首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelin is a 21 amino acid peptide which is produced by the vascular endothelium and is believed to be the mediator of endothelium-dependent vasoconstriction. In the current study we assessed the ability of synthetic human endothelin-1 to affect prenodal lymphatic vessel contractility in the canine forelimb. Intralymphatic infusion of endothelin at 1.09 x 10(-9), 1.09 x 10(-8) and 1.09 x 10(-7) M significantly constricted lymphatic vessels as evidenced by dose-dependent increases in lymphatic perfusion pressure. The increase in lymphatic perfusion pressure seen during intralymphatic infusion of endothelin at 1.09 x 10(-8) M during the intra-arterial infusion of phentolamine was not significantly different from that seen prior to phentolamine, indicating that endothelin-mediated lymphatic constriction is not alpha-receptor mediated. Intra-arterial infusion of endothelin at three infusion rates significantly increased forelimb arterial, systemic and lymphatic perfusion pressures. The constriction seen when endothelin (1.09 x 10(-8) M) was infused intralymphatically in the intact lymphatic system was not significantly different from that observed when only the prenodal lymph vessel was perfused. This indicated that the lymph nodes and efferent lymph vessels do not contribute significantly to the lymphatic constriction produced by endothelin. These data are consistent with the hypothesis that endothelin may modulate lymphatic function under either normal or pathophysiological conditions.  相似文献   

2.
The contribution of endothelin to resting pulmonary vascular tone and hypoxic pulmonary vasoconstriction in humans is unknown. We studied the hemodynamic effects of BQ-123, an endothelin type A receptor antagonist, on healthy volunteers exposed to normoxia and hypoxia. Hemodynamics were measured at room air and after 15 min of exposure to hypoxia (arterial PO(2) 99.8 +/- 1.8 and 49.4 +/- 0.4 mmHg, respectively). Measurements were then repeated in the presence of BQ-123. BQ-123 decreased pulmonary vascular resistance (PVR) 26% and systemic vascular resistance (SVR) 21%, whereas it increased cardiac output (CO) 22% (all P < 0.05). Hypoxia raised CO 28% and PVR 95%, whereas it reduced SVR 23% (all P < 0.01). During BQ-123 infusion, hypoxia increased CO 29% and PVR 97% and decreased SVR 22% (all P < 0.01). The pulmonary vasoconstrictive response to hypoxia was similar in the absence and presence of BQ-123 [P = not significant (NS)]. In vehicle-treated control subjects, hypoxic pulmonary vasoconstriction did not change with repeated exposure to hypoxia (P = NS). Endothelin contributes to basal pulmonary and systemic vascular tone during normoxia, but does not mediate the additional pulmonary vasoconstriction induced by acute hypoxia.  相似文献   

3.
Endothelin, a potent peptide agonist in the liver   总被引:8,自引:0,他引:8  
Endothelin, a peptide mediator produced by vascular endothelial cells, caused sustained vasoconstriction of the portal vasculature in the perfused rat liver. The vasoactive effect of endothelin was accompanied by increased glycogenolysis and alterations in hepatic oxygen consumption. The endothelin-induced increase in the portal pressure was concentration-dependent with an EC50 of 1 nM. Endothelin-induced hepatic glycogenolysis was dose-dependent but exhibited a different EC50 than for the vasoconstrictive effects of endothelin. Hepatic vasoconstriction and glycogenolysis following endothelin infusion were inhibited when Ca2+ was removed from the perfusion medium. The endothelin-induced responses in the liver were not altered by prior infusion of phenylephrine (alpha-adrenergic agonist), isoproterenol (beta-adrenergic agonist), angiotensin II, glucagon, platelet-activating factor, or the platelet-activating factor antagonist, BN52021. However, repeated infusion of endothelin resulted in desensitization of the glycogenolytic response but was without a significant effect on hepatic vasoconstriction. Endothelin also stimulated metabolism of inositol phospholipids in isolated hepatocytes and Kupffer cells in primary culture. The present experiments demonstrate, for the first time, that endothelin is a very potent agonist in the liver eliciting both a sustained vasoconstriction of the hepatic vasculature and a significant increase in hepatic glucose output.  相似文献   

