首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Oxaliplatin is a key drug in the treatment of colorectal cancer, but it causes acute and chronic peripheral neuropathies. We previously reported that repeated administration of neurotropin prevents oxaliplatin-induced mechanical allodynia by inhibiting axonal degeneration in rats. In the present study, we investigated the analgesic effect of a single administration of neurotropin on oxaliplatin-induced neuropathy in rats.

Main methods

Oxaliplatin (4 mg/kg) was administered intraperitoneally twice a week for 4 weeks. Cold hyperalgesia was assessed using the acetone test and mechanical allodynia was evaluated using the von Frey test.

Key findings

Repeated injection of oxaliplatin induced cold hyperalgesia on day 5 and mechanical allodynia on day 28. A single administration of neurotropin transiently relieved both pain behaviors. The analgesic effect of neurotropin was inhibited by pretreatment with 5-HT1A, 5-HT2, 5-HT3, and α2 receptor antagonists and by monoamine depletion. Moreover, the analgesic effect of neurotropin was abolished by intrathecal injection of pertussis toxin, a Gi protein inhibitor.

Significance

These results suggest that neurotropin is effective in relieving oxaliplatin-induced neuropathy, and that Gi protein-coupled receptors in the monoaminergic descending pain inhibitory system may be involved in the analgesic effect of neurotropin. Neurotropin may have clinical potential for the treatment of oxaliplatin-induced neuropathies.  相似文献   

2.

Aims

β-Adrenoceptors modulate acute wound healing; however, few studies have shown the effects of β-adrenoceptor blockade on chronic wounds. Therefore, this study investigated the effect of β1-/β2-adrenoceptor blockade in wound healing of pressure ulcers.

Main methods

Male mice were daily treated with propranolol (β1-/β2-adrenoceptor antagonist) until euthanasia. One day after the beginning of treatment, two cycles of ischemia–reperfusion by external application of two magnetic plates were performed in skin to induce pressure ulcer formation.

Key findings

Propranolol administration reduced keratinocyte migration, transforming growth factor-β protein expression, re-epithelialization, and necrotic tissue loss. Neutrophil number and neutrophil elastase protein expression were increased in propranolol-treated group when compared with control group. Propranolol administration delayed macrophage mobilization and metalloproteinase-12 protein expression and reduced monocyte chemoattractant protein-1 protein expression. Myofibroblastic differentiation, angiogenesis, and wound closure were delayed in the propranolol-treated animals. Propranolol administration increased neo-epidermis thickness, reduced collagen deposition, and enhanced tenascin-C expression resulting in the formation of an immature and disorganized collagenous scar.

Significance

β1-/β2-Adrenoceptor blockade delays wound healing of ischemia–reperfusion skin injury through the impairment of the re-epithelialization and necrotic tissue loss which compromise wound inflammation, dermal reconstruction, and scar formation.  相似文献   

3.

Aims

Although atrial natriuretic peptide has been shown to attenuate ischemia–reperfusion (IR)-induced kidney injury, the effect of natriuretic peptide receptor (NPR)-B activation on IR-induced acute kidney injury is not well documented. The purpose of the present study was to identify the effect of C-type natriuretic peptide (CNP), a selective activator of NPR-B, on the IR-induced acute kidney injury and its mechanisms involved.

Main methods

Unilaterally nephrectomized rats were insulted by IR in their remnant kidney, and they were randomly divided into three groups: sham, vehicle + IR, and CNP + IR groups. CNP (0.2 μg/kg/min) was administered intravenously at the start of a 45-min renal ischemia for 2 h. Rats were then killed 24 h after I/R, and the blood and tissue samples were collected to assess renal function, histology, TUNEL assay, and Western blot analysis of kidney Bax and Bcl-2 expressions.

Key findings

The levels of blood urea nitrogen and serum creatinine were significantly increased in rats after IR compared with vehicle-treated rats. IR elevated apoptosis, Bcl-2/Bax ratio, TUNEL positivity, oxidative stress parameters, malondialdehyde concentration, and superoxide dismutase activity. IR also induced epithelial desquamation of the proximal tubules and glomerular shrinkage. CNP significantly attenuated the IR-induced increase in BUN and serum creatinine. Furthermore, CNP restored the suppressed renal cyclic guanosine 3′ 5′-monophosphate levels caused by IR insult.

