首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Herein we report the discovery and SAR of an indole-based protease activated receptor-4 (PAR-4) antagonist scaffold derived from a similarity search of the Vanderbilt HTS collection, leading to MLPCN probe ML354 (VU0099704). Using a novel PAC-1 fluorescent αIIbβ3 activation assay this probe molecule antagonist was found to have an IC50 of 140 nM for PAR-4 with 71-fold selectivity versus PAR-1 (PAR-1IC50 = 10 μM).  相似文献   

2.
The host immune responses that mediate Chlamydia-induced chronic disease sequelae are incompletely understood. The role of TNF-α, TNF receptor 1 (TNFR1), and TNF receptor 2 (TNFR2), in Chlamydia pneumoniae (CPN)-induced atherosclerosis was studied using the high-fat diet-fed male C57BL/6J mouse model. Following intranasal CPN infection, TNF-α knockout (KO), TNFR1 KO, TNFR2 KO, and TNFR 1/2 double-knockout, displayed comparable serum anti-chlamydial antibody response, splenic antigen-specific cytokine response, and serum cholesterol profiles compared to wild type (WT) animals. However, atherosclerotic pathology in each CPN-infected KO mouse group was reduced significantly compared to WT mice, suggesting that both TNFR1 and TNFR2 promote CPN-induced atherosclerosis.  相似文献   

3.
Penicillium marneffei (P. marneffei) is a human pathogen which persists in macrophages and threatens the immunocompromised patients. To elucidate the mechanisms involved, we investigated the role of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (p38) pathways in cytokine expression, phagosome–lysosome fusion and replication of P. marneffei in P. marneffei-infected human macrophages. Analysis of both ERK1/2 and p38 showed rapid phosphorylation in response to P. marneffei. Using specific inhibitors of p38 (SB203580) and MAP kinase kinase-1 (PD98059), we found that ERK1/2 and p38 were essential for P. marneffei-induced tumor necrosis factor-α production, whereas p38, but not that of ERK, was essential for IL-10 production. Furthermore, the presence of PD98059 always decreased phagosomal acidification and maturation and increased intracellular multiplication of P. marneffei, whereas the use of SB203580 always increased phagosomal acidification and maturation and decreased intracellular replication. These data suggest that a proper balance of between ERK1/2 and p38 may play an important role in controlling the replication of P. marneffei. Our findings further indicate a novel therapeutic avenue for treating P. marneffei by stimulating ERK1/2 or activating ERK1/2-dependent mechanisms.  相似文献   

4.
Proteinase-activated receptor-1 (PAR1), upon activation, exerts prostanoid-dependent gastroprotection, and increases prostaglandin E(2) (PGE(2)) release through cyclooxygenase-2 (COX-2) upregulation in rat gastric mucosal epithelial RGM1 cells. However, there is a big time lag between the PAR1-triggered PGE(2) release and COX-2 upregulation in RGM1 cells; that is, the former event takes 18 h to occur, while the latter rapidly develops and reaches a plateau in 6 h. The present study thus aimed at clarifying mechanisms for the delay of PGE(2) release after PAR1 activation in RGM1 cells. Although a PAR1-activating peptide, TFLLR-NH(2), alone caused PGE(2) release at 18 h, but not 6 h, TFLLR-NH(2) in combination with arachidonic acid dramatically enhanced PGE(2) release even for 1-6 h. TFLLR-NH(2) plus linoleic acid caused a similar rapid response. CP-24879, a Δ(5)/Δ(6)-desaturase inhibitor, abolished the PGE(2) release induced by TFLLR-NH(2) plus linoleic acid, but not by TFLLR-NH(2) alone. The TFLLR-NH(2)-induced PGE(2) release was not affected by inhibitors of cytosolic phospholipase A(2) (cPLA(2)), Ca(2+)-independent PLA(2) (cPLA(2)) or secretory PLA(2) (sPLA(2)), but was abolished by their mixture or a pan-PLA(2) inhibitor. Among PLA(2) isozymes, mRNA of group IIA sPLA(2) (sPLA(2)-IIA) was upregulated following PAR1 stimulation for 6-18 h, whereas protein levels of PGE synthases were unchanged. These data suggest that the delay of PGE(2) release after COX-2 upregulation triggered by PAR1 is due to the poor supply of free arachidonic acid at the early stage in RGM1 cells, and that plural isozymes of PLA(2) including sPLA(2)-IIA may complementarily contribute to the liberation of free arachidonic acid.  相似文献   

