首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The observation in 1979 that opioid receptors interact, led to the design of bivalent ligands in an attempt to improve selectivity and affinity towards the different subtypes( i.e. mu, delta, and kappa). Dimers of monovalent 'parent' opioid structures have been evaluated and include: (a) endogenous (e.g enkephalins) or exogenous (e.g dermorphin) peptide dimer analogues (b) mixed peptidic -non-peptidic bivalent ligands and (c) dual non-peptidic dimers. Chimeric structures, using an opioid pharmacophore in combination with a a non-opioid pharmacophore, have also been prepared. The common aim in all these studies is to improve the pharmacological profile of potential analgesics to minimize common opioid-induced side effects, such as physical dependence and tolerance. Here we present a brief overview efforts to develop bivalent opioid ligands for use in pain-related research.  相似文献   

2.
3.
We believed that GTP-binding protein (G-protein)-coupling receptor always transduces stimulatory signals to G-proteins. From our recent experiments using reconstitution techniques, however, it was revealed that some receptors transduce an inhibitory or no signal to G-proteins in specific tissues, despite some interaction between them. Here we discuss the molecular basis of mechanisms of such diverse modes of functional coupling between different subtypes of opioid receptors and G-proteins.  相似文献   

4.
Previous evidence demonstrates that low dose morphine systemic administration induces acute thermal hyperalgesia in normal mice through μOR stimulation of the inositol signaling pathway. We investigated the site of action of morphine and the mechanism of action of μOR activation by morphine to NMDA receptor as it relates to acute thermal hyperalgesia. Our experiments show that acute thermal hyperalgesia is blocked in periaqueductal gray with the μOR antagonist CTOP, the NMDA antagonist MK801 and the protein kinase C inhibitor chelerythrine. Therefore, a site of action of systemically administered morphine low dose on acute thermal hyperalgesic response appears to be located at the periaqueductal gray. At this supraspinal site, μOR stimulation by systemically morphine low dose administration leads to an increased phosphorylation of specific subunit of NMDA receptor. Our experiments show that the phosphorylation of subunit 1 of NMDA receptor parallels the acute thermal hyperalgesia suggesting a role for this subunit in morphine-induced hyperalgesia. Protein kinase C appears to be the key element that links μOR activation by morphine administration to mice with the recruitment of the NMDA/glutamatergic system involved in the thermal hyperalgesic response.  相似文献   

5.
A series of novel high affinity opioid receptor ligands have been made whereby the phenolic-OH group of nalbuphine, naltrexone methiodide, 6-desoxonaltrexone, hydromorphone and naltrindole was replaced by a carboxamido group and the furan ring was opened to the corresponding 4-OH derivatives. These furan ring ‘open’ derivatives display very high affinity for μ and κ receptors and much less affinity for δ. The observation that these target compounds have much higher receptor affinity than the corresponding ring ‘closed’ carboxamides significantly strengthens our underlying pharmacophore hypothesis concerning the bioactive conformation of the carboxamide group.  相似文献   

6.
7.
Opioid mu-agonist morphine, delta-agonist D-Ala2,D-Leu5-enkephalin (DADL) and kappa-agonist bremazocine locally applied to the surface of turtle visual cortex inhibited the orthodromic evoked potential (EP; fast negative component N1). The lack of cross-desensitization to the inhibitory action of opioids upon EP indicates that the drugs exert their effects via different opioid receptors. Morphine and bremazocine predominantly inhibited the left cortex EP, whereas DADL was a potent inhibitor of the right cortex EP. Thus opioid receptors which modulate evoked electrical activity of the left visual cortex (LVC) apparently belong mostly to mu- and kappa-type while delta-receptors were predominantly responsible for the modulation of electrical activity in the right visual cortex (RVC). Application of LVC- and RVC-extracts to the cortex surface led to EP inhibition, which was partially (60-80%) prevented by antagonist naloxone. LVC-extract proved to be a more potent inhibitor of the left cortex EP, whereas RVC-extract was found to be more effective when applied to the right cortex. It is suggested that not only opioid receptors, but also their endogenous ligands are lateralized in turtle visual cortex.  相似文献   