Significance

Study findings suggest that CNP could ameliorate IR-induced acute kidney injury through inhibition of apoptotic and oxidative stress pathways, possibly through NPR-B-cGMP signaling.  相似文献   

4.

Aim

Lobeline is a natural alkaloid derived from Lobelia inflata that has been investigated as a clinical candidate for the treatment of alcoholism. In a pre-clinical trial, lobeline decreased the preference for and consumption of ethanol, due to the modulation of the nicotinic acetylcholine receptor. However, the interaction between lobeline and ethanol is poorly known and thus there are safety concerns.The present study was conducted to evaluate the mutagenic and genotoxic effects of lobeline and assess its modulation of ethanol-induced toxicological effects.

Main methods

CF-1 male mice were divided into five groups. Groups received an intraperitoneal injection of saline solution, lobeline (5 or 10 mg/kg), ethanol (2.5 g/kg), or lobeline plus ethanol, once a day for three consecutive days. Genotoxicity was evaluated in peripheral blood using the alkaline comet assay. The mutagenicity was evaluated using both Salmonella/microsome assay in TA1535, TA97a, TA98, TA100, and TA102 Salmonella typhimurium strains and the micronucleus test in bone marrow. Possible liver and kidney injuries were evaluated using biochemical analysis.

Key findings

Lobeline did not show genotoxic or mutagenic effects and did not increase the ethanol-induced genotoxic effects in blood. Lobeline also protected blood cells against oxidative damage induced by hydrogen peroxide. Biochemical parameters were not altered, indicating no liver or kidney injuries or alterations in lipid and carbohydrate metabolisms.

Significance

These findings suggest that lobeline does not induce gene or chromosomal mutations, and that this lack of genetic toxicity is maintained in the presence of ethanol, providing further evidence of the safety of this drug to treat alcohol dependence.  相似文献   

5.

Aims

Current no effective therapy is available to halt the progression of Parkinson's disease (PD). Oxidative stress has been implicated in the etiology of PD. The present study evaluates the hypothesis that prevention of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor deficits by gastrodin might mainly result from its antioxidant property via interrupting extracellular signal regulated protein kinases (ERK) 1/2-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.

Main methods

Pretreatment of mouse model of PD is established by treating C57BL/6 mice with 4 doses of MPTP (30 mg/kg per day, i.p.), with gastrodin (60 mg/kg per day) administered by daily intraperitoneal injection for 2 weeks. Motor behavior of mice was monitored by open-field test and rotarod test. Real-time polymerase chain reaction and Western blotting were used to analyze the expression of genes.

Key findings

MPTP-induced motor deficits were partially and significantly forestalled by gastrodin. Gastrodin treatment prevented MPTP-induced oxidative stress, as measured by malondialdehyde in midbrain. Interestingly, MPTP-intoxicated mice treated with gastrodin robustly increased heme oxygenase 1, superoxide dismutase, glutathione levels, and Nrf2 nuclear translocation in striatum of MPTP-intoxicated mice. Furthermore, results herein suggest that the antioxidant pathway activated by gastrodin involves ERK1/2 phosphorylation.

Significance

Gastrodin protects midbrain of MPTP-intoxicated mice against oxidative stress, in part, through interrupting ERK1/2–Nrf2 pathway mechanism, which will give us an insight into the potential of gastrodin in terms of opening up new therapeutic avenues for PD.  相似文献   

6.

Aim

Thymoquinone (TQ), the predominant bioactive constituent of black seed oil (Nigella Sativa), has been shown to possess antineoplastic activity against multifarious tumors. However, the meticulous mechanism of TQ on Akt mediated survival pathway is still unrevealed in breast cancer. Here, we investigated TQ's mechanism of action against PI3K/Akt signaling and its downstream targets by modulating proteins translational machinery, leading to apoptosis in cancer cells.