4.
M C Yang  P C Yu  M S Tu  C S Lay  C Y Hong  C K Chou  C F Chen  J S Kuo 《Life sciences》1990,46(26):1929-1936
Endothelin is a vasoconstrictor peptide which has recently been isolated and sequenced from the vascular endothelial cells. It was reported to increase blood pressure in vivo and produce a prolonged contraction with a slow onset in vitro. The purpose of this study was to investigate whether endothelin can lower the portal pressure as another endogenous vasoconstriction peptidevasopressin (AVP) can. Heart rate, systemic blood pressure, portal pressure, and portal vein blood flow were measured. Effects of endothelin on these parameters were compared with those of AVP. Endothelin 10(-10) mol/Kg significantly decreased all of the parameters mentioned. At the higher dose (5 x 10(-10) mol/Kg), however, the portal pressure and blood pressure were increased and portal vein blood flow was unchanged. On the other hand, AVP decreased the portal pressure and portal vein blood flow but elevated the systemic blood pressure. In vitro experiments revealed that endothelin contracted both tail artery and portal vein of rat and vasopressin contracted only tail artery. We concluded that although both are endogenous vasoconstricting peptides, endothelin and AVP affect differently on arterial and venous vascular beds as well as on portal pressure.  相似文献   

5.
The aim of the present study was to determine the role of endothelium and superoxide in the responses of isolated mouse coronary arteries to hypoxia-reoxygenation. Isolated mouse coronary artery was cannulated, pressurized at 60 mmHg, and constantly superfused with recirculating Krebs-Ringer bicarbonate solution for continuous measurement of intraluminal diameter (ID) by video microscopy. Under a no-flow condition, hypoxia (0% O(2), 30 min) caused vasoconstriction. Reoxygenation caused a further vasoconstriction (ID change from 111.4 +/- 11.1 to 91 +/- 16.5 microm) that was significantly reduced by removal of endothelium (ID change from 105.4 +/- 27 to 109.9 +/- 23.4 microm). Cu/Zn superoxide dismutase (150 U/ml) did not alter the hypoxic vasoconstriction but abolished the reoxygenation-caused endothelium-dependent vasoconstriction. Hypoxia-reoxygenation markedly enhanced the generation of superoxide that was significantly reduced by either removing the endothelium or treated these endothelium-intact vessels with superoxide dismutase. These results suggest that, in isolated mouse coronary arteries, hypoxia causes vasoconstriction that is independent of endothelium, whereas reoxygenation causes vasoconstriction that is mediated by enhanced generation of superoxide from endothelium.  相似文献   

6.
The effects of different vasomodulators on lactate release by the constant-flow-perfused rat hindlimb were examined and compared with that by perfused mesenteric artery, incubated preparations of aortas, soleus and epitrochlearis muscles, and perifused soleus muscles. Infusion of vasopressin (0.5 nM), angiotensin II (5 nM), norepinephrine (50 nM), and methoxamine (10 microM) into the hindlimbs of 180- to 200-g rats increased the perfusion pressure by 112-167% from 30.4 +/- 0.8 mmHg, O2 consumption by 26-68% from 6.4 +/- 0.2 mumol.g-1 x h-1, and lactate efflux by 148-380% from 5.41 +/- 0.25 mumol.g-1 x h-1. Hindlimbs of 100- to 120-g rats responded similarly to angiotensin II. Isoproterenol (1 microM) had no effect on O2 uptake or perfusion pressure but increased lactate release by 118%. Nitroprusside (0.5 mM) markedly inhibited the vasoconstrictor-mediated increases in lactate release, perfusion pressure, and O2 consumption by the hindlimb but had no effect on isoproterenol-mediated lactate efflux. Serotonin (6.7 microM) increased lactate release from the perfused mesenteric artery by 120% from 5.48 mol.g-1 x h-1. Lactate release by incubated aorta was increased by angiotensin II (50 nM), isoproterenol (1 microM), and mechanical stretch. The increase mediated by angiotensin II was blocked by glycerol trinitrate (2.2 microM), which had no effect on lactate release by isoproterenol. Neither angiotensin II (5 nM) nor vasopressin (0.5 nM) increased lactate release from incubated soleus and epitrochlearis muscles; however, lactate release was increased by isoproterenol, and this increase was unaffected by glycerol trinitrate (2.2 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Prostaglandin E2 (PGE2) and 6 keto-PGF1 alpha, the stable metabolite of prostacyclin (PGI2), have been measured in the effluent of perfused rat mesenteric arteries by the use of a sensitive and specific radioimmunoassay (RIA) method. The PGE2 and 6 keto-PGF1 alpha were continuously released by the unstimulated mesenteric artery over a period of 145 min. After 100 min of perfusion the release of PGE2 and 6 keto-PGF1 alpha was 45.1 +/- 8.4 pg/min and 254 +/- 75 pg/min respectively, which is in accord with the general belief that PGI2 is the major PG synthesized by arterial tissue. Angiotensin II (AII) (5 ng/ml) induced an increase of PGE2 and 6 keto-PGF1 alpha release without changing the perfusion pressure. The effect of norepinephrine (NE) injections on release of PGs depended on the duration of the stabilization period. The changes of perfusion pressure induced by NE were not related to changes in release of PGs. Thus, it seems that the increase of PG release induced by AII and NE was due to a direct effect of the drugs on the vascular wall. This may represent an important modulating mechanism in the regulation of vascular tone.  相似文献   

