex computation of the motor command. The dynamics and the inverse-dynamics models are realized by a parallel distributed neural network, which comprises many sub-systems computing various nonlinear transformations of input signals and a neuron with heterosynaptic plasticity (that is, changes of synaptic weights are assumed proportional to a product of two kinds of synaptic inputs). Control and learning performance of the model was investigated by computer simulation, in which a robotic manipulator was used as a controlled system, with the following results: (1) Both the dynamics and the inverse-dynamics models were acquired during control of movements. (2) As motor learning proceeded, the inverse-dynamics model gradually took the place of external feedback as the main controller. Concomitantly, overall control performance became much better. (3) Once the neural network model learned to control some movement, it could control quite different and faster movements. (4) The neural netowrk model worked well even when only very limited information about the fundamental dynamical structure of the controlled system was available. Consequently, the model not only accounts for the learning and control capability of the CNS, but also provides a promising parallel-distributed control scheme for a large-scale complex object whose dynamics are only partially known.  相似文献   

11.
Summary In an attempt to formulate a working hypothesis of basal-ganglia functions, arguments are considered suggesting that the basal ganglia are involved in a process of response selection i.e. in the facilitation of wanted and in the suppression of unwanted behaviour. The meso-accumbal dopamine-system is considered to mediate natural and drug-induced reward and sensitization. The meso-striatal dopamine-system seems to fulfill similar funcions: It may mediate reinforcement which strengthens a given behaviour when elicited subsequently, but which is not experienced as reward or hedonia.Glutamate as the transmitter of the corticofugal projections to the basal ganglia nuclei and of the subthalamic neurons is critically involved in basal ganglia funcions and dysfunctions; for example Parkinson's disease can be considered to be a secondary hyperglutamatergic disease. Additionally, glutamate is an essential factor in the plasticity response of the basal-ganglia. However, opposite to previous suggestions, the NMDA-receptor blocker MK-801 does not prevent psychostimulant- nor morphine-induced day to day increase (sensitization) of locomotion. Also the day to day increase of haloperidol-induced catalepsy was not prevented by MK-801.  相似文献   

12.
13.
14.
Organization of voluntary movement.   总被引:3,自引:0,他引:3  
There have recently been a number of advances in our knowledge of the organization of complex, multi-joint movements. Promising starts have been made in our understanding of how the motor system translates information about the location of external targets into motor commands encoded in a body-based coordinate system. Two simplifying strategies for trajectory control that are discussed are parallel specification of response features and the programming of equilibrium trajectories. New insights have also been gained into how neural systems process sensory information to plan and assist with task performance. A number of recent papers emphasize the feedforward use of sensory input, which is mediated through models of the external world, the body's physical plant, and the task structure. These models exert their influence at both reflex and higher levels and permit the preparation of predictive default parameters of trajectories as well as strategies for resolving task demands.  相似文献   

15.
Progressive loss of the ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson's disease. Studies in animals and humans have identified spatially segregated functional territories in the basal ganglia for the control of goal-directed and habitual actions. In patients with Parkinson's disease the loss of dopamine is predominantly in the posterior putamen, a region of the basal ganglia associated with the control of habitual behaviour. These patients may therefore be forced into a progressive reliance on the goal-directed mode of action control that is mediated by comparatively preserved processing in the rostromedial striatum. Thus, many of their behavioural difficulties may reflect a loss of normal automatic control owing to distorting output signals from habitual control circuits, which impede the expression of goal-directed action.  相似文献   

16.
This session dealt with the structure and function of the basal ganglia and their role in motor control. The key issues discussed in the first four presentations concerned the pathophysiology of movement performance in parkinsonian patients and in animal models of this disease. Three papers were presented on neurochemically specified subsystems of the basal ganglia. Therapeutic aspects (stereoencephalotomy and chronic electrical stimulation of neural tissue) were discussed in the last two papers. A brief account is given on the highlights of each of these reports.  相似文献   

17.
The present chapter reviews PET imaging in basal ganglia disorders; Parkinson's disease is used as a model of these disorders because the neurochemical pathobiology of this disease is well known and great advances in the imaging area have been achieved. Other basal ganglia disorders including Tourette's syndrome, dystonia, Huntington's chorea and Wilson's disease are also dealt with. With PET and SPECT techniques, the whole integrative dopaminergic network of neurons can be studied, which plays an important role in differential diagnostics. Furthermore, pharmacological effects of medication can be visualized and the role of stereotaxic neurosurgery can be evaluated. Finally, functional imaging gives clues about the prognosis and rehabilitation aspects of the basal ganglia disorders.  相似文献   

18.
In crickets (Gryllus campestris, Gryllus bimaculatus) the contribution of the suboesophageal ganglia (SOG) and thoracic ganglia to the generation of antennal movements during visual tracking, walking and flight was investigated by the transection of connectives. Transection of one circumoesophageal connective abolished the movements and postures of the antenna ipsilateral to the lesion, while the contralateral antenna behaved normally. Simple antennal reflexes remained. Transection of one neck connective reduced fast components of antennal movements during tracking and walking. During flight the ipsilateral antenna could not be maintained in a prolonged forward position. Antennal movements during tracking and walking appeared normal after transection of one connective between pro- and mesothoracic ganglia. However, the antennal flight posture required uninterrupted connections between brain and mesothoracic ganglion. The ablation of more posterior ganglia had no effect on the antennal behaviours investigated. Recordings from an antennal motor nerve revealed a unilateral net excitation relayed via the SOG to the brain. Two ascending interneurones with activity closely correlated with antennal movements are candidates for such a relay function. The data show that the brain is not sufficient to generate antennal movements and postures as integral parts of several behaviours. The SOG and the thoracic ganglia are required in addition. Accepted: 12 March 1997  相似文献   

19.
The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.  相似文献   

20.
This paper examines some of the philosophical and scientific relationships involving self-control, voluntary control, and psychophysiologic self-regulation. The role of biofeedback in mediating conscious and unconscious processes is explored. Demonstrations of superior voluntary control and its relationship to belief, confidence, and expectation are examined. Biofeedback demonstrates the potential of control to oneself, creating confidence in one's ability to establish enhanced and peak performance in athletics, education, and psychophysiologic therapy. Emphasis is placed on the power of images in all human functioning, and in enhancing human potential.Presidential address presented at the meetings of the Biofeedback Society of America, March 23, 1986, San Francisco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号