Main methods

MDA-MB-468 and T-47D cells were treated with TQ and evaluated for its anticancer activity through phase distribution and western blot. Modulatory effects of TQ on Akt were affirmed through kinase and drug potential studies.

Key findings

Studies revealed G1 phase arrest till 24 h incubation with TQ while extended exposure showed phase shift to subG1 indicating apoptosis, supported by suppression of cyclin D1, cyclin E and cyclin dependent kinase inhibitor p27 expression. Immunoblot and membrane potential studies revealed mitochondrial impairment behind apoptotic process with upregulation of Bax, cytoplasmic cytochrome c and procaspase-3, PARP cleavage along with Bcl-2, Bcl-xL and survivin downregulation. Moreover, we construed the rationale behind mitochondrial dysfunction by examining the phosphorylation status of PDK1, PTEN, Akt, c-raf, GSK-3β and Bad in TQ treated cells, thus ratifying the involvement of Akt in apoptosis. Further, the consequential effect of Akt inhibition by TQ is proven by translational repression through deregulated phosphorylation of 4E-BP1, eIF4E, S6R and p70S6K.

Significance

Our observations for the first time may provide a new insight for the development of novel therapies for Akt overexpressed breast cancer by TQ.  相似文献   

7.
8.

Aims

The purpose of this study was to compare the changes of antihyperalgesic effectiveness of zonisamide (25 and 50 mg/kg), an antiepileptic drug, on the early and late phases of neuropathy and to investigate the role of serotonergic descending inhibitory pain pathways in antihyperalgesic effectiveness of zonisamide in the streptozotocin-induced rat model for painful diabetic neuropathy.

Main methods

The hot-plate and tail-immersion, to determine thermal thresholds, and paw pressure withdrawal tests, to determine mechanical thresholds, were performed as hyperalgesia tests. To investigate the role of serotonergic pathway, 1 mg/kg ketanserin (5-HT2A/2C antagonist) and ondansetron (serotonin 5-HT3 receptor antagonist) were used.

Key findings

Zonisamide enhanced pain thresholds significantly in the 3rd, 6th and 8th weeks as the reference drugs morphine (5 mg/kg) and carbamazepine (32 mg/kg, tested only in the 3rd week). There were no observed differences on the potency of antihyperalgesic effect between weeks and between doses. Each antagonist reversed the effect of zonisamide in the hot-plate and tail-immersion tests significantly, but, relatively in the paw pressure withdrawal tests.

Significance

These results support the role for zonisamide in the management of diabetic neuropathic pain in all phases. Serotonin 5-HT2A/2C and 5-HT3 receptors are involved in the antihyperalgesic effect of zonisamide by enhancement of thermal threshold, and partially by mechanical threshold, so they may not mediate mechanical hyperalgesia in diabetic neuropathy.  相似文献   

9.

Objective

To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain.

Methods

Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot.

Results

Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.).

Conclusion

ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway.  相似文献   

10.

Aims

The present study aimed to investigate the potential anti-inflammatory and anti-nociceptive effects of carvacryl acetate, a derivative of carvacrol, in mice.

Main methods

The anti-inflammatory activity was evaluated using various phlogistic agents that induce paw edema, peritonitis model, myeloperoxidase (MPO) activity, pro and anti-inflammatory cytokine levels. Evaluation of antinociceptive activity was conducted through acetic acid-induced writhing, hot plate test, formalin test, capsaicin and glutamate tests, as well as evaluation of motor performance on rotarod test.

Key findings

Pretreatment of mice with carvacryl acetate (75 mg/kg) significantly reduced carrageenan-induced paw edema (P < 0.05) when compared to vehicle-treated group. Likewise, carvacryl acetate (75 mg/kg) strongly inhibited edema induced by histamine, serotonin, prostaglandin E2 and compound 48/80. In the peritonitis model, carvacryl acetate significantly decreased total and differential leukocyte counts, and reduced levels of myeloperoxidase and interleukin-1 beta (IL-1β) in the peritoneal exudate. The levels of IL-10, an anti-inflammatory cytokine, were enhanced by carvacryl acetate. Pretreatment with carvacryl acetate also decreased the number of acetic acid-induced writhing, increased the latency time of the animals on the hot plate and decreased paw licking time in the formalin, capsaicin and glutamate tests. The pretreatment with naloxone did not reverse the carvacryl acetate-mediated nociceptive effect.

