首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ras has been thought to be involved in neuronal differentiation of rat pheochromocytoma PC12 cells. PC12 cells are immature adrenal chromaffin-like cells which undergo differentiation to sympathetic neuron-like cells in response to nerve growth factor (NGF). Fibroblast growth factor (FGF) and interleukin (IL)-6 can also induce differentiation of PC12 cells. In this paper, we report that NGF, FGF, and IL-6 induce an accumulation of an active Ras.GTP complex. In the serum-starved culture of PC12 cells, 6% of the Ras protein was complexed with GTP. Upon stimulation with NGF, the percentage of Ras.GTP increased to 24% after 2 min, and the high level of Ras.GTP was maintained for at least 16 h. On the other hand, the activation of Ras by FGF and IL-6 showed distinct kinetics; about 3-fold increase of Ras.GTP was detected at 10 min, and afterward, the level returned to the basal level within 60 min. These observations provide direct evidence that activation of Ras is involved in signal transduction from these differentiation factors. In addition, it was found that growth factors, including epidermal growth factor, insulin, and insulin-like growth factor-I, and a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), can also activate Ras under the same conditions. A tyrosine kinase-specific inhibitor, genistein, inhibited the increase of Ras.GTP induced by NGF and other factors. On the other hand, down-regulation of protein kinase C (PKC) by prolonged treatment with TPA, which sufficiently blocked TPA-induced Ras activation, did not abolish the formation of Ras.GTP by NGF. These results suggest that tyrosine kinases rather than PKC play a major role in the NGF-induced activation of Ras in PC12 cells.  相似文献   

2.
Acetylcholine muscarinic m2 receptors (m2R) couple to heterotrimeric Gi proteins and activate the Ras/Raf/mitogen-activated protein kinase pathway and phosphatidylinositol 3-kinase in Rat 1a cells. In contrast to the m2R, stimulation of the acetylcholine muscarinic m1 receptor (m1R) does not activate the Ras/Raf/mitogen-activated protein kinase regulatory pathway in Rat 1a cells but rather causes a pronounced inhibition of epidermal growth factor and platelet-derived growth factor receptor activation of Raf. In Rat 1a cells, m1R stimulation of phospholipase C beta and the marked rise in intracellular calcium stimulated cyclic AMP (cAMP) synthesis, resulting in the activation of protein kinase A. Stimulation of protein kinase A inhibited Raf activation in response to growth factors. Platelet-derived growth factor receptor stimulation of phosphatidylinositol 3-kinase activity was not affected by either m1R stimulation or protein kinase A activation in response to forskolin-stimulated cAMP synthesis. GTP loading of Ras in response to growth factors was unaffected by protein kinase A activation but was partially inhibited by carbachol stimulation of the m1R. Therefore, protein kinase A action at the Ras/Raf activation interface selectively inhibited only one branch of the signal transduction network initiated by tyrosine kinases. Specific adenylyl cyclases responding to different signals, including calcium, with enhanced cAMP synthesis will regulate Raf activation in response to Ras.GTP. Taken together, the data indicate that G protein-coupled receptors can positively and negatively regulate the responsiveness of tyrosine kinase-stimulated mitogenic response pathways.  相似文献   

3.
The mechanism by which interleukin-1 alpha (IL-1 alpha) activates NF-kappa B DNA-binding activity is not completely understood. While it is well established that protein kinase C can activate NF-kappa B, neither protein kinase C nor protein kinase A appears to be critical in the induction of NF-kappa B by IL-1 alpha. Since a number of growth factors signal via protein tyrosine kinase, in this study we examined a possible involvement of protein tyrosine kinase in the IL-1 alpha-induced NF-kappa B. The results showed that in the murine pre-B cell line 70Z/3 and in the murine T cell line EL-4 6.1 C10 IL-1 alpha-induced NF-kappa B was associated with transient increase in protein tyrosine kinase activity. Pre-treatment of these cell lines with herbimycin A, an inhibitor of tyrosine kinase activity, blocked the IL-1 alpha-enhanced protein tyrosine kinase activity and the IL-1 alpha-induced NF-kappa B DNA-binding activity. Herbimycin A at concentrations sufficient to block IL-1 alpha-induced NF-kappa B did not block the phorbol 12-myristate 13-acetate (PMA)-induced NF-kappa B. The data suggest that IL-1 alpha and PMA activate NF-kappa B by different pathways and that induction of NF-kappa B DNA-binding activity by IL-1 might be dependent on protein tyrosine phosphorylation.  相似文献   