8.
Pulmonary vasoconstriction is influenced by inactivation of nitric oxide (NO) with extracellular superoxide (O2-*). Because the short-lived O2-* anion cannot diffuse across plasma membranes, its release from vascular cells requires specialized mechanisms that have not been well delineated in the pulmonary circulation. We have shown that the bicarbonate (HCO3-)-chloride anion exchange protein (AE2) expressed in the lung also exchanges O2-* for HCO3-. Thus we determined whether O2-* release involved in pulmonary vascular tone depends on extracellular HCO3-. We assessed endothelium-dependent vascular reactivity and O2-* release in the presence or absence of HCO3- in pulmonary artery (PA) rings isolated from normal rats and those exposed to hypoxia for 3 days. Lack of extracellular HCO3- in normal PA rings significantly attenuated endothelial O2-* release, opposed hypoxic vasoconstriction, and enhanced acetylcholine-mediated vasodilation. Release of O2-* was also inhibited by an AE2 inhibitor (SITS) and abolished in normoxia by an NO synthase inhibitor (NG-nitro-L-arginine methyl ester). In contrast, hypoxia increased PA AE2 protein expression and O2-* release; the latter was not affected by NG-nitro-l-arginine methyl ester or other inhibitors of enzymatic O2-* generation. Enhanced O2-* release by uncoupling NO synthase with geldanamycin was attenuated by hypoxia or by HCO3- elimination. These results indicate that O2-* produced by endothelial NOS in normoxia and unidentified sources in hypoxia regulate pulmonary vascular tone via AE2.  相似文献   

9.
Our previous study demonstrated that volume expansion with dextran produced blood pressure elevation due to vasoconstriction 3 hours after the cessation of infusion. To examine whether endogenous endothelin contributes to this vasoconstriction, we measured plasma level of endothelin before, immediately after, and 3 hours after the administration of dextran. Plasma level of endothelin decreased immediately after the administration (from 1.5 +/- 0.3 pg/ml to 1.1 +/- 0.2 pg/ml, P less than 0.05), and increased 3 hours after the administration (2.1 +/- 0.3 pg/ml, P less than 0.05). However, the changes in the plasma level of endothelin did not significantly correlated with those in blood pressure or total peripheral resistance. Thus, vasoconstriction after dextran infusion was accompanied by an increase in the plasma level of endothelin, but further evaluation is needed for the direct role of this peptide in the vasoconstrictive blood pressure elevation.  相似文献   

10.
Endothelin inhibits renin release from isolated rat glomeruli   总被引:8,自引:0,他引:8  
The effect of endothelin on renin release from isolated rat glomeruli was examined. Endothelin inhibited basal renin release in a dose-dependent manner with an IC50 of 1.0 x 10(-9) M. Endothelin also inhibited renin release stimulated by isoproterenol (10(-5) M). Nifedipine (10(-5) M), a calcium channel blocker, induced an increase in renin release. Endothelin did not affect this nifedipine-induced renin release. These results suggest that endothelin inhibits renin release via a calcium entry mechanism and increases intracellular calcium.  相似文献   

