首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in ribosomal proteins L7/L12 perturb EF-G and EF-Tu functions   总被引:8,自引:0,他引:8  
In vitro cycling rates of E. coli ribosomes and of elongation factors EF-Tu and EF-G have been obtained and these are compatible with translation rates in vivo. We show that the rate of translocation is faster than 50 s-1 and therefore that the EF-G function is not a rate limiting step in protein synthesis. The in vivo phenotype of some L7/L12 mutants could be accounted for by perturbed EF-Tu as well as EF-G functions. The S12 mutants that we studied were, in contrast, only perturbed in their EF-Tu function, while their EF-G interaction was not impaired in relation to wild type ribosomes.  相似文献   

2.
Polyphosphate degradation and phosphate secretion were optimized in Escherichia coli strains overexpressing the E. coli polyphosphate kinase gene (ppk) and either the E. coli polyphosphatase gene (ppx) or the Saccharomyces cerevisiae polyphosphatase gene (scPPX1) from different inducible promoters on medium- and high-copy plasmids. The use of a host strain without functional ppk or ppx genes on the chromosome yielded the highest levels of polyphosphate, as well as the fastest degradation of polyphosphate when the gene for polyphosphatase was induced. The introduction of a hybrid metabolic pathway consisting of the E. coli ppk gene and the S. cerevisiae polyphosphatase gene resulted in lower polyphosphate concentrations than when using both the ppk and ppx genes from E. coli, and did not significantly improve the degradation rate. It was also found that the rate of polyphosphate degradation was highest when ppx was induced late in growth, most likely due to the high intracellular polyphosphate concentration. The phosphate released from polyphosphate allowed the growth of phosphate-starved cells; excess phosphate was secreted into the medium, leading to a down-regulation of the phosphate-starvation (Pho) response. The production of alkaline phosphatase, an indicator of the Pho response, can be precisely controlled by manipulating the degree of ppx induction. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

3.
Hyper-accurate ribosomes inhibit growth.   总被引:18,自引:3,他引:18       下载免费PDF全文
We have compared both in vivo and in vitro translation by ribosomes from wild-type bacteria with those from streptomycin-resistant (SmR), streptomycin-dependent (SmD) and streptomycin-pseudo-dependent (SmP) mutants. The three mutant bacteria translate more accurately and more slowly in the absence of streptomycin (Sm) than do wild-type bacteria. In particular, the SmP bacteria grow at roughly half the rate of the wild-type in the absence of Sm. The antibiotic stimulates both the growth rate and the translation rate of SmP bacteria by approximately 2-fold, but it simultaneously increases the nonsense suppression rate quite dramatically. Kinetic experiments in vitro show that the greater accuracy and slower translation rates of mutant ribosomes compared with wild-type ribosomes are associated with much more rigorous proofreading activities of SmR, SmD and SmP ribosomes. Sm reduces the proofreading flows of the mutant ribosomes and stimulates their elongation rates. The data suggest that these excessively accurate ribosomes are kinetically less efficient than wild-type ribosomes, and that this inhibits mutant growth rates. The stimulation of the growth of the mutants by Sm results from the enhanced translational efficiency due to the loss of proofreading, which more than offsets the loss of accuracy caused by the antibiotic.  相似文献   

4.
Ribosomal RNA and protein mutants resistant to spectinomycin.   总被引:7,自引:0,他引:7       下载免费PDF全文
We have compared the influence of spectinomycin (Spc) on individual partial reactions during the elongation phase of translation in vitro by wild-type and mutant ribosomes. The data show that the antibiotic specifically inhibits the elongation factor G (EF-G) cycle supported by wild-type ribosomes. In addition, we have reproduced the in vivo Spc resistant phenotype of relevant ribosome mutants in our in vitro translation system. In particular, three mutants with alterations at position 1192 in 16S rRNA as well as an rpsE mutant with an alteration of protein S5 were analysed. All of these ribosomal mutants confer a degree of Spc resistance for the EF-G cycle in vitro that is correlated with the degree of growth rate resistance to the antibiotic in culture.  相似文献   