8.
9.
It has been found that stimulation of delta-1 opioid receptors by intravenous administration of DPDPE (0.5 mg/kg) decreases the incidence of ischemic and reperfusion-induced arrhythmias and also increases myocardial tolerance to the arrhythmogenic action of epinephrine in rats. Pretreatment with a selective delta-2 agonist, DSLET, had no antiarrhythmic effect. The inhibition of the enzymatic breakdown of endogenous enkephalins by intravenous administration of acetorphan decreased the incidence of epinephrine-induced arrhythmias. Pretreatment with a selective delta opioid receptor antagonist, ICI-174.868, completely abolished this antiarrhythmic effect. Adaptation of rats to repeated immobilization stress during 12 days increased myocardial tolerance to the arrhythmogenic action of coronary artery occlusion (10 min) and reperfusion (10 min). Pretreatment with a selective delta opioid receptor antagonist, TIPP(Psy), did not abolish the antiarrhythmic effect of adaptation to immobilization stress. It seems that endogenous agonists of delta opioid receptors are not involved in the antiarrhythmic effect resulting from adaptation to stress.  相似文献   

10.
In an effort to improve diazabicycloalkane-based opioid receptor ligands, N-3(6)-arylpropenyl-N-6(3)-propionyl-3,6-diazabicyclo[3.1.1]heptanes (3A,Ba-i) were synthesized and their affinity and selectivity towards mu-, delta- and kappa-receptors were evaluated. The results of the current study revealed a number of compounds (3Bb, 3Bg and 3Bh) having a high affinity for mu (Ki at mu-receptors ranging from 2.7 to 7.9 nM) versus delta (Ki at delta-receptors > 2000 nM) and versus kappa (Ki at kappa-receptors > 5000 nM) receptors. Molecular modelling carried out on the pair 3Aa/3Ba and on the 3Bh was consistent with the hypothesis that the two series of compounds 3A and 3B interact with the mu-receptor in very different ways.  相似文献   

11.
The FT-IR (Fourier Transform Infrared) Spectrum of [Met 5]-enkephalinamide in aqueous solution shows the presence of both the beta-turn and beta-sheet conformations. The beta-turn and beta-sheet conformations of enkephalins have been proposed to play a role in receptor selectivity. Addition of ethanol alters these secondary structural features and hence the effect of ethanol on ligand-receptor interaction may be mediated primarily through conformational changes of the ligand rather than those of the receptor.  相似文献   

12.
T P Su  A D Weissman  S Y Yeh 《Life sciences》1986,38(24):2199-2210
Two endogenous ligands which interact preferentially with the sigma opioid receptors were identified from the guinea-pig brain extract in a Sephadex G-50 fractionation. These two ligands inhibited more potently the binding of [3H]SKF-10047 to sigma opioid receptors than [3H]naloxone to mu opioid receptors, [3H]ethylketocyclazocine to kappa opioid receptors and [3H]DADLE to delta opioid receptors. In the phencyclidine receptor assay, these two ligands were almost inactive. Incubation of these ligands with trypsin destroyed at least 50% of the activities in the sigma opioid receptor assay. Both ligands inhibited the sigma binding in a dose-dependent manner. The inhibition could be eliminated when the two ligands were removed from incubation media by extensive washings. It is therefore concluded that sigma opioid receptors are not phencyclidine receptors and that endogenous ligands for sigma opioid receptors may exist in the brain.  相似文献   

13.
14.
It has been known that co-administration of morphine with either cholecystokinin (CCK) receptor or melanocortin (MC) receptor antagonists enhance morphine’s analgesic efficacy by reducing serious side effects such as tolerance and addiction.1, 2, 3, 4 Considering these synergistic effects, we have designed trivalent ligands in which all three different pharmacophores for opioid, CCK, and MC receptors are combined in such a way as to conserve their own topographical pharmacophore structures. These ligands, excluding the cyclic compound, were synthesized by solid phase synthesis using Rink-amide resin under microwave assistance in very high yields. These trivalent ligands bind to their respective receptors well demonstrating that the topographical pharmacophore structures for the three receptors were retained for receptor binding. Ligand 10 was a lead compound to show the best biological activities at all three receptors.  相似文献   