11.
The vascular effects of arachidonic acid (AA) were addressed in the rat perfused heart in terms of metabolic pathways and effector mechanisms. Under basal perfusion pressure, AA elicited dilator responses. However, in hearts treated with nitroarginine to eliminate nitric oxide and to elevate perfusion pressure, the predominant effect of AA was vasoconstriction which was converted to a vasodilator effect by inhibition of cyclooxygenase or antagonism of TP receptors. The vasodilator effect of AA in nitroarginine- and indomethacin-treated hearts was greatly attenuated by clotrimazole, an inhibitor of cytochrome P450, and by inhibition of K(+) channels with tetraethylammonium; in the absence of indomethacin, clotrimazole enhanced the vasoconstrictor effect of AA. When endothelin was used to constrict the coronary vasculature, AA also produced cyclooxygenase-dependent vasoconstriction. In hearts constricted with the endoperoxide analogue, U46619, only endothelium-dependent vasodilator effects of AA were observed that were reduced by indomethacin or clotrimazole. These results indicate that the coronary vasoconstrictor effect of AA which is expressed with elevated tone, results from its conversion by cyclooxygenase to a product(s) that activates TP receptors. The vasodilator effect exhibits two endothelium-dependent components, one mediated by cyclooxygenase products and the other by a cytochrome P450-derived product that activates K(+) channels.  相似文献   

12.
Changes in mesenteric arterial diameters were studied using intravital microscopy in chick fetuses at days 13 and 17 of incubation, corresponding to 0.6 and 0.8 fetal incubation time, both during 5 min of hypoxia followed by 5 min of reoxygenation and after topical administration of increasing concentrations (10(-6)-10(-2) M) of norepinephrine (NE) and acetylcholine (ACh). Baseline diameters of second-order mesenteric arteries increased from 56 microm at 0.6 incubation to 75 microm at 0.8 incubation. Acute hypoxia induced a reduction in arterial diameter to 87 +/- 4.4% of baseline at 0.6 incubation and to 44 +/- 6.7% at 0.8 incubation (P < 0.01). During reoxygenation, mesenteric arteries dilated to 118 +/- 6.5% and 121 +/- 7.5% of baseline at 0.6 and 0.8 fetal incubation time, respectively. Phentolamine did not affect the vasoconstriction during hypoxia at 0.6 incubation, whereas this alpha-adrenergic antagonist significantly attenuated the vasoconstrictor response at 0.8 incubation (to 93 +/- 2.7% of baseline, P < 0.01). Topical NE induced maximal vasoconstriction to 71 +/- 3% of baseline at 0.6 incubation and to 35 +/- 3.8% at 0.8 incubation (P < 0.01). Maximal vasodilation to topical ACh was 113 +/- 4.4% and 122 +/- 4.8% of baseline at 0.6 and 0.8 incubation, respectively. These in vivo findings show that fetal mesenteric arteries constrict in response to acute hypoxia and that the increase in magnitude of this vasoconstrictor response from 0.6 to 0.8 of fetal development results from an increase in adrenergic constrictor capacity.  相似文献   

13.
The reflex adjustments of the peripheral circulation in response to acute coronary occlusion were studied in anesthetized dogs with isolated vascular beds perfused at constant flow. Coronary occlusion caused significant increases in perfusion pressure which averaged 27 +/- 4 mmHg in the hindlimb, 19 +/- 8 mmHg in skeletal muscle, and 13 + 5 mmHg in the mesenteric artery. These responses were less than half those caused by a similar decrease in aortic pressure obtained with hemorrhage. Coronary occlusion caused no significant changes in renal and paw circulations, while marked vasoconstriction resulted from hemorrhage. When aortic pressure was maintained constant throughout the duration of coronary occlusion, there was a significant vasodilatation in all beds studied. After vagotomy, coronary occlusion caused a constrictor response similar in magnitude to that caused by hemorrhage in each vascular bed and the dilator responses to occlusion at constant aortic pressure were abolished. Both constrictor and dilator changes were prevented by alpha-adrenergic blockade. Mechanical distension of the left ventricle in four dogs with carotid sinus nerves cut caused a significant reflexdilatation in the hindlimb. Thus, coronary occlusion initiates an inhibitory reflex mediated by vagal afferents which opposes peripheral vasoconstriction most effectively in the renal and paw circulations.  相似文献   