5.
Kinetic properties of Escherichia coli ribosomes with altered forms of S12.   总被引:5,自引:0,他引:5  
E. coli ribosomes with alterations in S12 leading to streptomycin resistance (SmR), dependence (SmD) and pseudodependence (SmP) were studied with the quench-flow technique. Kinetic changes at the various steps of the elongation cycle were identified. The rate of hydrolysis of GTP in the ternary complex in the ribosomal A-site is decreased drastically in SmD and moderately in SmP in relation to wild-type ribosomes. Addition of streptomycin restores much of the wild-type behaviour. The SmD, SmP and SmR ribosomes have an enhanced GTP-hydrolysis idling reaction on EF-Tu, which is correlated with how aggressive proofreaders these ribosomes are in steady-state assays. We use our in vitro findings to discuss the in vivo physiology of these mutants as well as mechanistic features of E. coli translation.  相似文献   

6.
To investigate the function of ribosomal proteins and translational factors in Bacillus subtilis, we developed an in vivo assay system to measure the level of nonsense readthrough by utilizing the LacZ-LacI system. Using the in vivo nonsense readthrough assay system which we developed, together with an in vitro poly(U)-directed cell-free translation assay system, we compared the processibility and translational accuracy of mutant ribosomes with those of the wild-type ribosome. Like Escherichia coli mutants, most S12 mutants exhibited lower frequencies of both UGA readthrough and missense error; the only exception was a mutant (in which Lys-56 was changed to Arg) which exhibited a threefold-higher frequency of readthrough than the wild-type strain. We also isolated several ribosomal ambiguity (ram) mutants from an S12 mutant. These ram mutants and the S12 mutant mentioned above (in which Lys-56 was changed to Arg) exhibited higher UGA readthrough levels. Thus, the mutation which altered Lys-56 to Arg resulted in a ram phenotype in B. subtilis. The efficacy of our in vivo nonsense readthrough assay system was demonstrated in our investigation of the function of ribosomal proteins and translational factors.  相似文献   

7.
Pseudomonas aeruginosa accumulates polyphosphates in response to nutrient limitations. To elucidate the function of polyphosphate in this microorganism, we have investigated polyphosphate metabolism by isolating from P. aeruginosa 8830 the genes encoding polyphosphate kinase (PPK) and exopolyphosphatase (PPX), which are involved in polyphosphate synthesis and degradation, respectively. The 690- and 506-amino-acid polypeptides encoded by the two genes have been expressed in Escherichia coli and purified, and their activities have been tested in vitro. Gene replacement was used to construct a PPK-negative strain of P. aeruginosa 8830. Low residual PPK activity in the ppk mutant suggests a possible alternative pathway of polyphosphate synthesis in this microorganism. Primer extension analysis indicated that ppk is transcribed from a sigmaE-dependent promoter, which could be responsive to environmental stresses. However, no coregulation between ppk and ppx promoters has been demonstrated in response to osmotic shock or oxidative stress.  相似文献   

8.
A specific complex of 5 S rRNA and several ribosomal proteins is an integral part of ribosomes in all living organisms. Here we studied the importance of Escherichia coli genes rplE, rplR and rplY, encoding 5 S rRNA-binding ribosomal proteins L5, L18 and L25, respectively, for cell growth, viability and translation. Using recombineering to create gene replacements in the E. coli chromosome, it was shown that rplE and rplR are essential for cell viability, whereas cells deleted for rplY are viable, but grow noticeably slower than the parental strain. The slow growth of these L25-defective cells can be stimulated by a plasmid expressing the rplY gene and also by a plasmid bearing the gene for homologous to L25 general stress protein CTC from Bacillus subtilis. The rplY mutant ribosomes are physically normal and contain all ribosomal proteins except L25. The ribosomes from L25-defective and parental cells translate in vitro at the same rate either poly(U) or natural mRNA. The difference observed was that the mutant ribosomes synthesized less natural polypeptide, compared to wild-type ribosomes both in vivo and in vitro. We speculate that the defect is at the ribosome recycling step.  相似文献   