Significance

In conclusion, the current study demonstrated that carvacryl acetate exhibited anti-inflammatory activity in mice by reducing inflammatory mediators, neutrophil migration and cytokine concentration, and anti-nociceptive activity due to the involvement of capsaicin and glutamate pathways.  相似文献   

11.

Aims

The anterior pretectal nucleus (APtN) and electroacupuncture (EA) activate descending mechanisms to modulate nociceptive inputs in the spinal dorsal horn. This study examines qualitatively whether mechanisms in the APtN participate in the EA-induced analgesia in rats.

Main methods

The tail-flick test was utilized to examine the changes produced by non-selective antagonists of serotonergic (methysergide, 37 pg), muscarinic (atropine, 10 ng) and opioid (naloxone, 10 ng) receptors; selective antagonists against μ (CTOP, 6.4 μg), δ (ICI174,864, 6.9 μg) or κ (nor-BNI, 7.3 μg); 5HT1 (methiothepin, 0.47 μg), 5HT2 (ketanserin, 5.4 μg), or 5HT3 (MDL 72222, 15.7 μg); and GABAA (bicuculline, 150 ng) receptors injected into the dorsal (d) or ventral (v) APtN on the antinociception induced by a 20-min EA applied at 2- or 100-Hz frequency to the Zusanli and Sanyinjiao acupoints.

Key findings

The 2-Hz EA-induced analgesia was blocked by naloxone, CTOP or atropine, was less intense after bicuculline, was shorter after methysergide or methiothepin in dAPtN, and was less intense after methysergide, methiothepin and bicuculline in vAPtN. The 100-Hz EA-induced analgesia was less intense after methysergide, methiothepin and CTOP in vAPtN, and remained unchanged after injection of the antagonists into the dAPtN.

Significance

The 2-Hz EA-induced analgesia utilizes cholinergic muscarinic, μ-opioid, GABAA and 5-HT1 mechanisms in the dAPtN and μ-opioid and 5-HT1 mechanisms in the vAPtN, while 100-Hz EA-induced analgesia utilizes μ-opioid and 5-HT1 mechanisms in the vAPtN but does not utilize them in the dAPtN.  相似文献   

12.

Background

Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established.

Methods

Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol.

Results

3 μM 4-O-methylhonokiol is shown here to potentiate responses of the α1β2γ2 GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect.

Conclusion

The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol.

General significance

The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.  相似文献   

13.

Aims

The purpose of this study was to investigate the antinociceptive effect of epicatechin as well as the possible mechanisms of action in diabetic rats.

Main methods

Rats were injected with streptozotocin to produce hyperglycemia. The formalin test was used to assess the nociceptive activity.

Key findings

Acute pre-treatment with epicatechin (0.03–30 mg/kg, i.p.) prevented formalin-induced nociception in diabetic rats. Furthermore, daily or every other day treatment for 2 weeks with epicatechin (0.03–30 mg/kg, i.p.) also prevented formalin-induced nociception in diabetic rats. Acute epicatechin-induced antinociception was prevented by l-NAME (Nω-nitro-l-arginine methyl ester hydrochloride, 1–10 mg/kg, non-selective nitric oxide synthesis inhibitor), 7-nitroindazole (0.1–1 mg/kg, selective neuronal nitric oxide synthesis inhibitor), ODQ (1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one, 0.2–2 mg/kg, guanylyl cyclase inhibitor) or glibenclamide (1–10 mg/kg, ATP-sensitive K+ channel blocker). Moreover, epicatechin (3 mg/kg)-induced antinociception was fully prevented by methiothepin (0.1–1 mg/kg, serotonergic receptor antagonist), WAY-100635 (0.03–0.3 mg/kg, selective 5-HT1A receptor antagonist) or SB-224289 (0.03–0.3 mg/kg, selective 5-HT1B receptor antagonist). In contrast, BRL-15572 (0.03–0.3 mg/kg, selective 5-HT1D receptor antagonist) only slightly prevented the antinociceptive effect of epicatechin. Naloxone (0.1–1 mg/kg, opioid antagonist) did not modify epicatechin's effect.

