首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Orlistat, a fatty acid synthase (FASN) inhibitor, has been demonstrated to inhibit tumor cell survival. However, the mechanism(s) of its tumor growth retarding action against malignancies of hematological origin remains unclear. It is also not understood if the antitumor action of orlistat implicates modulated susceptibility of tumor cell to anticancer drugs. Therefore, the present investigation focuses to study the antitumor and chemosensitizing action of orlistat in a murine host bearing a progressively growing T cell lymphoma.

Methods

Tumor-bearing mice were administered with vehicle alone or containing orlistat followed by administration of PBS with or without cisplatin. Tumor progression and survival of tumor-bearing host were monitored along with analysis of tumor cell survival and apoptosis. Tumor ascitic fluid was examined for pH, NO and cytokines. Expression of genes and proteins was investigated by RT-PCR and western blot respectively. ROS was analyzed by DCFDA staining and FASN activity by spectrophotometry.

Results

Orlistat administration to tumor-bearing mice resulted in tumor growth retardation, prolonged life span, declined tumor cell survival and chemosensitization to cisplatin. It was accompanied by increased osmotic fragility, modulated acidosis, expression of ROS, NO, cytokines, MCT-1 and VH+ ATPase, Bcl2, Caspase-3, P53, inhibited FASN activity and declined expression of MDR and MRP-1 proteins.

Conclusion

Orlistat manifests antitumor and chemosensitizing action implicating modulated regulation of cell survival, reconstituted-tumor microenvironment and altered MDR phenotype.

General significance

These observations indicate that orlistat could be utilized as an adjunct regimen for improving antitumor efficacy of cisplatin.  相似文献   

2.
3.

Background

Patients with metabolic syndrome, who are characterized by co-existence of insulin resistance, hypertension, hyperlipidemia, and obesity, are also prone to develop non-alcoholic fatty liver disease (NAFLD). Although the prevalence and severity of NAFLD is significantly greater in men than women, the mechanisms by which gender modulates the pathogenesis of hepatic steatosis are poorly defined. The obese spontaneously hypertensive (SHROB) rats represent an attractive model of metabolic syndrome without overt type 2 diabetes. Although pathological manifestation caused by the absence of a functional leptin receptor has been extensively studied in SHROB rats, it is unknown whether these animals elicited sex-specific differences in the development of hepatic steatosis.

Methods

We compared hepatic pathology in male and female SHROB rats. Additionally, we examined key biochemical and molecular parameters of signaling pathways linked with hyperinsulinemia and hyperlipidemia. Finally, using methods of quantitative polymerase chain reaction (qPCR) and western blot analysis, we quantified expression of 45 genes related to lipid biosynthesis and metabolism in the livers of male and female SHROB rats.

Results

We show that all SHROB rats developed hepatic steatosis that was accompanied by enhanced expression of SREBP1, SREBP2, ACC1, and FASN proteins. The livers of male rats also elicited higher induction of Pparg, Ppara, Slc2a4, Atox1, Skp1, Angptl3, and Pnpla3 mRNAs. In contrast, the livers of female SHROB rats elicited constitutively higher levels of phosphorylated JNK and AMPK and enhanced expression of Cd36.

Conclusion

Based on these data, we conclude that the severity of hepatic steatosis in male and female SHROB rats was mainly driven by increased de novo lipogenesis. Moreover, male and female SHROB rats also elicited differential severity of hepatic steatosis that was coupled with sex-specific differences in fatty acid transport and esterification.
  相似文献   

4.

Aims/hypotheses

To examine hepatic expression of cholesterol-trafficking proteins, mitochondrial StarD1 and endosomal StarD3, and their relationship with dyslipidaemia and steatosis in Zucker (fa/fa) genetically obese rats, and to explore their functional role in lipid metabolism in rat McArdle RH-7777 hepatoma cells.

Methods

Expression of StarD1 and StarD3 in rat liver and hepatoma samples were determined by Q-PCR and/or immunoblotting; lipid mass by colorimetric assays; radiolabelled precursors were utilised to measure lipid synthesis and secretion, and lipidation of exogenous apolipoprotein A-I.

