首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MOTIVATION: Non-coding RNA genes and RNA structural regulatory motifs play important roles in gene regulation and other cellular functions. They are often characterized by specific secondary structures that are critical to their functions and are often conserved in phylogenetically or functionally related sequences. Predicting common RNA secondary structures in multiple unaligned sequences remains a challenge in bioinformatics research. Methods and RESULTS: We present a new sampling based algorithm to predict common RNA secondary structures in multiple unaligned sequences. Our algorithm finds the common structure between two sequences by probabilistically sampling aligned stems based on stem conservation calculated from intrasequence base pairing probabilities and intersequence base alignment probabilities. It iteratively updates these probabilities based on sampled structures and subsequently recalculates stem conservation using the updated probabilities. The iterative process terminates upon convergence of the sampled structures. We extend the algorithm to multiple sequences by a consistency-based method, which iteratively incorporates and reinforces consistent structure information from pairwise comparisons into consensus structures. The algorithm has no limitation on predicting pseudoknots. In extensive testing on real sequence data, our algorithm outperformed other leading RNA structure prediction methods in both sensitivity and specificity with a reasonably fast speed. It also generated better structural alignments than other programs in sequences of a wide range of identities, which more accurately represent the RNA secondary structure conservations. AVAILABILITY: The algorithm is implemented in a C program, RNA Sampler, which is available at http://ural.wustl.edu/software.html  相似文献   

2.
Fang X  Luo Z  Yuan B  Wang J 《Bioinformation》2007,2(5):222-229
The prediction of RNA secondary structure can be facilitated by incorporating with comparative analysis of homologous sequences. However, most of existing comparative methods are vulnerable to alignment errors and thus are of low accuracy in practical application. Here we improve the prediction of RNA secondary structure by detecting and assessing conserved stems shared by all sequences in the alignment. Our method can be summarized by: 1) we detect possible stems in single RNA sequence using the so-called position matrix with which some possibly paired positions can be uncovered; 2) we detect conserved stems across multiple RNA sequences by multiplying the position matrices; 3) we assess the conserved stems using the Signal-to-Noise; 4) we compute the optimized secondary structure by incorporating the so-called reliable conserved stems with predictions by RNAalifold program. We tested our method on data sets of RNA alignments with known secondary structures. The accuracy, measured as sensitivity and specificity, of our method is greater than predictions by RNAalifold.  相似文献   

3.
RAG: RNA-As-Graphs database--concepts, analysis, and features   总被引:3,自引:0,他引:3  
MOTIVATION: Understanding RNA's structural diversity is vital for identifying novel RNA structures and pursuing RNA genomics initiatives. By classifying RNA secondary motifs based on correlations between conserved RNA secondary structures and functional properties, we offer an avenue for predicting novel motifs. Although several RNA databases exist, no comprehensive schemes are available for cataloguing the range and diversity of RNA's structural repertoire. RESULTS: Our RNA-As-Graphs (RAG) database describes and ranks all mathematically possible (including existing and candidate) RNA secondary motifs on the basis of graphical enumeration techniques. We represent RNA secondary structures as two-dimensional graphs (networks), specifying the connectivity between RNA secondary structural elements, such as loops, bulges, stems and junctions. We archive RNA tree motifs as 'tree graphs' and other RNAs, including pseudoknots, as general 'dual graphs'. All RNA motifs are catalogued by graph vertex number (a measure of sequence length) and ranked by topological complexity. The RAG inventory immediately suggests candidates for novel RNA motifs, either naturally occurring or synthetic, and thereby might stimulate the prediction and design of novel RNA motifs. AVAILABILITY: The database is accessible on the web at http://monod.biomath.nyu.edu/rna  相似文献   