9.
In vitro systems for the aminoacylation of transfer ribonucleic acid (tRNA) and for polypeptide synthesis have been constructed from young (12-h cultures, not producing actinomycin) and old (48-h cultures, producing actinomycin) cells of Streptomyces antibioticus. When Escherichia coli aminoacyl-tRNA synthetases were used to acylate S. antibioticus tRNA's, it was observed that, per absorbance unit of tRNA, the tRNA's from 48-h cells had a lower ability to accept the amino acids, leucine, serine, pheynlalanine, methionine, and valine than did the tRNA's from 12-h cells. Individual differences were observed between aminoacyl-tRNA synthetases from 12-h cells and those from 48-h cells with respect to the rate and extent of aminoacylation of E. coli tRNA with the five amino acids listed above. In vitro systems for the synthesis of polyphenylalanine have been constructed from 12- and 48-h cells. Ribsomes and soluble enzymes from 12-h cells are more efficient than those from 48-h cells in supporting polyphenylalanine synthesis, and, although the activity of both systems can be stimulated by the addition of E. coli tRNA, the higher level of incorporation observed in the unstimulated 12-h system (ribosomes and soluble enzymes) is maintained. Indeed, the difference in capacity for polyphenylalanine synthesis between in vitro systems from 12- and 48-h cells is greater when the systems are maximally stimulated by E. coli tRNA. Cross-mixing experiments reveal that enzymes from 48-h cells support a slightly higher level of polyphenylalanine synthesis than enzymes from 12-h cells with ribosomes from either cell type, and that the ribosomes are the primary agents responsible for the decreased efficiency of the in vito system from 48-h cells are compared with that from 12-h cells. To determine whether ribosome-associated factors were responsible for the relative inefficiency of the ribosomes from 48-h cells in translation, salt-washed ribosomes from 12- and 48-h cells were examined for their abilities to catalyze polyphenylalanine synthesis. Even after salt washing, ribosomes from 12-h cells were about five times higher in specific activity (counts per minute of polyphenylalanine synthesized per absorbance at 260 nm of ribosomes) than equivalent amounts of ribosomes from 48-h cells. Analysis of the proteins of salt-washed ribosomes of the two cell types by acrylamide gel electrophoresis suggests that the relative amounts of individual proteins present on ribosomes from 12-h cells are different from the amounts present on ribosomes from 48-h cells. These results are discussed in terms of the regulation of translation in S. antibioticus.  相似文献   

10.
Vibrio cholerae, the causative agent of Asiatic cholera, has been reported to make large quantities of polyphosphate. Inorganic polyphosphate is a ubiquitous molecule with a variety of functions in prokaryotic and eukaryotic cells. We constructed a V. cholerae mutant with a deletion in the polyphosphate kinase (ppk) gene. The mutant was defective in polyphosphate biosynthesis. Deletion of ppk had no significant effect on production of cholera toxin, hemagglutinin/protease, motility, biofilm formation, and colonization of the suckling mouse intestine. The wild type and mutant had similar growth rates in rich and minimal medium and exhibited similar phosphate uptake and alkaline phosphatase induction. In contrast to ppk mutants from other gram-negative bacteria, the V. cholerae mutant survived prolonged starvation in LB medium and artificial seawater basal salts. The ppk mutant was significantly more sensitive to low pH, high salinity, and oxidative stress when it was cultured in low-phosphate minimal medium. The ppk mutant failed to induce catalase when it was downshifted to phosphorus-limiting conditions. Furthermore, the increased sensitivity of the ppk mutant to environmental stressors in phosphate-limited medium correlated with a diminished capacity to synthesize ATP from intracellular reservoirs. We concluded that polyphosphate protects V. cholerae from environmental stresses under phosphate limitation conditions. It has been proposed that toxigenic V. cholerae can survive in estuaries and brackish waters in which phosphorus and/or nitrogen can be a limiting nutrient. Thus, synthesis of large polyphosphate stores could enhance the ability of V. cholerae to survive in the aquatic environment.  相似文献   