Results

Hepatic expression of StarD3 protein was repressed by genetic obesity in (fa/fa) Zucker rats, compared with lean (Fa/?) controls, suggesting a link with storage or export of lipids from the liver. Overexpression of StarD1 and StarD3, and knockdown of StarD3, in rat hepatoma cells, revealed differential effects on lipid metabolism. Overexpression of StarD1 increased utilisation of exogenous (preformed) fatty acids for triacylglycerol synthesis and secretion, but impacted minimally on cholesterol homeostasis. By contrast, overexpression of StarD3 increased lipidation of exogenous apoA-I, and facilitated de novo biosynthetic pathways for neutral lipids, potentiating triacylglycerol accumulation but possibly offering protection against lipotoxicity. Finally, StarD3 overexpression altered expression of genes which impact variously on hepatic insulin resistance, inducing Ppargcla, Cyp2e1, Nr1h4, G6pc and Irs1, and repressing expression of Scl2a1, Igfbp1, Casp3 and Serpine 1.

Conclusions/interpretation

Targeting StarD3 may increase circulating levels of HDL and protect the liver against lipotoxicity; loss of hepatic expression of this protein, induced by genetic obesity, may contribute to the pathogenesis of dyslipidaemia and steatosis.  相似文献   

5.

Background

Parenteral nutrition (PN), including intravenous lipid administration, is a life-saving therapy but can be complicated by cholestasis and liver disease. The administration of intravenous soy bean oil (SO) has been associated with the development of liver disease, while the administration of intravenous fish oil (FO) has been associated with the resolution of liver disease. The biochemical mechanism of this differential effect is unclear. This study compares SO and FO lipid emulsions in a murine model of hepatic steatosis, one of the first hits in PN-associated liver disease.

Methods

We established a murine model of hepatic steatosis in which liver injury is induced by orally feeding mice a PN solution. C57BL/6J mice were randomized to receive PN alone (a high carbohydrate diet (HCD)), PN plus intravenous FO (Omegaven®; Fresenius Kabi AG, Bad Homburg VDH, Germany), PN plus intravenous SO (Intralipid®; Fresenius Kabi AG, Bad Homburg v.d.H., Germany, for Baxter Healthcare, Deerfield, IL), or a chow diet. After 19 days, liver tissue was harvested from all animals and subjected to metabolomic profiling.

Results

The administration of an oral HCD without lipid induced profound hepatic steatosis. SO was associated with macro- and microvesicular hepatic steatosis, while FO largely prevented the development of steatosis. 321 detectable compounds were identified in the metabolomic analysis. HCD induced de novo fatty acid synthesis and oxidative stress. Both FO and SO relieved some of the metabolic shift towards de novo lipogenesis, but FO offered additional advantages in terms of lipid peroxidation and the generation of inflammatory precursors.

Conclusions

Improved lipid metabolism combined with reduced oxidative stress may explain the protective effect offered by intravenous FO in vivo.  相似文献   

6.

Background

Perilipin 2 (Plin2) is a lipid droplet protein that has roles in both lipid and glucose homeostasis. An increase in Plin2 in liver is associated with the development of steatosis, glucose intolerance, and ceramide accumulation in alcoholic liver disease. We investigated the role of Plin2 on energy balance and glucose and lipid homeostasis in wildtype and Plin2 knockout (Plin2KO) mice chronically fed a Lieber-DeCarli liquid ethanol or control diet for six weeks.

Methods

We performed in vivo measurements of energy intake and expenditure; body composition; and glucose tolerance. After sacrifice, liver was dissected for histology and lipid analysis.

Results

We found that neither genotype nor diet had a significant effect on final weight, body composition, or energy intake between WT and Plin2KO mice fed alcohol or control diets. Additionally, alcohol feeding did not affect oxygen consumption or carbon dioxide production in Plin2KO mice. We performed glucose tolerance testing and observed that alcohol feeding failed to impair glucose tolerance in Plin2KO mice. Most notably, absence of Plin2 prevented hepatic steatosis and ceramide accumulation in alcohol-fed mice. These changes were related to downregulation of genes involved in lipogenesis and triglyceride synthesis.

Conclusions

Plin2KO mice chronically fed alcohol are protected from hepatic steatosis, glucose intolerance, and hepatic ceramide accumulation, suggesting a critical pathogenic role of Plin2 in experimental alcoholic liver disease.  相似文献   

7.

Background

Although dietary ketogenic essential amino acid (KAA) content modifies accumulation of hepatic lipids, the molecular interactions between KAAs and lipid metabolism are yet to be fully elucidated.