4.
Growth factor receptor tyrosine kinase regulation of the sequential phosphorylation reactions leading to mitogen-activated protein (MAP) kinase activation in PC12 cells has been investigated. In response to epidermal growth factor, nerve growth factor, and platelet-derived growth factor, B-Raf and Raf-1 are activated, phosphorylate recombinant kinase-inactive MEK-1, and activate wild-type MEK-1. MEK-1 is the dual-specificity protein kinase that selectively phosphorylates MAP kinase on tyrosine and threonine, resulting in MAP kinase activation. B-Raf and Raf-1 are growth factor-regulated Raf family members which regulate MEK-1 and MAP kinase activity in PC12 cells. Protein kinase A activation in response to elevated cyclic AMP (cAMP) levels inhibited B-Raf and Raf-1 stimulation in response to growth factors. Ras.GTP loading in response to epidermal growth factor, nerve growth factor, or platelet-derived growth factor was unaffected by protein kinase A activation. Even though elevated cAMP levels inhibited Raf activation, the growth factor activation of MEK-1 and MAP kinase was unaffected in PC12 cells. The results demonstrate that tyrosine kinase receptor activation of MEK-1 and MAP kinase in PC12 cells is regulated by B-Raf and Raf-1, whose activation is inhibited by protein kinase A, and MEK activators, whose activation is independent of cAMP regulation.  相似文献   

5.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) are hematopoietic growth factors which stimulate the proliferation and differentiation of myeloid progenitor cells. There is a considerable degree of overlap in target cell specificity and the functional effects of GM-CSF and IL-3. GM-CSF and IL-3 induce a nearly identical pattern of protein-tyrosine phosphorylation in certain cell lines, although their receptors have no kinase domains. Furthermore, their receptor complexes share one subunit (designated as beta). These observations raise the possibility that GM-CSF and IL-3 have a common signaling pathway. Here we show that both GM-CSF and IL-3 induce tyrosine phosphorylation and kinase activity of the c-fps/fes proto-oncogene product (p92c-fes), a non-receptor protein-tyrosine kinase, in a human erythro-leukemia cell line, TF-1, which requires GM-CSF or IL-3 for growth. In addition, GM-CSF induces physical association between p92c-fes and the beta chain of the GM-CSF receptor. p92c-fes is therefore a possible signal transducer of several hematopoietic growth factors including GM-CSF and IL-3 through the common beta chain.  相似文献   