11.
The ppk gene of Streptomyces lividans encodes an enzyme catalyzing, in vitro, the reversible polymerization of the gamma phosphate of ATP into polyphosphate and was previously shown to play a negative role in the control of antibiotic biosynthesis (H. Chouayekh and M. J. Virolle, Mol. Microbiol. 43:919-930, 2002). In the present work, some regulatory features of the expression of ppk were established and the polyphosphate content of S. lividans TK24 and the ppk mutant was determined. In Pi sufficiency, the expression of ppk was shown to be low but detectable. DNA gel shift experiments suggested that ppk expression might be controlled by a repressor using ATP as a corepressor. Under these conditions, short acid-soluble polyphosphates accumulated upon entry into the stationary phase in the wild-type strain but not in the ppk mutant strain. The expression of ppk under Pi-limiting conditions was shown to be much higher than that under Pi-sufficient conditions and was under positive control of the two-component system PhoR/PhoP. Under these conditions, the polyphosphate content of the cell was low and polyphosphates were reproducibly found to be longer and more abundant in the ppk mutant strain than in the wild-type strain, suggesting that Ppk might act as a nucleoside diphosphate kinase. In light of our results, a novel view of the role of this enzyme in the regulation of antibiotic biosynthesis in S. lividans TK24 is proposed.  相似文献   

12.
Gene 6 mRNA of Bacillus subtilis phage phi 29 is inefficiently translated under standard in vitro conditions by Escherichia coli, while it is efficiently translated by the in vitro system derived from B. subtilis. This is a rare example of the inability of E. coli to translate mRNA translated by B. subtilis. The ionic condition in the translation systems was the key component in the differential recognition of the gene 6 message by E. coli and B. subtilis ribosomes. Its translation by E. coli ribosomes was preferentially inhibited by moderate levels of KCl, while its translation by B. subtilis ribosomes was unaffected by these concentrations of salt. This preferential inhibition with E. coli ribosomes was observed in vitro as well as in vivo. While not influencing the general phenomenon of preferential inhibition, anion-specific effects were observed in overall protein synthesis. Glutamate and acetate promoted efficient synthesis over a broad range of concentrations, whereas chloride was inhibitory at all concentrations tested.  相似文献   

13.
Ordered processing of Escherichia coli 23S rRNA in vitro.   总被引:6,自引:2,他引:4       下载免费PDF全文
In an RNase III-deficient strain of E. coli 23S pre-rRNA accumulates unprocessed in 50S ribosomes and in polysomes. These ribosomes provide a substrate for the analysis of rRNA maturation in vitro. S1 nuclease protection analysis of the products obtained in in vitro processing reactions demonstrates that 23S rRNA processing is ordered. The double stranded stem of 23S rRNA is cleaved by RNase III in vitro to two intermediate RNAs at the 5' end and one at the 3' end. Mature termini are then produced by other enzyme(s) in a soluble protein fraction from wild-type cells. The nature of the reaction at the 5' end is not clear, but the reaction at the 3' end is exonucleolytic, producing three heterogeneous mature termini. The two reactions are coordinated; 3' end maturation progresses concurrently with cleavages at the 5' end. Two results suggest a possible link between final maturation and translation: in vitro, mature termini are formed efficiently in the presence of additives required for protein synthesis; and all the processing intermediates detected from in vitro reactions are also found in polysomes from wild-type cells.  相似文献   

14.
Replacement of the protein L11 binding domain within Escherichia coli 23S ribosomal RNA (rRNA) by the equivalent region from yeast 26S rRNA appeared to have no effect on the growth rate of E.coli cells harbouring a plasmid carrying the mutated rrnB operon. The hybrid rRNA was correctly processed and assembled into ribosomes, which accumulated normally in polyribosomes. Of the total ribosomal population, < 25% contained wild-type, chromosomally encoded rRNA; the remainder were mutant. The hybrid ribosomes supported GTP hydrolysis dependent upon E.coli elongation factor G, although at a somewhat reduced rate compared with wild-type particles, and were sensitive to the antibiotic, thiostrepton, a potent inhibitor of ribosomal GTPase activity that binds to 23S rRNA within the L11 binding domain. That thiostrepton could indeed bind to the mutant ribosomes, although at a reduced level relative to that seen with wild-type ribosomes, was confirmed in a non-equilibrium assay. The rationale for the ability of the hybrid ribosomes to bind the antibiotic, given that yeast ribosomes do not, was provided when yeast rRNA was shown by equilibrium dialysis to bind thiostrepton only 10-fold less tightly than did E.coli rRNA. The extreme conservation of secondary, but not primary, structure in this region between E.coli and yeast rRNAs allows the hybrid ribosomes to function competently in protein synthesis and also preserves the interaction with thiostrepton.  相似文献   