14.
Cilostazol is a phosphodiesterase inhibitor that has been shown to inhibit platelet activation. Endothelin is known to be the most potent endogenous growth promoting and vasoactive peptide. In patients and animal models with stroke, the level of circulating endothelin increases and complicates the recovery progress contributed by vascular constriction (an immediate pathology) and vascular proliferation (a long-term pathology). However, the effects of cilostazol on endothelin have not been explored. To demonstrate the dual-antagonizing effects of cilostazol on vasoconstriction and cell proliferation induced by endothelin, we used primary culture of mouse vascular smooth muscle cells in vitro, mouse femoral artery ex vivo, and intracranial basilar artery ex vivo. We show that the dual-inhibition effects of cilostazol are mediated by blocking endothelin-induced extracellular calcium influx. Although cilostazol does not inhibit endothelin-induced intraorganellar calcium release, blockade of extracellular calcium influx is sufficient to blunt endothelin-induced vasoconstriction. We also show that cilostazol inhibits endothelin-induced cellular proliferation by blocking extracellular calcium influx. Inhibition of cAMP-dependent protein kinase (PKA) can block anti-proliferation activity of cilostazol, confirming the downstream role of PKA in cellular proliferation. To further demonstrate the selectivity of the dual-antagonizing effects of cilostazol, we used a different phosphodiesterase inhibitor. Interestingly, sildenafil inhibits endothelin-induced vasoconstriction but not cellular proliferation in smooth muscle cells. For the first time, we show selective dual-antagonizing effects of cilostazol on endothelin. We propose that cilostazol is an excellent candidate to treat endothelin-associated diseases, such as stroke.  相似文献   

15.
We studied the role of the sympathetic nervous system in the augmented vasoconstrictor response of the newborn lamb, compared with the adult sheep, by producing a chemical sympathectomy with 6-hydroxydopamine (6-OHDA). Seven lambs, age 4-16 days, and five sheep, age 2 yr, were anesthetized and intubated with a double-lumen endotracheal tube, allowing ventilation of one lung with O2 to maintain systemic oxygenation while the contralateral lung was ventilated with N2 as a hypoxic challenge. Distribution of perfusion to each lung was evaluated using positron scintigraphy after inferior vena caval injections of 13N, a positron-emitting isotope. In the lambs, prior to 6-OHDA, distribution of perfusion to the test lung was 43 +/- 3% of total lung perfusion during bilateral O2 ventilation and fell with hypoxia to 24 +/- 2%, a reduction of 44 +/- 3% during N2 ventilation as compared with O2 ventilation. After 6-OHDA, hypoxic challenge reduced perfusion by only 22 +/- 2% (P less than 0.01 compared with pre-6-OHDA). In the adult sheep, hypoxic vasoconstriction reduced perfusion to the test lung by 28 +/- 2% but was unaffected by 6-OHDA. Absence of rise in pulmonary vascular resistance (PVR) or femoral artery pressure (Pfa) in response to Tyramine infusions after 6-OHDA confirmed complete sympathectomy in lambs and sheep. Persistent increases in PVR and Pfa to infusions of prostaglandin F2 alpha before and after 6-OHDA showed that the loss of alveolar hypoxic vasoconstriction in the lamb was specific. Thus sympathetic innervation may contribute to the greater strength of alveolar hypoxic vasoconstriction found in lambs than in sheep.  相似文献   

16.
It has been suggested that the endothelin (ET) ETB receptor could mediate endothelium-dependent vasodilation to ET-1 or ET-3, but its in vivo role is still largely unknown. We used sarafotoxin S6C, a selective agonist of the ETB receptor, to study the in vivo effects of ETB stimulation. SRTX S6C induced a transient decrease in blood pressure, followed by a long-lasting pressor response accompanied by a marked renal and mesenteric vasoconstriction. No constriction was observed in isolated mesenteric arteries in vitro, indicating that the in vivo vasoconstrictor effect is most likely indirect. The pressor effect of SRTX S6C was not dependent on central stimulation of ETB receptors and was not mediated by catecholamines from the adrenal medulla, prostanoids or ET-1.  相似文献   

17.
Plasma endothelin levels during myocardial ischemia and reperfusion   总被引:6,自引:0,他引:6  
Endothelin, an endothelium-derived vasoconstrictive peptide, has a strong potency of coronary artery constriction. However, the role of endogeneous endothelin under pathophysiological conditions has not yet been known. In this study, we examined plasma endothelin concentration in dogs with myocardial ischemia and reperfusion. Anesthetized open-chest dogs underwent either 45 minutes occlusion of the left anterior descending coronary artery followed by 3 hours reperfusion, or 4-10 hours of continuous occlusion. Plasma concentration of endothelin from the central vein was measured by the highly sensitive enzyme-immunoassay. Plasma endothelin concentration increased 2.2-fold with the peak level at 60 minutes after release of the ligated artery, but occlusion per se caused no remarkable change. These data suggest that reperfusion of the occluded artery might be needed to increase the plasma concentration of endothelin in case of myocardial infarction.  相似文献   