15.
Opioid receptors belong to the family of G-protein-coupled receptors characterized by their seven transmembrane domains. The activation of these receptors by agonists such as morphine and endogenous opioid peptides leads to the activation of inhibitory G-proteins followed by a decrease in the levels of intracellular cAMP. Opioid receptor activation is also associated with the opening of K(+) channels and the inhibition of Ca(2+) channels. A number of investigations, prior to the development of opioid receptor cDNAs, suggested that opioid receptor types interacted with each other. Early pharmacological studies provided evidence for the probable interaction between opioid receptors. More recent studies using receptor selective antagonists, antisense oligonucleotides, or animals lacking opioid receptors further suggested that interactions between opioid receptor types could modulate their activity. We examined opioid receptor interactions using biochemical, biophysical, and pharmacological techniques. We used differential epitope tagging and selective immunoisolation of receptor complexes to demonstrate homotypic and heterotypic interactions between opioid receptor types. We also used the proximity-based bioluminescence resonance energy transfer assay to explore opioid receptor-receptor interactions in living cells. In this article we describe the biochemical and biophysical methods involved in the detection of receptor dimers. We also address some of the concerns and suggest precautions to be taken in studies examining receptor-receptor interactions.  相似文献   

16.
Melanocortin peptides have been reported to influence opiate tolerance, but the neuronal basis underlying these actions is unknown. We studied the contribution of melanocortin (MC4R) receptors to morphine effects. The MC4R mRNA level in the amygdala was decreased after acute morphine treatment and increased in rats tolerant to morphine as evidenced by quantitative real‐time PCR method. Moreover, the intra‐amygdalar microinjection of antagonist of MC4R attenuated morphine tolerance. Expression of the spinal MC4R after sciatic nerve injury was decreased in the early phase of neuropathy and slightly decreased 2–3 weeks after injury. These findings suggest that the altered melanocortin receptor function may contribute to the development of morphine‐induced effects. Thus, the melanocortin receptors may be a target for development of better and more effective drugs for the therapy of chronic pain. Acknowledgement: Supported by KBN grant for the statutory activity.  相似文献   

17.
Significant advances have been made in understanding the structure, function, and regulation of opioid receptors and endogenous opioid peptides since their discovery approximately 25 years ago. This review summarizes recent studies aimed at identifying key amino acids that confer ligand selectivity to the opioid receptors and that are critical constituents of the ligand binding sites. A molecular model of the delta receptor based on the crystal structure of rhodopsin is presented. Agonist-induced down regulation of opioid receptors is discussed, highlighting recent evidence for the involvement of the ubiquitin/proteasome system in this process.  相似文献   

18.
K Ramabadran  J J Jacob 《Life sciences》1979,24(21):1959-1969
It is known that various opiate antagonists enhance stereospecifically reactions to superficial nociceptive stimuli (e.g. in the hot plate test) suggesting the involvement of endogenous ligands in these reactions. In mice and rats the writhing responses to deep nociceptive stimuli (intraperitoneal test) were also enhanced stereospecifically by (-) naloxone, Mr 2266 and GPA 2163 but some other antagonists (naltrexone, levallorphan, diprenorphine) were inactive probably as a consequence of interfering agonist (antinociceptive) properties. An another antagonist, (-) Win 44441 suggested to bind principally with κ receptors did not enhance either superficial or deep nociception indicating that the former antagonists are probably interfering with endorphins at the level of μ receptors. The motor reaction of mice to a novel environment was stereospecifically depressed by opioid antagonists including (-) Win 44441 suggesting an involvement of endorphins at the level of κ receptors ; Mr 2266 and GPA 2163 were ineffective in this test and hyperalgesic in the two antinociceptive tests ; they might be relatively pure μ antagonists.  相似文献   

19.
ErbB receptor tyrosine kinases are membrane-bound receptors that possess intrinsic, ligand-activated, tyrosine kinase activity. Binding of growth factors to these receptors induces the formation of ErbB homo- and heterodimers and initiates a signalling cascade that traverses the cytoplasm to communicate with the nucleus and the cytoskeleton. The effect of this cascade is the regulation of cellular proliferation, differentiation, apoptosis, migration and adhesion. Although ErbB signalling is important for normal growth and development in the breast, a dysregulation of ErbB activity can lead to tumourigenesis. This review will focus on the role of ErbB signalling in both normal mammary gland development and breast cancer, with an emphasis on the mechanisms behind receptor activation and the therapeutic agents designed to inhibit ErbB activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号