5.
Total gastrectomy (TG) causes cobalamin (Cbl) deficiency followed by increases in tumor necrosis factor (TNF)-alpha levels in the spinal cord (SC) of the rat. In order to understand how Cbl deficiency may influence cell Cbl transport, we have measured by immunoblotting protein levels of the receptor for the Cbl-transcobalamin (TC) complex (TC-R) in both animal and cell models. TC-R protein levels were elevated in the total membranes of duodenal mucosa, kidneys, liver, and SC of rats made Cbl-deficient (Cbl-D) by means of TG or feeding with a Cbl-D diet. Postoperative Cbl-replacement treatment normalized the TC-R protein levels in each of the tested organs, regardless of whether this treatment was given during the first two post-TG or during the third and fourth post-TG mo. In Caco-2 cells, progressively increasing TNF-alpha concentrations supplemented to culture medium induced an up-regulation of TC-R protein levels. We provide the first evidence of the regulation of a Cbl-specific receptor by the vitamin itself in some rat organs.  相似文献   

6.
Inhibition of HIF-1alpha activity provides an important strategy for the treatment of cancer. Recently, 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) has been identified as an anti-HIF-1alpha drug in cancer therapy with unclear molecular mechanism. In the present study, we aimed to investigate the effect and mechanism of YC-1 on HIF-1alpha in a hepatocellular carcinoma cell line under hypoxic condition, which was generated by incubating cells with 0.1% O(2). The phenotypic and molecular changes of cells were determined by cell proliferation assay, apoptosis assay, luciferase promoter assay, and Western blot analysis. YC-1 arrested tumor cell growth in a dose-dependent manner, whereas it did not induce cell apoptosis. Hypoxia-induced upregulation of HIF-1alpha was suppressed by YC-1 administration. YC-1 inhibited HIF-1alpha protein synthesis under normoxia and affected protein stability under hypoxia. YC-1 suppressed the expression of total and phosphorylated forms of murine double minute 2 (Mdm2), whereas this inhibitory effect was blocked by overexpression of Mdm2. In conclusion, YC-1 suppressed both protein synthesis and stability of HIF-1alpha in HCC cells, and its inhibitory effects on HIF-1alpha were dependent on Mdm2.  相似文献   

7.
NADPH oxidase Nox2 is involved in the production of superoxide by rheumatoid synovial cells, constitutively and after pro-inflammatory cytokine treatment. The aims of the study were to evaluate the capacity of these cells to produce the superoxide anion in response to arachidonic acid (AA), and to study the involvement of cytosolic phospholipase A(2) (cPLA(2)) in the cytokine regulation of Nox2. Superoxide production was quantified in synovial cells obtained from six patients with rheumatoid arthritis (RA) and six with osteoarthritis (OA), stimulated with (i) AA, and (ii) PLA(2) inhibitors prior to IL-1beta or TNF-alpha treatment. Total cellular AA concentrations and PLA(2) activity were measured; effects of cytokines and NADPH oxidase inhibitors on the AA-activatable proton channel opening were also studied. Our results demonstrated that AA enhanced superoxide production in RA and OA cells; this production was significantly inhibited by iodonium diphenyl and apocynin. cPLA(2) inhibitors inhibited both IL-1beta and TNF-alpha-induced superoxide production in RA and OA cells. Basal PLA(2) activity was significantly more important in RA cells than in OA cells; PLA(2) activity was increased in IL-1beta and TNF-alpha pre-treated RA cells, and cPLA(2) inhibitors inhibited this activity. Opening of the AA-activatable proton channel was amplified when RA cells were pre-treated with both IL-1beta and TNF-alpha, and iodonium diphenyl and apocynin inhibited these cytokine effects. We concluded that AA is an important cofactor for synovial NADPH oxidase activity. Despite their direct effects on p47-phox phosphorylation, cytokines can also regulate the Nox2 activity though the AA-activatable associated H(+) channel.  相似文献   