Methodology/Principal Findings

We designed a diet with a high ratio (E/N) of essential amino acids (EAAs) to non-EAAs by partially replacing dietary protein with 5 major free KAAs (Leu, Ile, Val, Lys and Thr) without altering carbohydrate and fat content. This high-KAA diet was assessed for its preventive effects on diet-induced hepatic steatosis and whole-animal insulin resistance. C57B6 mice were fed with a high-fat diet, and hyperinsulinemic ob/ob mice were fed with a high-fat or high-sucrose diet. The high-KAA diet improved hepatic steatosis with decreased de novo lipogensis (DNL) fluxes as well as reduced expressions of lipogenic genes. In C57B6 mice, the high-KAA diet lowered postprandial insulin secretion and improved glucose tolerance, in association with restored expression of muscle insulin signaling proteins repressed by the high-fat diet. Lipotoxic metabolites and their synthetic fluxes were also evaluated with reference to insulin resistance. The high-KAA diet lowered muscle and liver ceramides, both by reducing dietary lipid incorporation into muscular ceramides and preventing incorporation of DNL-derived fatty acids into hepatic ceramides.

Conclusion

Our results indicate that dietary KAA intake improves hepatic steatosis and insulin resistance by modulating lipid synthetic pathways.  相似文献   

8.
1. Testosterone represses kidney histidine decarboxylase levels in both normal male and female mice. Tfm/Y mutant mice lack an androgen receptor and are phenotypically female. It has been suggested that the testosterone induction of HDC levels in these animals is a result of aromatisation to oestrogens in the absence of the androgen receptor; the oestrogens then induce the enzyme. 2. It is shown that the induction of HDC in Tfm/Y mice is specific to testosterone and not other androgens and can be mimiced by low doses of beta-oestradiol in normal female mice. 3. Analysis of Tfm/+ mice indicates that the testosterone induction effect is a function of individual kidney cells.  相似文献   

9.

Introduction

Low testosterone levels in men are associated with fatigue, limited physical performance and reduced health-related quality of life (HRQOL); however, this relationship has never been assessed in patients with anti-neutrophil cytoplasmic antibodies (ANCA) -associated vasculitides (AAV). The aim of this study was to assess the prevalence of androgen deficiency and to investigate the role of testosterone in fatigue, limited physical condition and reduced HRQOL in men with AAV.

Methods

Male patients with AAV in remission were included in this study. Fatigue and HRQOL were assessed by the multi-dimensional fatigue inventory (MFI)-20 and RAND-36 questionnaires.

Results

Seventy male patients with a mean age of 59 years (SD 12) were included. Scores of almost all subscales of both questionnaires were significantly worse in patients compared to controls. Mean total testosterone and free testosterone levels were 13.8 nmol/L (SD 5.6) and 256 pmol/L (SD 102), respectively. Androgen deficiency (defined according to Endocrine Society Clinical Practice Guidelines) was present in 47% of patients. Scores in the subscales of general health perception, physical functioning and reduced activity were significantly worse in patients with androgen deficiency compared to patients with normal androgen levels. Testosterone and age were predictors for the RAND-36 physical component summary in multiple linear regression analysis. Testosterone, age, vasculitis damage index (VDI) and C-reactive protein (CRP) were associated with the MFI-20 subscale of general fatigue.

Conclusions

This study showed that androgen deficiency was present in a substantial number of patients with AAV. Testosterone was one of the predictors for physical functioning and fatigue. Testosterone may play a role in fatigue, reduced physical performance and HRQOL in male patients with AAV.  相似文献   

10.
Yang SJ  Choi JM  Chae SW  Kim WJ  Park SE  Rhee EJ  Lee WY  Oh KW  Park SW  Kim SW  Park CY 《PloS one》2011,6(2):e17057

Background

Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ) on hepatic steatosis.

Methods

To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg−1·day−1) by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ''s regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes.

Results

RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α) and Forkhead box O1 (Foxo1) in rat livers. AMP-activated protein kinase (AMPK) phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035), suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects.

Conclusion

Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.  相似文献   

11.

Background

Non-alcoholic fatty liver disease (NAFLD) refers to the accumulation of hepatic steatosis in the absence of excess alcohol consumption. The pathogenesis of fatty liver disease and steatohepatitis (NASH) is not fully elucidated, but the common association with visceral obesity, hyperlipidemia, hypertension and type 2 diabetes mellitus (T2DM) suggests that it is the hepatic manifestation of metabolic syndrome. Peroxisome proliferator-activated receptor PPARα and PPARγ are members of a family of nuclear receptors involved in the metabolism of lipids and carbohydrates, adipogenesis and sensitivity to insulin. The objective of this study was to analyze the polymorphisms Leu162Val of PPARα and Pro12Ala of PPARγ as genetic risk factors for the development and progression of NAFLD.