6.
Receptors for the hematopoietic growth factors erythropoietin, interleukin 3 (IL-3), and granulocyte-macrophage colony-stimulating factor (GM-CSF) are members of a structurally related receptor superfamily. Interestingly, while none of these receptors encode tyrosine kinase activities, induced tyrosine phosphorylation has been observed in various responsive cells stimulated with each factor. Toward defining possible common transduction pathways which are activated by these three cytokines, we have studied induced protein phosphorylation in murine myeloid FDC-P1 cells stably transfected with an erythropoietin receptor cDNA (FDC-ER cells). FDC-ER cells proliferate in response to erythropoietin (Quelle, D. E., and Wojchowski, D. M. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 4801-4805), and presently are shown to rapidly phosphorylate a M(r) 100,000 cytosolic protein (pp100) at tyrosine residues in response to this factor. Phosphorylation of pp100 also is induced in FDC-P1 and FDC-ER cells in response to IL-3 or GM-CSF. Importantly, quantitative analyses showed identical concentration dependencies for factor-induced pp100 phosphorylation and induced cell proliferation. Moreover, a selective loss of proliferative responsiveness to GM-CSF in FDC-ER cells was associated with a reduced capacity of GM-CSF to induce pp100 phosphorylation. Finally, limited differences in tryptic phosphopeptide maps of pp100 as isolated following exposure to erythropoietin, IL-3, or GM-CSF were observed, suggesting that these factors also may preferentially induce phosphorylation of pp100 at distinct sites. These findings are consistent with a role for pp100 as a common cytosolic transducer in the apparently convergent pathways of erythropoietin-, IL-3-, and GM-CSF-induced proliferation of myeloid progenitor cells.  相似文献   

7.
The ansamycin antibiotic herbimycin A is a potent tyrosine kinase inhibitor and reduces the growth rate of various types of mammalian cells. When quiescent Rat6 fibroblast cells were treated with herbimycin A, serum-induced expression of cyclin D1 was inhibited, and this was associated with inhibition of G1 phase progression. However, herbimycin A also inhibited serum-induced G1 progression in derivatives of the Rat6 fibroblast cell line that stably overexpress a human cyclin D1 cDNA (R6ccnD1#4 cells), without affecting the expression levels of G1 cyclins. We found that herbimycin A prevented serum-induced downregulation of the cyclin-dependent kinase inhibitor p27(Kip1), thereby leading to inactivation of the protein kinase activity of CDK2. These results suggest that herbimycin A inhibits a tyrosine kinase(s) that plays a role in degradation of the p27(Kop1) protein.  相似文献   

8.
Nontoxic concentrations of ouabain, causing partial inhibition of the cardiac myocyte Na(+)/K(+)-ATPase, induce hypertrophy and several growth-related genes through signal pathways that include the activation of Ras and p42/44 mitogen-activated protein kinase (MAPK). The aim of this work was to examine the ouabain-induced events upstream of the Ras/MAPK cascade. Treatment of myocytes with genistein antagonized ouabain-induced activation of the MAPK, suggesting that protein tyrosine phosphorylation has a role. Tyrosine phosphorylation of several myocyte proteins was increased rapidly upon cell exposure to ouabain. Lowering of extracellular K(+) had a similar ouabain-like effect. Ouabain also increased protein tyrosine phosphorylation in A7r5, HeLa, and L929 cells. In cardiac myocytes and A7r5 cells, herbimycin A antagonized the ouabain-induced increase in protein tyrosine phosphorylation and MAPK activation. In both cell types, ouabain stimulated Src kinase activity, Src translocation to the Triton-insoluble fraction, Src association with the epidermal growth factor receptor, and the tyrosine phosphorylation of this receptor on site(s) other than its major autophosphorylation site, Tyr(1173). The findings suggest that (a) the ouabain-induced activation of Src and the Src-induced phosphorylation of the growth factor receptor provide the scaffolding for the recruitment of adaptor proteins and Ras and the activation of Ras/MAPK cascade; and (b) the activation of such pathways may be a common feature of the signal-transducing function of Na(+)/K(+)-ATPase in most cells.  相似文献   