Significance

Data suggest the involvement of the nitric oxide–cyclic GMP–K+ channel pathway as well as activation of 5-HT1A and 5HT1B, and at a lesser extent, 5-HT1D, but not opioid, receptors in the antinociceptive effect of epicatechin in diabetic rats. Our data suggest that acute or chronic treatment with epicatechin may prove to be effective to treat nociceptive hypersensitivity in diabetic patients.  相似文献   

14.

Aims

To investigate the effects of intrathecal morphine and fentanyl combined with low-dose naloxone on the expression of motilin and its receptor in a rat model of postoperative pain.

Main methods

An intrathecal catheter was implanted, and saline, opioids (morphine and fentanyl) and naloxone were intrathecally administered 7 days later. An incisional pain model was established to induce pain behaviors in rats by unilateral plantar incision. Thermal hyperalgesia and mechanical allodynia were measured by using a radiant heat and electronic Von Frey filament, respectively. The expression of motilin in the hippocampus, stomach, duodenum, and plasma was determined by ELISA; and the expression of motilin receptor in the hippocampus was detected by Western blot assay.

Key findings

Motilin and its receptor were detected in the hippocampus. Acute incisional pain increased the motilin expression in the hippocampus and duodenum, while decreasing its expression in the gastric body and plasma. Postoperative analgesia with morphine + fentanyl upregulated the expression of motilin in the hippocampus; however, motilin was downregulated in peripheral sites. Naloxone at 1 ng/kg restored motilin to baseline levels. Acute pain, morphine + fentanyl, and naloxone all induced the expression of motilin receptor in the hippocampus.

Significance

Acute pain, postoperative analgesia with opioids, and naloxone significantly impacted the expression of hippocampal and peripheral motilin. Variation trends in all sites were not identical. Intrathecal injection of low-dose naloxone upregulated paw withdrawal thermal latency and enhanced the analgesic effects of opioids. The findings presented here provide a new basis for central and peripheral regulations in GI motility, clinical postoperative analgesia, and management of analgesic complications.  相似文献   

15.

Background

Hybrid complexes of proteins and colloidal semiconductor nanocrystals (quantum dots, QDs) are of increasing interest in various fields of biochemistry and biomedicine, for instance for biolabeling or drug transport. The usefulness of protein–QD complexes for such applications is dependent on the binding specificity and strength of the components. Often the binding properties of these components are difficult and time consuming to assess.

Methods

In this work we characterized the interaction between recombinant light harvesting chlorophyll a/b complex (LHCII) and CdTe/CdSe/ZnS QDs by using ultracentrifugation and fluorescence resonance energy transfer (FRET) assay experiments. Ultracentrifugation was employed as a fast method to compare the binding strength between different protein tags and the QDs. Furthermore the LHCII:QD stoichiometry was determined by separating the protein–QD hybrid complexes from unbound LHCII via ultracentrifugation through a sucrose cushion.

Results

One trimeric LHCII was found to be bound per QD. Binding constants were evaluated by FRET assays of protein derivatives carrying different affinity tags. A new tetra-cysteine motif interacted more strongly (Ka = 4.9 ± 1.9 nM− 1) with the nanoparticles as compared to a hexahistidine tag (His6 tag) (Ka ~ 1 nM− 1).

Conclusion

Relative binding affinities and binding stoichiometries of hybrid complexes from LHCII and quantum dots were identified via fast ultracentrifugation, and binding constants were determined via FRET assays.

General significance

The combination of rapid centrifugation and fluorescence-based titration will be useful to assess the binding strength between different types of nanoparticles and a broad range of proteins.  相似文献   

16.