Methods

One hundred and three NAFLD patients (89 NASH, 14 pure steatosis) and 103 healthy volunteers were included. Single nucleotide polymorphisms (SNPs) Leu162Val and Pro12Ala were analyzed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP).

Results

NASH patients presented higher BMI, AST and prevalence of T2DM than patients with pure steatosis. A higher prevalence of 12Ala allele was observed in the NASH Subgroup when compared to Control Group. When we grouped NASH and Steatosis Subgroups (NAFLD), we found lower serum glucose and more advanced fibrosis in the Leu162Val SNP. On the other hand, there was no statistical difference in clinical, laboratorial and histological parameters according to the Pro12Ala SNP.

Conclusions

We documented a lower prevalence of 12Ala allele of gene PPARγ in the NASH Subgroup when compared to Control Group. In NAFLD patients, there were no associations among the occurrence of Pro12Ala SNP with clinical, laboratorial and histological parameters. We also documented more advanced fibrosis in the Leu162Val SNP. The obtained data suggest that Pro12Ala SNP may result in protection against liver injury and that Leu162Val SNP may be involved in the progression of NAFLD.  相似文献   

12.

Background

Hepatospecific deletion of PTEN results in constitutive activation of Akt and increased lipogenesis. In mice, the addition of a high fat diet (HFD) downregulates lipogenesis. The aim of this study was to determine the effects of a HFD on hepatocellular damage induced by deletion of PTEN.

Methods

12 Week old male flox/flox hepatospecific PTEN mice (PTENf/f) or Alb-Cre controls were fed a HFD composed of 45% fat-derived calories (from corn oil) or a normal chow. Animals were then analyzed for hepatocellular damage, oxidative stress and expression of enzymes involved in fatty acid metabolism.

Results

In the Alb-Cre animals, the addition of a HFD resulted in a significant increase in liver triglycerides and altered REDOX capacity as evidenced by increased GPX activity, decreased GST activity and decreased hepatic concentrations of GSSG. In addition, SCD2, ACLY and FASN were all downregulated by the addition of HFD. Furthermore, expression of PPARα and PPARα-dependent proteins Cyp4a and ACSL1 were upregulated. In the PTENf/f mice, HFD resulted in significant increased in ALT, serum triglycerides and decreased REDOX capacity. Although expression of fatty acid synthetic enzymes was elevated in the chow fed PTENf/f group, the addition of HFD resulted in SCD2, ACLY and FASN downregulation. Compared to the Alb-Cre HFD group, expression of PGC1α, PPARα and its downstream targets ACSL and Cyp4a were upregulated in PTENf/f mice.

Conclusions

These data suggest that during conditions of constitutive Akt activation and increased steatosis, the addition of a HFD enhances hepatocellular damage due to increased CD36 expression and altered REDOX status. In addition, this work indicates HFD-induced hepatocellular damage occurs in part, independently of Akt signaling.  相似文献   

13.

Background

Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response.

Aims

The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells.

Methods

Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells.

Results

High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis.

Conclusion

High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.  相似文献   

14.
Yan H  Xia M  Chang X  Xu Q  Bian H  Zeng M  Rao S  Yao X  Tu Y  Jia W  Gao X 《PloS one》2011,6(9):e24895

Background and Aims

Fibroblasts growth factor 21 (FGF21), a liver-secreted endocrine factor involved in regulating glucose and lipid metabolism, has been shown to be elevated in patients with non-alcoholic fatty liver disease (NAFLD). This study aimed to evaluate the quantitative correlation between serum FGF21 level and hepatic fat content.

Methods

A total of 138 subjects (72 male and 66 female) aged from 18 to 65 years with abnormal glucose metabolism and B-ultrasonography diagnosed fatty liver were enrolled in the study. Serum FGF21 levels were determined by an in-house chemiluminescence immunoassay and hepatic fat contents were measured by proton magnetic resonance spectroscopy.