9.
Steel factor (SF), the ligand for the proto-oncogene c-kit, acts synergistically with GM-CSF or IL-3 to support the growth of normal human hematopoietic progenitor cells. We examined the effects of SF on GM-CSF or IL-3 induced proliferation of a human factor-dependent cell line, MO7. SF supported MO7 cell proliferation as well as IL-3 or GM-CSF alone, and its addition dramatically enhanced (three- to sixfold) maximal GM-CSF or IL-3 stimulated proliferation. SF did not increase the number or affinity of cell surface GM-CSF receptors. We examined several early events of signal transduction in an effort to elucidate the biochemical mechanisms of synergy of these factors. Since each of these three cytokines is believed to function in part through activation of a tyrosine kinase, we examined their effects on cellular phosphotyrosine containing proteins. Each cytokine induced rapid, transient, and concentration dependent tyrosine phosphorylation of a number of substrates. For GM-CSF and IL-3, these phosphoproteins were indistinguishable (150, 125, 106, 93, 80, 79, 73, 44, 42, and 36 kDa), while SF induced major or minor tyrosine phosphorylation of 205, 140-150, 116, 106, 94, 90, 80, 79, 73, 44, 42, 39, 36, 32 kDa phosphoproteins. Two other signal transduction intermediates known to be phosphorylated and activated by GM-CSF and IL-3, the 70-75 kDa Raf-1 kinase, and p42 mitogen-activated protein kinase-2 (MAPK), were also phosphorylated by SF. Combinations of GM-CSF or IL-3 with SF did not further increase the phosphorylation of Raf-1 or p42 MAPK when compared to any of the factors alone. In contrast SF, but not GM-CSF or IL-3, induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma). These results indicate that SF and GM-CSF/IL-3 have partially overlapping effects on early signal transducing events, as well as striking differences, such as tyrosine phosphorylation of PLC-gamma. This cell line should provide a useful model system to investigate the complicated process of hematopoietic growth factor synergy.  相似文献   

10.
The human myeloid cell line MO7 requires either granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) for proliferation. We have previously shown that both GM-CSF and IL-3 transiently induce tyrosine phosphorylation of a number of proteins, including two cytosolic proteins, p93 and p70, which are maximally phosphorylated 5-15 min after addition of growth factor to factor-deprived cells. GM-CSF-induced proliferation of MO7 cells was found to be inhibited by two activators of protein kinase C, phorbol 12-myristate 13-acetate (PMA) and bryostatin-1. PMA did not affect surface expression or affinity of the GM-CSF receptor but significantly inhibited GM-CSF- or IL-3-induced tyrosine phosphorylation of p93 and p70. In contrast, PMA augmented GM-CSF-induced tyrosine phosphorylation of another protein, p42. Pretreatment of cells with sodium orthovanadate to inhibit protein tyrosine phosphatases (PTPase) partially reversed the inhibitory effects of PMA. These results suggest that one aspect of GM-CSF and IL-3 signal transduction, protein tyrosine phosphorylation, can be inhibited by a mechanism which does not involve receptor down-regulation, and may involve either receptor down-regulation, and may involve either inhibition of a receptor-activated tyrosine kinase, activation of a protein tyrosine phosphatase, or both. This mechanism could be important in exerting control of proliferation of some types of hematopoietic cells.  相似文献   

11.
Interleukin 2 (IL-2) can stimulate the proliferation of various kinds of T-cell lines. The receptor for IL-2 is composed of at least two subunits (alpha and beta), of which beta subunit plays the major role in transducing growth signals into the cells. A nonreceptor-type tyrosine kinase, Lck, is associated with IL-2 receptor beta subunit, and the binding of IL-2 to its receptor induces the activation of Lck. On the other hand, it has been shown that stimulation of T-cells with IL-2 causes rapid activation of Ras protein. In this paper, we describe that both of the two regions in IL-2 receptor beta subunit, the indispensable region for the induction of cell growth (serine-rich region) and the binding region of Lck protein (acidic region), are required for the activation of Ras. These two regions are also required for tyrosine phosphorylation of an 85-kDa cellular protein (p85) and the accumulation of fos and jun mRNAs. This observation suggests also that the activation of a receptor-associated tyrosine kinase in response to IL-2-stimulation is primarily responsible for subsequent activation of the pathway through Ras to Fos and Jun.  相似文献   