Aims

Heterocyclic pyrazole derivative has been described for the treatment of pain and inflammatory diseases. This study evaluated the in vivo, antinociceptive, anti-inflammatory and antipyretic effects of 1.5-diphenyl-1H-Pyrazole-3-carbohydrazide (1.5-DHP) and the in vivo or in vitro mechanism of action.

Main methods

Acetic acid-induced writhing, hot-plate and formalin-induced nociception tests were used to evaluate the antinociceptive effect, while the rota-rod test was used to assess the motor activity. Croton oil-induced ear edema and carrageenan-induced peritonitis tests were used to investigate the anti-inflammatory effect of 1.5-DHP. The antipyretic effect was assessed using the LPS-induced fever model. The mechanism of action was evaluated by PGE2 and TNF-α measurement and cyclooxygenase inhibition assay.

Key findings

Oral administration (p.o.) of 1.5-DHP (1, 3, 10 mg/kg) caused a dose-related inhibition of the acetic acid-induced writhing, however the highest dose was not effective on the hot-plate and rota-rod. In the formalin-induced nociception, 1.5-DHP (10 mg/kg, p.o.) inhibited only the late phase of nociception. This same dose of 1.5-DHP also reduced the croton oil-induced ear edema. 1.5-DHP (3, 10, 30 mg/kg, p.o.) produced a dose-related reduction of leukocyte migration on the carrageenan-induced peritonitis. 1.5-DHP (60 mg/kg, p.o.) reduced the fever and the increase of PGE2 concentration in the cerebrospinal fluid induced by LPS. 1.5-DHP inhibited both COXs in vitro. Finally, 1.5-DHP (10 mg/kg, p.o.) reduced the TNF-α concentration in peritoneal exudates after carrageenan injection.

Significance

These results indicate that 1.5-DHP produces anti-inflammatory, antinociceptive and antipyretic effects by PGE2 synthesis reduction through COX-1/COX-2 inhibition and by TNF-α synthesis/release inhibition.  相似文献   

17.

Background

Viroids are the smallest pathogens known to date. They infect plants and cause considerable economic losses. The members of the Avsunviroidae family are known for their capability to form hammerhead ribozymes (HHR) that catalyze self-cleavage during their rolling circle replication.

Methods

In vitro inhibition assays, based on the self-cleavage kinetics of the hammerhead ribozyme from a Chrysanthemum chlorotic mottle viroid (CChMVd-HHR) were performed in the presence of various putative inhibitors.

Results

Aminated compounds appear to be inhibitors of the self-cleavage activity of the CChMVd HHR. Surprisingly the spermine, a known activator of the autocatalytic activity of another hammerhead ribozyme in the presence or absence of divalent cations, is a potent inhibitor of the CChMVd-HHR with Ki of 17 ± 5 μM. Ruthenium hexamine and TMPyP4 are also efficient inhibitors with Ki of 32 ± 5 μM and IC50 of 177 ± 5 nM, respectively.

Conclusions

This study shows that polyamines are inhibitors of the CChMVd-HHR self-cleavage activity, with an efficiency that increases with the number of their amino groups.

General significance

This fundamental investigation is of interest in understanding the catalytic activity of HHR as it is now known that HHR are present in the three domains of life including in the human genome. In addition these results emphasize again the remarkable plasticity and adaptability of ribozymes, a property which might have played a role in the early developments of life and must be also of significance nowadays for the multiple functions played by non-coding RNAs.  相似文献   

18.

Background

The concentration of extracellular nucleotides is regulated by enzymes that have their catalytic site facing the extracellular space, the so-called ecto-enzymes.

Methods

We used LLC-PK1 cells, a well-characterized porcine renal proximal tubule cell line, to biochemically characterize ecto-ATPase activity in the luminal surface. The [γ-32P]Pi released after reaction was measured in aliquots of the supernatant by liquid scintillation.