Results

Serum FGF21 increased progressively with the increase of hepatic fat content, but when hepatic fat content increased to the fourth quartile, FGF21 tended to decline. Serum FGF21 concentrations were positively correlated with hepatic fat content especially in subjects with mild/moderate hepatic steatosis (r = 0.276, p = 0.009). Within the range of hepatic steatosis from the first to third quartile, FGF21 was superior to any other traditional clinical markers including ALT to reflect hepatic fat content. When the patients with severe hepatic steatosis (the fourth quartile) were included, the quantitative correlation between FGF21 and hepatic fat content was weakened.

Conclusions

Serum FGF21 was a potential biomarker to reflect the hepatic fat content in patients with mild or moderate NAFLD. In severe NAFLD patients, FGF21 concentration might decrease due to liver inflammation or injury.  相似文献   

15.

Purpose

The tumor biology of metastatic breast cancers differ according to the metastatic sites, and the features of cancer metabolism may also be different. The aim of this study is to investigate the expression of lipid metabolism-related proteins in metastatic breast cancer according to metastatic site and discuss the clinical significance thereof.

Methods

Immunohistochemical staining for lipid metabolism-related proteins [fatty acid synthase (FASN), hormone-sensitive lipase (HSL), carnitine palmitoyltransferase IA (CPT-1A), acyl-CoA oxidase 1 (ACOX1), fatty acid binding protein 4 (FABP4,) and perilipin 1 (PLIN1)] was performed using a tissue microarray of 149 cases of metastatic breast cancer (bone metastasis = 39, brain metastasis = 37, liver metastasis = 21, and lung metastasis = 52).

Results

The expression levels of ACOX1 (p = 0.009) and FASN (p = 0.007) varied significantly according to metastatic site, with the highest expression in brain metastasis and the lowest expression in liver metastasis. ACOX1 positivity (p = 0.005) and FASN positivity (p = 0.003) correlated with HER-2 positivity. The expression of FASN was significantly higher in HER-2 type breast cancer, and lower in luminal A and TNBC type breast cancer (p<0.001). Among lipid metabolism-related proteins, PLIN1 positivity was found to be an independent poor prognostic factor on multivariate analysis (Hazard ratio: 4.979, 95% CI: 1.054–22.59, p = 0.043).

Conclusion

Different expression levels of lipid metabolism-related proteins were observed according to metastatic site. The expression of ACOX1 and FASN was highest in brain metastasis. These results suggest that the metastatic site should be considered when using lipid metabolism inhibitors for targeted therapy.  相似文献   

16.

Background

Sex steroids can positively affect the brain and from this it would follow that high levels of sex steroids could be associated with better cognitive function in older men and women.

Methods

This Healthy Ageing Study sample comprised of 521 older participants (51% women) without dementia at baseline, with an age range from 64 to 94 years. Testosterone and sex hormone binding globulin were measured using the automated Immulite 2000 and analyzed in association with baseline memory, global cognitive function and decline (assessed using the Mini-Mental Status Examination or MMSE) and controlling for potential confounds such as age, education, vascular disease, smoking, diabetes, thyroid function, and body mass index.

Results

In healthy older men and women, optimal levels of testosterone were associated with better MMSE scores at baseline. Follow-up analyses indicated that in men, low testosterone levels (OR = .94, 95% CI = .88 to 1.00) were a risk factor for a sharp cognitive decline after 2 years, perhaps indicative of dementia. Associations were independent of covariates and baseline MMSE. Conversely, women at risk for a sharp drop in cognitive function showed some evidence for higher calculated free testosterone levels at baseline.

Conclusions

Results replicate earlier cross-sectional findings that high levels of sex steroids are not associated with better cognitive function in older people. In men, age accelerated endocrinological change could be associated with dementia pathology.

General significance

These data do not support increasing testosterone levels to prevent cognitive decline in men and women over 65 years of age.  相似文献   

17.

Background

α-Eleostearic acid and punicic acid, two typical conjugated linolenic acid (CLnA) isomers present in bitter gourd and snake gourd oil respectively, exhibit contrasting cis-trans configuration which made them biologically important.

Methods

Rats were divided into six groups. Group 1 was control and group 2 was treated control. Rats in the groups 3 and 4 were treated with mixture of α-eleostearic acid and punicic acid (1:1) (0.5% and 1.0% respectively) while rats in the groups 5 and 6 were treated with 0.5% of α-eleostearic acid and 0.5% of punicic acid respectively along with sodium arsenite by oral gavage once per day.