15.
Kinetic impairment of restrictive streptomycin-resistant ribosomes   总被引:11,自引:0,他引:11  
Summary Comparisons in vivo and in vitro of wild-type and otherwise isogenic bacteria with five different mutant alleles of the gene (rpsL) specifying ribosomal protein S12, all resistant to high levels of streptomycin, show that the streptomycin-resistant (Smr) phenotype can be subdivided into major groups: restrictive and non-restrictive. The restrictive bacteria have a characteristically lower frequency of nonsense suppression in vivo, and are also slower than the wild type in their rate of protein synthesis. Non-restrictive Smr bacteria on the other hand do not differ significantly from the wild type either in nonsense suppression frequencies or in the rate of translation.A complementary pattern is seen in vitro, where ribosomes from the restrictive Smr bacteria translate poly(U) with a significantly lower missense error frequency than wild-type ribosomes, and also show an increased Michaelis constant (K M) with respect to their substrate, i.e. ternary complexes. Both effects are correlated with the more aggressive proofreading function that is characteristic of these restrictive ribosomes. In contrast, ribosomes isolated from the non-restrictive Smr bacteria do not show any major difference in either proofreading or missense error in vitro when compared to the wild type.  相似文献   

16.
During protein synthesis the ribosome interacts with ligands such as mRNA, tRNA and translation factors. We have studied the effect of ribosome-ligand interaction on the accessibility of 18S rRNA for single strand-specific modification in ribosomal complexes that have been assembled in vivo, i. e. native polysomes. A comparison of the modification patterns derived from programmed and non-programmed ribosomes showed that bases in the 630- and 1060-loops (530- and 790-loops in E. coli) together with two nucleotides in helices 33 and 34 were protected from chemical modification. The majority of the protected sites were homologous to sites previously suggested to be involved in mRNA and/or tRNA binding in prokaryotes and eukaryotes, implying that the interaction sites for these ligands are similar, if not identical, in naturally occurring programmed ribosomes and in in vitro assembled ribosomal complexes. Additional differences between programmed and non-programmed ribosomes were found in hairpin 8. The bases in helix 8 showed increased exposure to chemical modification in the programmed ribosomes. In addition, structural differences in helices 36 and 37 were observed between native 80S run-off ribosomes and 80S ribosomes assembled from isolated 40S and 60S subunits.  相似文献   

17.
Ribosomes and polyribosomes from Clostridium pasteurianum were isolated and their activities were compared with those of ribosomes from Escherichia coli in protein synthesis in vitro. C. pasteurianum ribosomes exhibited a high level of activity due to endogenous messenger ribonucleic acid (RNA). For translation of polyuridylic acid [poly(U)], C. pasteurianum ribosomes required a higher concentration of Mg(2+) and a much higher level of poly(U) than did E. coli ribosomes. Phage f2 RNA added to the system with C. pasteurianum ribosomes gave no significant stimulation of protein synthesis in a homologous system or with E. coli initiation factors. The 30S and 50S subunits prepared from C. pasteurianum ribosomes reassociated less readily than subunits from E. coli. The ability of the C. pasteurianum subunits to reassociated was found to be dependent upon the presence of a reducing agent during preparation and during analysis of the reassociation products. In heterologous combinations, E. coli 30S subunits associated readily with C. pasteurianum 50S subunits to form 70S particles, but C. pasteurianum 30S subunits and E. coli 50S subunits did not associate. In poly(U) translation, E. coli 30S subunits were active in combination with 50S subunits from either E. coli or C. pasteurianum, but C. pasteurianum 30S subunits were not active in combination with either type of 50S subunits. Polyribosomes prepared from C. pasteurianum were very active in protein synthesis, and well-defined ribosomal aggregates as large as heptamers could be seen on sucrose gradients. An attempt was made to demonstrate synthesis in vitro of ferredoxin.  相似文献   