12.
Interleukin 3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) exert their biological functions through acting on a specific receptor which consists of a ligand-specific alpha subunit and the shared common beta subunit. Inhibition by genistein of a subset of IL-3/GM-CSF-mediated signals, including c-myc induction, resulted in the abrogation of DNA synthesis, however, IL-3 still protected cells from apoptotic cell death. Conversely, a C-terminal truncated form of the GM-CSF receptor, which is missing a critical cytoplasmic region required for activation of the Ras/Raf-1/MAP kinase pathway, induced DNA synthesis, but failed to prevent cell death in response to GM-CSF. Consequently, cells died by apoptosis in the presence of GM-CSF, despite displaying a transient mitogenic response. However, expression of activated Ras protein complemented defective signalling through the mutant receptor and supported long-term proliferation in concert with GM-CSF. These results indicate that IL-3 and GM-CSF prevent apoptosis of hematopoietic cells by activating a signalling pathway distinct from the induction of DNA synthesis and that long-term cell proliferation requires the activation of both pathways.  相似文献   

13.
14.
We studied the modulating effect of protein tyrosine kinase inhibitors on the response of cells of the human chronic myelogenous leukemia cell line K562 to radiation. The radiosensitivity of the cells was increased by treatment with herbimycin A and decreased by treatment with genistein. This modulating effect of protein tyrosine kinase inhibitors on radiation sensitivity was associated with the alteration of the mode of radiation-induced cell death. After X irradiation, the cells arrested in the G(2) phase of the cell cycle, but these TP53(-/-) cells were unable to sustain cell cycle arrest. This G(2)-phase checkpoint deficit caused cell death. The morphological pattern of cell death was characterized by swelling of the cytoplasmic compartments, cytosolic vacuolation, disruption of the plasma membrane, less evident nuclear condensation, and faint DNA fragmentation, all of which were consistent with oncosis or cytoplasmic apoptosis. The nonreceptor protein tyrosine kinase inhibitor herbimycin A accelerated the induction of typical apoptosis by X irradiation, which was demonstrated by morphological assessments using nuclear staining and electron microscopy as well as oligonucleosomal fragmentation and caspase 3 activity. Herbimycin A is known to be a selective antagonist of the BCR/ABL kinase of Philadelphia chromosome-positive K562 cells; this kinase blocks the induction of apoptosis after X irradiation. Our results showed that the inhibition of protein tyrosine kinase by herbimycin A enhanced radiation-induced apoptosis in K562 cells. This effect was associated with the activation of caspase 3 and rapid abrogation of the G(2)-phase checkpoint with progression out of G(2) into G(1) phase. In contrast, the receptor-type protein tyrosine kinase inhibitor genistein protected K562 cells from all types of radiation-induced cell death through the inhibition of caspase 3 activity and prolonged maintenance of G(2)-phase arrest. Further investigations using this model may give valuable information about the mechanisms of radiation-induced apoptosis and about the radiosensitivity and radioresistance of chronic myelogenous leukemia cells having the Philadelphia chromosome.  相似文献   

15.
BAL17 B lymphoma cells, representing mature B lymphocytes, were used to analyze the role of tyrosine kinase in B cell activation. Anti-IgM-induced tyrosine phosphorylation was inhibited by preincubation of cells with tyrosine kinase inhibitor herbimycin A. Enzymatic activity of lyn protein was also inhibited by this drug, accompanied by down-regulation of p53lyn and p56lyn. However, a protein kinase C-mediated event was intact in the herbimycin A-pretreated cells, suggesting that the inhibitor acts selectively on tyrosine kinase. Anti-IgM failed to stimulate herbimycin A-pretreated cells to induce increases in inositol phospholipid metabolism or increased [Ca2+]i, whereas aluminum fluoride-induced metabolism was not altered. Moreover, membrane IgM density as revealed by flow cytometry was not changed by herbimycin A. These results indicate that tyrosine kinase(s) participates in the coupling of an Ag receptor cross-linkage to phospholipase C activation through a phosphorylation event in B lymphoma cells.  相似文献   