Results

Results showed that increase in nitric oxide synthase (NOS) activity, inflammatory markers expression, platelet aggregation, lipid peroxidation, protein oxidation, DNA damage and altered expression of liver X receptor-α (LXR-α) after arsenite treatment were restored with the supplementation of oils containing CLnA isomers. Altered activities of different antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and ferric reducing ability of plasma (FRAP) also restored after oil supplementation. Altered morphology and fluidity of erythrocyte membrane studied by atomic force and scanning electron microscopy, after stress induction were significantly improved due to amelioration in cholesterol/phospholipid ratio and fatty acid profile of membrane. Oils treatment also improved morphology of liver and fatty acid composition of hepatic lipid.

Conclusions

Overall two isomers showed synergistic antioxidant and anti-inflammatory effect against induced perturbations and membrane disintegrity.

General significance

Synergistic antioxidant and anti-inflammatory role of these CLnA isomers were established by this study.  相似文献   

18.

Background

Mounting evidence points to lipid accumulation in the diseased kidney and its contribution to progression of nephropathy. We recently found heavy lipid accumulation and marked dysregulation of lipid metabolism in the remnant kidneys of rats with chronic renal failure (CRF). Present study sought to determine efficacy of niacin supplementation on renal tissue lipid metabolism in CRF.

Methods

Kidney function, lipid content, and expression of molecules involved in cholesterol and fatty acid metabolism were determined in untreated CRF (5/6 nephrectomized), niacin-treated CRF (50 mg/kg/day in drinking water for 12 weeks) and control rats.

Results

CRF resulted in hypertension, proteinuria, renal tissue lipid accumulation, up-regulation of scavenger receptor A1 (SR-A1), acyl-CoA cholesterol acyltransferase-1 (ACAT1), carbohydrate-responsive element binding protein (ChREBP), fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), liver X receptor (LXR), ATP binding cassette (ABC) A-1, ABCG-1, and SR-B1 and down-regulation of sterol responsive element binding protein-1 (SREBP-1), SREBP-2, HMG-CoA reductase, PPAR-α, fatty acid binding protein (L-FABP), and CPT1A. Niacin therapy attenuated hypertension, proteinuria, and tubulo-interstitial injury, reduced renal tissue lipids, CD36, ChREBP, LXR, ABCA-1, ABCG-1, and SR-B1 abundance and raised PPAR-α and L-FABP.

Conclusions and general significance

Niacin administration improves renal tissue lipid metabolism and renal function and structure in experimental CRF.  相似文献   

19.
20.

Aims

Peroxisome proliferator-activated receptor (PPAR)-α is downregulated in ischemic myocardium resulting in substrate switch from fatty acid oxidation to glucose utilization. Pharmacological PPAR-α activation leads to increased fatty acid oxidation and myocardial lipotoxicity. The aim of our study was to investigate the role of cardiomyocyte specific PPAR-α overexpression in myocardial adaptation to repetitive ischemic injury without myocardial infarction.

Main methods

Repetitive, brief I/R was performed in male and female MHC-PPAR-α overexpressing and wildtype-C57/Bl6 (WT)-mice, age 10–12 weeks, for 3 and 7 consecutive days. After echocardiography, their hearts were excised for histology and gene/protein-expression measurements (Taqman/Western blot).

Key findings

MHC-PPAR-α mice developed microinfarctions already after 3 days of repetitive I/R in contrast to interstitial fibrosis in WT-mice. We found higher deposition of glycogen, increased apoptosis and dysfunctional regulation of antioxidative mediators in MHC-PPAR-α mice. MHC-PPAR-α mice presented with maladaptation of myosin heavy chain isoforms and worse left ventricular dysfunction than WT-mice. We found prolonged, chemokine-driven macrophage infiltration without induction of proinflammatory cytokines in MHC-PPAR-α mice. Persistent accumulation of myofibroblasts in microinfarctions indicated active remodeling resulting in scar formation in contrast to interstitial fibrosis without microinfarctions in WT-mice. However, MHC-PPAR-α hearts had only a weak induction of tenascin-C in contrast to its strong expression in WT-hearts.

Significance

Cardiomyocyte-specific PPAR-α overexpression led to irreversible cardiomyocyte loss with deteriorated ventricular function during brief, repetitive I/R episodes. We identified higher glycogen deposition, increased apoptosis, deranged antioxidative capacity and maladaptation of contractile elements as major contributors involved in the modulation of post-ischemic inflammation and remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号