18.
Alterations in the nitric oxide (NO) pathway have been implicated in the pathogenesis of chronic hypoxia-induced pulmonary hypertension. Chronic hypoxia can either suppress the NO pathway, causing pulmonary hypertension, or increase NO release in order to counteract elevated pulmonary arterial pressure. We determined the effect of NO synthase inhibitor on hemodynamic responses to acute hypoxia (10% O(2)) in anesthetized rats following chronic exposure to hypobaric hypoxia (0.5 atm, air). In rats raised under normoxic conditions, acute hypoxia caused profound systemic hypotension and slight pulmonary hypertension without altering cardiac output. The total systemic vascular resistance (SVR) decreased by 41 +/- 5%, whereas the pulmonary vascular resistance (PVR) increased by 25 +/- 6% during acute hypoxia. Pretreatment with N(omega)-nitro-L-arginine methyl ester (L-NAME; 25 mg/kg) attenuated systemic vasodilatation and enhanced pulmonary vasoconstriction. In rats with prior exposure to chronic hypobaric hypoxia, the baseline values of mean pulmonary and systemic arterial pressure were significantly higher than those in the normoxic group. Chronic hypoxia caused right ventricular hypertrophy, as evidenced by a greater weight ratio of the right ventricle to the left ventricle and the interventricular septum compared to the normoxic group (46 +/- 4 vs. 28 +/- 3%). In rats which were previously exposed to chronic hypoxia (half room air for 15 days), acute hypoxia reduced SVR by 14 +/- 6% and increased PVR by 17 +/- 4%. Pretreatment with L-NAME further inhibited the systemic vasodilatation effect of acute hypoxia, but did not enhance pulmonary vasoconstriction. Our results suggest that the release of NO counteracts pulmonary vasoconstriction but lowers systemic vasodilatation on exposure to acute hypoxia, and these responses are attenuated following adaptation to chronic hypoxia.  相似文献   

19.
Newborn intestine is uniquely prone to vasoconstriction in response to a wide variety of perturbations. To test the hypothesis that endothelin (ET)-1 is an important factor in this process, we determined the effects of exogenous ET-1 administration and blockade of endogenous ET-1 in vivo and in vitro in 3- and 35-day-old swine. Intramesenteric artery administration of exogenous ET-1 to vascularly isolated in vivo gut loops (10(-9) M/kg bolus) caused vasoconstriction and reduced gut O(2) uptake similarly in these age groups. Selective blockade of ET(A) or ET(B) receptors with BQ-610 or BQ-788, respectively, in vascularly isolated in vivo gut loops had no effect on gut vascular resistance or O(2) uptake in either age group; within in vitro gut loops, BQ-610 significantly increased vasoconstriction when perfusion pressure was reduced below baseline, but only in 3-day-old animals; i.e., it impaired the autoregulatory response to perfusion pressure reduction. Exogenous ET-1 significantly decreased capillary perfusion within in vitro gut loops, as evidenced by a decrease in capillary filtration coefficient, but only in 3-day-old animals; furthermore, blockade of endogenous ET-1 activity with BQ-610 significantly enhanced capillary filtration coefficient in 3-day-old animals and increased O(2) extraction ratio. ET-1 did not depress intestinal metabolic rate, as evidenced by its effect on the O(2) uptake-blood flow relationship; it did compromise tissue oxygenation because of its effects on intestinal O(2) transport. ET-1 concentration in mesenteric venous effluent exceeded arterial concentration, but only in 3-day-old intestine, suggesting production of ET-1 by newborn intestine. We conclude that ET-1 exerts an age-dependent effect on intestinal hemodynamics in postnatal intestine, having a greater impact in 3- than in 35-day-old intestine.  相似文献   

20.
Pulmonary vascular reactivity to acute hypoxic challenges and to KCl was measured in isolated blood-perfused lungs of six rats with spontaneous systemic hypertension (SHR) and in six normotensive rats. Baseline perfusion pressure did not differ significantly between SHR (11.0 +/- 1.0 mm Hg) and normotensive controls (12.3 +/- 1.5 mm Hg). Reactivity to acute hypoxia was equal in both groups. In SHR the dose-response of perfusion pressure to KCl was shifted significantly towards lower perfusion pressures as compared with normotensive controls. These results suggest that, even though magnitude of hypoxic pulmonary vasoconstriction is not changed, the mechanism of the response may be altered in SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号