16.
The high-affinity receptor for granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a unique alpha chain and a beta c subunit that is shared with the receptors for interleukin-3 (IL-3) and IL-5. Two regions of the beta c chain have been defined; these include a membrane-proximal region of the cytoplasmic domain that is required for mitogenesis and a membrane-distal region that is required for activation of Ras, Raf-1, mitogen-activated protein kinase, and S6 kinase. Recent studies have implicated the cytoplasmic protein tyrosine kinase JAK2 in signalling through a number of the cytokine receptors, including the IL-3 and erythropoietin receptors. In the studies described here, we demonstrate that GM-CSF stimulation of cells induces the tyrosine phosphorylation of JAK2 and activates its in vitro kinase activity. Mutational analysis of the beta c chain demonstrates that only the membrane-proximal 62 amino acids of the cytosolic domain are required for JAK2 activation. Thus, JAK2 activation is correlated with induction of mitogenesis but does not, alone, activate the Ras pathway. Carboxyl truncations of the alpha chain, which inactivate the receptor for mitogenesis, are unable to mediate GM-CSF-induced JAK2 activation. Using baculovirus-expressed proteins, we further demonstrate that JAK2 physically associates with the beta c chain but not with the alpha chain. Together, the results further support the hypothesis that the JAK family of kinase are critical to coupling cytokine binding to tyrosine phosphorylation and ultimately mitogenesis.  相似文献   

17.
Ca(2+) is a universal second messenger that is critical for cell growth and is intimately associated with many Ras-dependent cellular processes such as proliferation and differentiation. Ras is a small GTP binding protein that operates as a molecular switch regulating the control of gene expression, cell growth, and differentiation through a pathway from receptors to mitogen-activated protein kinases (MAPKs). A role for intracellular Ca(2+) in the activation of Ras has been previously demonstrated, e.g., via the nonreceptor tyrosine kinase PYK2 and by Ca(2+)/calmodulin-dependent guanine nucleotide exchange factors (GEFs) such as Ras-GRF; however, there is no Ca(2+)-dependent mechanism for direct inactivation. An important advance toward greater understanding of the complex coordination within the Ras-signaling network is the spatio-temporal analysis of signaling events in vivo. Here, we describe the identification of CAPRI (Ca(2+)-promoted Ras inactivator), a Ca(2+)-dependent Ras GTPase-activating protein (GAP) that switches off the Ras-MAPK pathway following a stimulus that elevates intracellular Ca(2+). Analysis of the spatio-temporal dynamics of CAPRI indicates that Ca(2+) regulates the GAP by a fast C2 domain-dependent translocation mechanism.  相似文献   

18.
Tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 have growth-stimulating activity for a wide range of cell types. Ras, which comprises a family of three members, i.e, Ha-Ras, Ki-Ras, and H-Ras, is known to participate in growth control in all its facets, including cell proliferation, transformation, differentiation, and apoptosis. In this study, we tested the hypothesis that Ras might be involved in the cell growth-promoting activity of TIMPs. Using MG-63 human osteosarcoma cells, we demonstrated that both TIMP-1 and TIMP-2 caused an increase in the Ras-GTP level in a dose-dependent manner. Our previous results indicated that TIMP-1 activity is mediated through the tyrosine kinase (TYK)/mitogen-activated protein kinase (MAPK) pathway. Here, we demonstrated that Ras activation by TIMP-1 was inhibited by a specific TYK inhibitor, herbimycin A, suggesting that the TYK/MAPK signaling pathway was involved in Ras activation by TIMP-1. However, the activation of Ras by TIMP-2 was inhibited by an inhibitor specific for cyclic AMP-dependent protein kinase (PKA), H89, suggesting the involvement of the PKA-mediated pathway. Furthermore, TIMP-2 promoted the formation of a complex between Ras-GTP and phosphoinositide 3-kinase.  相似文献   