4.
Hu YJ 《Nucleic acids research》2002,30(17):3886-3893
Given a set of homologous or functionally related RNA sequences, the consensus motifs may represent the binding sites of RNA regulatory proteins. Unlike DNA motifs, RNA motifs are more conserved in structures than in sequences. Knowing the structural motifs can help us gain a deeper insight of the regulation activities. There have been various studies of RNA secondary structure prediction, but most of them are not focused on finding motifs from sets of functionally related sequences. Although recent research shows some new approaches to RNA motif finding, they are limited to finding relatively simple structures, e.g. stem-loops. In this paper, we propose a novel genetic programming approach to RNA secondary structure prediction. It is capable of finding more complex structures than stem-loops. To demonstrate the performance of our new approach as well as to keep the consistency of our comparative study, we first tested it on the same data sets previously used to verify the current prediction systems. To show the flexibility of our new approach, we also tested it on a data set that contains pseudoknot motifs which most current systems cannot identify. A web-based user interface of the prediction system is set up at http://bioinfo. cis.nctu.edu.tw/service/gprm/.  相似文献   

5.
RNA molecules, which are found in all living cells, fold into characteristic structures that account for their diverse functional activities. Many of these RNA structures consist of a collection of fundamental RNA motifs. The various combinations of RNA basic components form different RNA classes and define their unique structural and functional properties. The availability of many genome sequences makes it possible to search computationally for functional RNAs. Biological experiments indicate that functional RNAs have characteristic RNA structural motifs represented by specific combinations of base pairings and conserved nucleotides in the loop regions. The searching for those well-ordered RNA structures and their homologues in genomic sequences is very helpful for the understanding of RNA-based gene regulation. In this paper, we consider the following problem: given an RNA sequence with a known secondary structure, efficiently determine candidate segments in genomic sequences that can potentially form RNA secondary structures similar to the given RNA secondary structure. Our new bottom-up approach searches all potential stem-loops similar to ones of the given RNA secondary structure first, and then based on located stem-loops, detects potential homologous structural RNAs in genomic sequences.  相似文献   

6.
In recent years, there has been an increased number of sequenced RNAs leading to the development of new RNA databases. Thus, predicting RNA structure from multiple alignments is an important issue to understand its function. Since RNA secondary structures are often conserved in evolution, developing methods to identify covariate sites in an alignment can be essential for discovering structural elements. Structure Logo is a technique established on the basis of entropy and mutual information measured to analyze RNA sequences from an alignment. We proposed an efficient Structure Logo approach to analyze conservations and correlations in a set of Cardioviral RNA sequences. The entropy and mutual information content were measured to examine the conservations and correlations, respectively. The conserved secondary structure motifs were predicted on the basis of the conservation and correlation analyses. Our predictive motifs were similar to the ones observed in the viral RNA structure database, and the correlations between bases also corresponded to the secondary structure in the database.  相似文献   

7.
Mining frequent stem patterns from unaligned RNA sequences   总被引:1,自引:0,他引:1  
MOTIVATION: In detection of non-coding RNAs, it is often necessary to identify the secondary structure motifs from a set of putative RNA sequences. Most of the existing algorithms aim to provide the best motif or few good motifs, but biologists often need to inspect all the possible motifs thoroughly. RESULTS: Our method RNAmine employs a graph theoretic representation of RNA sequences and detects all the possible motifs exhaustively using a graph mining algorithm. The motif detection problem boils down to finding frequently appearing patterns in a set of directed and labeled graphs. In the tasks of common secondary structure prediction and local motif detection from long sequences, our method performed favorably both in accuracy and in efficiency with the state-of-the-art methods such as CMFinder. AVAILABILITY: The software is available upon request.  相似文献   