18.
The binding of the EF-Tu.GTP.aminoacyl-tRNA ternary complex (EF, elongation factor) to the ribosome is known to be strengthened by a 2661G-to-C mutation in 23S ribosomal RNA, whereas the binding to normal ribosomes is weakened if the factor is in an appropriate mutant form (Aa). In this report we describe the mutual effects by the 2661C alteration in 23S rRNA and EF-Tu(Aa) on bacterial viability and translation efficiency in strains with normal or mutationally altered ribosomes. The rrnB(2661C) allele on a multicopy plasmid was introduced by transformation into Escherichia coli K-12 strains, harbouring either the wild-type or the mutant gene (tufA) for EF-Tu as well as normal or mutant ribosomal protein S12 (rpsL). Together with wild-type EF-Tu, the 2661C mutant ribosomes decreased the translation elongation rate in a rpsL+ strain or a non-restrictive rpsL224 strain. This reduction was not seen in strains which harbored EF-Tu(Aa) instead of EF-Tu(As) (As, wild-type form). Nonsense codon suppression by tyrT(Su3) suppressor tRNA was reduced by 2661C in a rpsL224 strain in the presence of EF-Tu(As) but not in the presence of EF-Tu(Aa). The lethal effect obtained by the combination of 2661C and a restrictive ribosomal protein S12 mutation (rpsL282) disappeared if EF-Tu(As) was replaced by EF-Tu(Aa) in the strain. In such a viable strain, 2661C had no effect on either the translation elongation rate or nonsense codon suppression. Our data suggest that the G base at position 2661 in 23S rRNA is important for binding of EF-Tu during protein synthesis in vivo. The interaction between this base and EF-Tu is strongly influenced by the structure of ribosomal protein S12.  相似文献   

19.
A single base change in 16S rRNA (C-726 to G) was constructed by site-directed mutagenesis and cloned into the multicopy plasmid pKK3535 (generating pKK726G) which contains the complete rrnB operon from Escherichia coli. The mutant 16S rRNA was found predominantly in the 30S subunit fraction but was present in the 70S ribosomes. Protein analyses of the free 30S subunits revealed a decrease in the levels of ribosomal proteins S2 and S21 while the composition of the 70S ribosomes was as the wild-type. Transformants of pKK726G were temperature sensitive for growth, although the mutant ribosomes themselves were translationally active in vivo at 37 and 42 degrees C. Two-dimensional gel electrophoresis of the proteins translated in vivo revealed an altered protein profile which included novel proteins, changes in the levels of normal proteins, and the presence of heat shock proteins (HSPs) at 30 degrees C. Inactivation of the host encoded wild-type ribosomes coincided with a significant decrease in the synthesis of the HSPs. We therefore believe the induction of the HSPs to be a secondary response by the cells to the presence of the abnormal proteins.  相似文献   

20.
The ribosomes from four temperature-sensitive mutants of Escherichia coli have been examined for defects in cell-free protein synthesis. The mutants examined had alterations in ribosomal proteins S10, S15, or L22 (two strains). Ribosomes from each mutant showed a reduced activity in the translation of phage MS2 RNA at 44 degrees C and were more rapidly inactivated by heating at this temperature compared to control ribosomes. Ribosomal subunits from three of the mutants demonstrated a partial or complete inability to reassociate at 44 degrees C. 70-S ribosomes from two strains showed a reducton in messenger RNA binding. tRNA binding to the 30 S subunit was reduced in the strains with altered 30-S proteins and binding to the 50 S subunit was affected in the mutants with a change in 50 S protein L22. The relation between ribosomal protein structure and function in protein synthesis in these mutants is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号