Results

This activity was linear with time up to 20 min of reaction and stimulated by divalent metals. The ecto-ATPase activity measured in the presence of 5 mM MgCl2 was (1) optimum at pH 8, (2) insensitive to different inhibitors of intracellular ATPases, (3) inhibited by 1 mM suramin, an inhibitor of ecto-ATPases, (4) sensitive to high concentrations of sodium azide (NaN3) and (5) also able to hydrolyze ADP in the extracellular medium. The ATP:ADP hydrolysis ratio calculated was 4:1. The ecto-ADPase activity was also inhibited by suramin and NaN3. The dose–response of ATP revealed a hyperbolic profile with maximal velocity of 25.2 ± 1.2 nmol Pi x mg− 1 x min− 1 and K0.5 of 0.07 ± 0.01 mM. When cells were submitted to ischemia, the E-NTPDase activity was reduced with time, achieving 71% inhibition at 60 min of ischemia.

Conclusion

Our results suggest that the ecto-ATPase activity of LLC-PK1 cells has the characteristics of a type 3 E-NTPDase which is inhibited by ischemia.

General Significance

This could represent an important pathophysiologic mechanism that explains the increase in ATP concentration in the extracellular milieu in the proximal tubule during ischemia.  相似文献   

19.

Purpose

Fibromyalgia (FM) syndrome is a form of non-articular rheumatism characterized by long term and widespread musculoskeletal pain, morning stiffness, sleep disturbance, paresthesia, and pressure hyperalgesia at characteristic sites, called soft tissue tender points. The etiology of FM is still obscure. Genetic factors may predispose individuals to FM. Cytokines may play a role in the pathophysiology of FM. The aim of this study was to investigate the interleukin-4 (IL-4) 70 bp VNTR variations in Turkish patients with FM and evaluate if there was an association with clinical features, especially between these polymorphisms.

Methods

The study included 300 patients with FM and 270 healthy controls. Genomic DNA was isolated and genotyped using polymerase chain reaction (PCR) for the IL-4 gene 70 bp VNTR polymorphisms.

Results

There was statistically significant difference between the groups with respect to IL-4 genotype distribution and allele frequencies (p < 0.0001). The homozygous P1P1 genotype and P1 allele were significantly higher in FM patients than in healthy controls (p = 0.04; OR: 3.25, 95% CI: 1–10, p < 0.0001; OR:4.84, 95% CI:3–7.7). There was not any difference between the groups respect to IL-4 genotype distribution and allele frequencies (p > 0.05) and clinical characteristics.

Conclusion

Our findings suggest that there is an association of IL-4 gene 70 bp VNTR polymorphism with susceptibility of a person for development of FM. As a result, further studies are necessary to determine whether IL-4 may be a genetic marker for FM in the Turkish population.  相似文献   

20.

Background

Smooth muscle has the distinctive ability to maintain force for long periods of time and at low energy costs. While it is generally agreed that this property, called the latch-state, is due to the dephosphorylation of myosin while attached to actin, dephosphorylated-detached myosin can also attach to actin and may contribute to force maintenance. Thus, we investigated the role of calponin in regulating and enhancing the binding force of unphosphorylated tonic muscle myosin to actin.

Methods

To measure the effect of calponin on the binding of unphosphorylated myosin to actin, we used the laser trap assay to quantify the average force of unbinding (Funb) in the absence and presence of calponin or phosphorylated calponin.

Results

Funb from F-actin alone (0.12 ± 0.01 pN; mean ± SE) was significantly increased in the presence of calponin (0.20 ± 0.02 pN). This enhancement was lost when calponin was phosphorylated (0.12 ± 0.01 pN). To further verify that this enhancement of Funb was due to the cross-linking of actin to myosin by calponin, we repeated the measurements at high ionic strength. Indeed, the Funb obtained at a [KCl] of 25 mM (0.21 ± 0.02 pN; mean ± SE) was significantly decreased at a [KCl] of 150 mM, (0.13 ± 0.01 pN).

Conclusions

This study provides direct molecular level-evidence that calponin enhances the binding force of unphosphorylated myosin to actin by cross-linking them and that this is reversed upon calponin phosphorylation. Thus, calponin might play an important role in the latch-state.

General significance

This study suggests a new mechanism that likely contributes to the latch-state, a fundamental and important property of smooth muscle that remains unresolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号