8.
Li Z  Zhang Y 《Nucleic acids research》2005,33(7):2118-2128
The large number of currently available group I intron sequences in the public databases provides opportunity for studying this large family of structurally complex catalytic RNA by large-scale comparative sequence analysis. In this study, the detailed secondary structures of 211 group I introns in the IE subgroup were manually predicted. The secondary structure-favored alignments showed that IE introns contain 14 conserved stems. The P13 stem formed by long-range base-pairing between P2.1 and P9.1 is conserved among IE introns. Sequence variations in the conserved core divide IE introns into three distinct minor subgroups, namely IE1, IE2 and IE3. Co-variation of the peripheral structural motifs with core sequences supports that the peripheral elements function in assisting the core structure folding. Interestingly, host-specific structural motifs were found in IE2 introns inserted at S516 position. Competitive base-pairing is found to be conserved at the junctions of all long-range paired regions, suggesting a possible mechanism of establishing long-range base-pairing during large RNA folding. These findings extend our knowledge of IE introns, indicating that comparative analysis can be a very good complement for deepening our understanding of RNA structure and function in the genomic era.  相似文献   

9.
RNA secondary structures are important in many biological processes and efficient structure prediction can give vital directions for experimental investigations. Many available programs for RNA secondary structure prediction only use a single sequence at a time. This may be sufficient in some applications, but often it is possible to obtain related RNA sequences with conserved secondary structure. These should be included in structural analyses to give improved results. This work presents a practical way of predicting RNA secondary structure that is especially useful when related sequences can be obtained. The method improves a previous algorithm based on an explicit evolutionary model and a probabilistic model of structures. Predictions can be done on a web server at http://www.daimi.au.dk/~compbio/pfold.  相似文献   

10.
The recent interest sparked due to the discovery of a variety of functions for non-coding RNA molecules has highlighted the need for suitable tools for the analysis and the comparison of RNA sequences. Many trans-acting non-coding RNA genes and cis-acting RNA regulatory elements present motifs, conserved both in structure and sequence, that can be hardly detected by primary sequence analysis alone. We present an algorithm that takes as input a set of unaligned RNA sequences expected to share a common motif, and outputs the regions that are most conserved throughout the sequences, according to a similarity measure that takes into account both the sequence of the regions and the secondary structure they can form according to base-pairing and thermodynamic rules. Only a single parameter is needed as input, which denotes the number of distinct hairpins the motif has to contain. No further constraints on the size, number and position of the single elements comprising the motif are required. The algorithm can be split into two parts: first, it extracts from each input sequence a set of candidate regions whose predicted optimal secondary structure contains the number of hairpins given as input. Then, the regions selected are compared with each other to find the groups of most similar ones, formed by a region taken from each sequence. To avoid exhaustive enumeration of the search space and to reduce the execution time, a greedy heuristic is introduced for this task. We present different experiments, which show that the algorithm is capable of characterizing and discovering known regulatory motifs in mRNA like the iron responsive element (IRE) and selenocysteine insertion sequence (SECIS) stem–loop structures. We also show how it can be applied to corrupted datasets in which a motif does not appear in all the input sequences, as well as to the discovery of more complex motifs in the non-coding RNA.  相似文献   

11.
12.
13.
Identifying non-coding RNA regions on the genome using computational methods is currently receiving a lot of attention. In general, it is essentially more difficult than the problem of detecting protein-coding genes because non-coding RNA regions have only weak statistical signals. On the other hand, most functional RNA families have conserved sequences and secondary structures which are characteristic of their molecular function in a cell. These are known as sequence motifs and consensus structures, respectively. In this paper, we propose an improved method which extends a pairwise structural alignment method for RNA sequences to handle position specific scoring matrices and hence to incorporate motifs into structural alignment of RNA sequences. To model sequence motifs, we employ position specific scoring matrices (PSSMs). Experimental results show that PSSMs enable us to find individual RNA families efficiently, especially if we have biological knowledge such as sequence motifs. K. Sato and K. Morita contributed equally to this work.  相似文献   