19.
A D Keegan  J H Pierce  J Artrip  M Plaut    W E Paul 《The EMBO journal》1991,10(12):3675-3682
IL-3 dependent mast cell lines produce cytokines in response to Fc receptor cross-linkage or to ionomycin. In this study we have observed that cells pre-cultured in IL-3 produce 10-100 times more cytokine after receptor cross-linkage in comparison with IL-4 pre-cultured cells. Although several hematopoietin receptors, including those for IL-3, IL-4 and EPO, do not contain tyrosine kinase domains, their occupancy with ligand causes tyrosine phosphorylation of specific cellular substrates. Therefore, the contribution of tyrosine kinase activation to the ability of an IL-3 dependent mast cell line, CFTL-15, to produce cytokines was analyzed. The CFTL-15 cells were transfected with growth factor receptors containing ligand-inducible tyrosine kinase domains (EGFR and PDGFR, and CSF-IR) or with the EPOR. All of the transfectants were able to proliferate in response to IL-3 or to their respective growth factor and to produce IL-3 in response to IgE receptor cross-linkage. Stimulation of the EGFR and PDGFR transfectants with their respective ligands resulted in the production of IL-3, IL-6, and GM-CSF. Stimulation of the CSF-1R or EPOR transfectants with growth factor alone failed to induce cytokine production. However, in co-stimulation assays each of the growth factors enhanced the amount of cytokine produced in response to Fc epsilon RI cross-linkage. The ability of these stimuli to induce tyrosine phosphorylation in the transfectants was analyzed. Fc epsilon RI cross-linkage in the transfectants routinely induced the tyrosine phosphorylation of 145, 86 and 72 kDa proteins, with occasional phosphorylation of 55, 52, and 40 kDa proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
G protein-coupled receptors (GPCRs) initiate Ras-dependent activation of the Erk 1/2 mitogen-activated protein kinase cascade by stimulating recruitment of Ras guanine nucleotide exchange factors to the plasma membrane. Both integrin-based focal adhesion complexes and receptor tyrosine kinases have been proposed as scaffolds upon which the GPCR-induced Ras activation complex may assemble. Using specific inhibitors of focal adhesion complex assembly and receptor tyrosine kinase activation, we have determined the relative contribution of each to activation of the Erk 1/2 cascade following stimulation of endogenous GPCRs in three different cell types. The tetrapeptide RGDS, which inhibits integrin dimerization, and cytochalasin D, which depolymerizes the actin cytoskeleton, disrupt the assembly of focal adhesions. In PC12 rat pheochromocytoma cells, both agents block lysophosphatidic acid (LPA)- and bradykinin-stimulated Erk 1/2 phosphorylation, suggesting that intact focal adhesion complexes are required for GPCR-induced mitogen-activated protein kinase activation in these cells. In Rat 1 fibroblasts, Erk 1/2 activation via LPA and thrombin receptors is completely insensitive to both agents. Conversely, the epidermal growth factor receptor-specific tyrphostin AG1478 inhibits GPCR-mediated Erk 1/2 activation in Rat 1 cells but has no effect in PC12 cells. In HEK-293 human embryonic kidney cells, LPA and thrombin receptor-mediated Erk 1/2 activation is partially sensitive to both the RGDS peptide and tyrphostin AG1478, suggesting that both focal adhesion and receptor tyrosine kinase scaffolds are employed in these cells. The dependence of GPCR-mediated Erk 1/2 activation on intact focal adhesions correlates with expression of the calcium-regulated focal adhesion kinase, Pyk2. In all three cell types, GPCR-stimulated Erk 1/2 activation is significantly inhibited by the Src kinase inhibitors, herbimycin A and 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo-D-3,4-pyrimidine (PP1), suggesting that Src family nonreceptor tyrosine kinases represent a point of convergence for signals originating from either scaffold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号