14.
The recent deluge of new RNA structures, including complete atomic-resolution views of both subunits of the ribosome, has on the one hand literally overwhelmed our individual abilities to comprehend the diversity of RNA structure, and on the other hand presented us with new opportunities for comprehensive use of RNA sequences for comparative genetic, evolutionary and phylogenetic studies. Two concepts are key to understanding RNA structure: hierarchical organization of global structure and isostericity of local interactions. Global structure changes extremely slowly, as it relies on conserved long-range tertiary interactions. Tertiary RNA-RNA and quaternary RNA-protein interactions are mediated by RNA motifs, defined as recurrent and ordered arrays of non-Watson-Crick base-pairs. A single RNA motif comprises a family of sequences, all of which can fold into the same three-dimensional structure and can mediate the same interaction(s). The chemistry and geometry of base pairing constrain the evolution of motifs in such a way that random mutations that occur within motifs are accepted or rejected insofar as they can mediate a similar ordered array of interactions. The steps involved in the analysis and annotation of RNA motifs in 3D structures are: (a) decomposition of each motif into non-Watson-Crick base-pairs; (b) geometric classification of each basepair; (c) identification of isosteric substitutions for each basepair by comparison to isostericity matrices; (d) alignment of homologous sequences using the isostericity matrices to identify corresponding positions in the crystal structure; (e) acceptance or rejection of the null hypothesis that the motif is conserved.  相似文献   

15.
Gupta A  Rahman R  Li K  Gribskov M 《RNA biology》2012,9(2):187-199
The close relationship between RNA structure and function underlines the significance of accurately predicting RNA structures from sequence information. Structural topologies such as pseudoknots are of particular interest due to their ubiquity and direct involvement in RNA function, but identifying pseudoknots is a computationally challenging problem and existing heuristic approaches usually perform poorly for RNA sequences of even a few hundred bases. We survey the performance of pseudoknot prediction methods on a data set of full-length RNA sequences representing varied sequence lengths, and biological RNA classes such as RNase P RNA, Group I Intron, tmRNA and tRNA. Pseudoknot prediction methods are compared with minimum free energy and suboptimal secondary structure prediction methods in terms of correct base-pairs, stems and pseudoknots and we find that the ensemble of suboptimal structure predictions succeeds in identifying correct structural elements in RNA that are usually missed in MFE and pseudoknot predictions. We propose a strategy to identify a comprehensive set of non-redundant stems in the suboptimal structure space of a RNA molecule by applying heuristics that reduce the structural redundancy of the predicted suboptimal structures by merging slightly varying stems that are predicted to form in local sequence regions. This reduced-redundancy set of structural elements consistently outperforms more specialized approaches.in data sets. Thus, the suboptimal folding space can be used to represent the structural diversity of an RNA molecule more comprehensively than optimal structure prediction approaches alone.  相似文献   

16.
Efficient algorithms for folding and comparing nucleic acid sequences.   总被引:19,自引:12,他引:7       下载免费PDF全文
Fast algorithms for analysing sequence data are presented. An algorithm for strict homologies finds all common subsequences of length greater than or equal to 6 in two given sequences. With it, nucleic acid pieces five thousand nucleotides long can be compared in five seconds on CDC 6600. Secondary structure algorithms generate the N most stable secondary structures of an RNA molecule, taking into account all loop contributions, and the formation of all possible base-pairs in stems, including odd pairs (G.G., C.U., etc.). They allow a typical 100-nucleotide sequence to be analysed in 10 seconds. The homology and secondary structure programs are respectively illustrated with a comparison of two phage genomes, and a discussion of Drosophila melanogaster 55 RNA folding.  相似文献   

17.
王金华  骆志刚  管乃洋  严繁妹  靳新  张雯 《遗传》2007,29(7):889-897
多数RNA分子的结构在进化中是高度保守的, 其中很多包含伪结。而RNA伪结的预测一直是一个棘手问题, 很多RNA 二级结构预测算法都不能预测伪结。文章提出一种基于迭代法预测带伪结RNA 二级结构的新方法。该方法在给潜在碱基对打分时综合了热力学和协变信息, 通过基于最小自由能RNA折叠算法的多次迭代选出所有的碱基对。测试结果表明: 此方法几乎能预测到所有的伪结。与其他方法相比, 敏感度接近最优, 而特异性达到最优。  相似文献   

18.
Hlinka O  Murrell A  Barker SC 《Heredity》2002,88(4):275-279
ITS2 sequences are used extensively in molecular taxonomy and population genetics of arthropods and other animals yet little is known about the molecular evolution of ITS2. We studied the secondary structure of ITS2 in species from each of the six main lineages of hard ticks (family Ixodidae). The ITS2 of these ticks varied in length from 679 bp in Ixodes scapularis to 1547 bp in Aponomma concolor. Nucleotide content varied also: the ITS2 of ticks from the Prostriata lineage (Ixodes spp.) had 46-49% GC whereas ITS2 sequences of ticks from the Metastriata lineage (all other hard ticks) had 61-62% GC. Despite variation in nucleotide sequence, the secondary structure of the ITS2 of all of these ticks apparently has five domains. Stems 1, 3, 4 and 5 of this secondary structure were obvious in all of the species studied. However, stem 2 was not always obvious despite the fact that it is flanked by highly conserved sequence motifs in the adjacent stems, stems 1 and 3. The ITS2 of hard ticks has apparently evolved mostly by increases and decreases in length of the nucleotide sequences, which caused increases, and decreases in the length of stems of the secondary structure. This is most obvious when stems of the secondary structures of the Prostriata (Ixodes spp.) are compared to those of the Metastriata (all other hard ticks). Increases in the size of the ITS2 may have been caused by replication slippage which generated large repeats, like those seen in Haemaphysalis humerosa and species from the Rhipicepalinae lineage, and the small repeats found in species from the other lineages of ticks.  相似文献   

19.
Visually examining RNA structures can greatly aid in understanding their potential functional roles and in evaluating the performance of structure prediction algorithms. As many functional roles of RNA structures can already be studied given the secondary structure of the RNA, various methods have been devised for visualizing RNA secondary structures. Most of these methods depict a given RNA secondary structure as a planar graph consisting of base-paired stems interconnected by roundish loops. In this article, we present an alternative method of depicting RNA secondary structure as arc diagrams. This is well suited for structures that are difficult or impossible to represent as planar stem-loop diagrams. Arc diagrams can intuitively display pseudo-knotted structures, as well as transient and alternative structural features. In addition, they facilitate the comparison of known and predicted RNA secondary structures. An added benefit is that structure information can be displayed in conjunction with a corresponding multiple sequence alignments, thereby highlighting structure and primary sequence conservation and variation. We have implemented the visualization algorithm as a web server R-chie as well as a corresponding R package called R4RNA, which allows users to run the software locally and across a range of common operating systems.  相似文献   

20.
BACKGROUND: With the ever-increasing number of sequenced RNAs and the establishment of new RNA databases, such as the Comparative RNA Web Site and Rfam, there is a growing need for accurately and automatically predicting RNA structures from multiple alignments. Since RNA secondary structure is often conserved in evolution, the well known, but underused, mutual information measure for identifying covarying sites in an alignment can be useful for identifying structural elements. This article presents MIfold, a MATLAB toolbox that employs mutual information, or a related covariation measure, to display and predict conserved RNA secondary structure (including pseudoknots) from an alignment. RESULTS: We show that MIfold can be used to predict simple pseudoknots, and that the performance can be adjusted to make it either more sensitive or more selective. We also demonstrate that the overall performance of MIfold improves with the number of aligned sequences for certain types of RNA sequences. In addition, we show that, for these sequences, MIfold is more sensitive but less selective than the related RNAalifold structure prediction program and is comparable with the COVE structure prediction package. CONCLUSION: MIfold provides a useful supplementary tool to programs such as RNA Structure Logo, RNAalifold and COVE, and should be useful for automatically generating structural predictions for databases such as Rfam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号