8.
Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease of unknown aetiology. Compelling evidence suggests that both protease‐activated receptor (PAR)‐1 and PAR‐2 participate in the development of pulmonary fibrosis. Previous studies have shown that bleomycin‐induced lung fibrosis is diminished in both PAR‐1 and PAR‐2 deficient mice. We thus have been suggested that combined inactivation of PAR‐1 and PAR‐2 would be more effective in blocking pulmonary fibrosis. Human and murine fibroblasts were stimulated with PAR‐1 and PAR‐2 agonists in the absence or presence of specific PAR‐1 or PAR‐2 antagonists after which fibrotic markers like collagen and smooth muscle actin were analysed by Western blot. Pulmonary fibrosis was induced by intranasal instillation of bleomycin into wild‐type and PAR‐2 deficient mice with or without a specific PAR‐1 antagonist (P1pal‐12). Fibrosis was assessed by hydroxyproline quantification and (immuno)histochemical analysis. We show that specific PAR‐1 and/or PAR‐2 activating proteases induce fibroblast migration, differentiation and extracellular matrix production. Interestingly, however, combined activation of PAR‐1 and PAR‐2 did not show any additive effects on these pro‐fibrotic responses. Strikingly, PAR‐2 deficiency as well as pharmacological PAR‐1 inhibition reduced bleomycin‐induced pulmonary fibrosis to a similar extent. PAR‐1 inhibition in PAR‐2 deficient mice did not further diminish bleomycin‐induced pulmonary fibrosis. Finally, we show that the PAR‐1‐dependent pro‐fibrotic responses are inhibited by the PAR‐2 specific antagonist. Targeting PAR‐1 and PAR‐2 simultaneously is not superior to targeting either receptor alone in bleomycin‐induced pulmonary fibrosis. We postulate that the pro‐fibrotic effects of PAR‐1 require the presence of PAR‐2.  相似文献   

9.
10.
11.
We investigated possible involvement of three isozymes of prostaglandin E synthase (PGES), microsomal PGES-1 (mPGES-1), mPGES-2 and cytosolic PGES (cPGES) in COX-2-dependent prostaglandin E(2) (PGE(2)) formation following proteinase-activated receptor-2 (PAR2) stimulation in human lung epithelial cells. PAR2 stimulation up-regulated mPGES-1 as well as COX-2, but not mPGES-2 or cPGES, leading to PGE(2) formation. The PAR2-triggered up-regulation of mPGES-1 was suppressed by inhibitors of COX-1, cytosolic phospholipase A(2) (cPLA(2)) and MEK, but not COX-2. Finally, a selective inhibitor of mPGES-1 strongly suppressed the PAR2-evoked PGE(2) formation. PAR2 thus appears to trigger specific up-regulation of mPGES-1 that is dependent on prostanoids formed via the MEK/ERK/cPLA(2)/COX-1 pathway, being critical for PGE(2) formation.  相似文献   

12.
The antipsychotic drugs have been shown to be inverse agonists at the D(2) dopamine receptor. We have examined the mechanism of this inverse agonism by making mutations in residue T343 in the base of the sixth transmembrane spanning region of the receptor. T343R, T343S and T343K mutant D(2) dopamine receptors were made and the T343R mutant characterized in detail. The T343R mutant D(2) dopamine receptor exhibits properties of a receptor that resides more in the activated state, namely increased agonist binding affinity (independent of G-protein coupling and dependent on agonist efficacy), increased agonist potency in functional tests (adenylyl cyclase inhibition) and increased inverse agonist effects. The binding of agonists to the mutant receptor also shows sensitivity to sodium ions, unlike the native receptor, so that isomerization of the receptor to its inactive state may be driven by sodium ions. The binding of inverse agonists to the receptor is, however, unaffected by the mutation. We conclude that inverse agonism at this receptor is not achieved by the inverse agonist binding preferentially to the non-activated state of the receptor over the activated state. Rather the inverse agonist appears to bind to all forms of the receptor but then renders the receptor inactive.  相似文献   

13.
The relative roles of angiotensin II (Ang II) type 1 receptor (AT(1)R) and Ang II type 2 receptor (AT(2)R) in immune-mediated nephritis are unknown, and the effect of the blockade of AT(1)R and its indirect counter-activation of AT(2)R relative to the anti-fibrotic action in this disease is unclear. To address this question, we studied the role of AT(1)R and AT(2)R in anti-glomerular basement membrane nephritis in SJL mice. Groups of mice were treated with either an AT(1)R antagonist (CGP-48933; CGP group), an AT(2)R antagonist (PD-123319; PD group), both (CGP/PD group), or a vehicle (PCt group) from Day 29 to 56. At Day 56 post-treatment, fibrosis-related parameters such as interstitial matrix deposition, and the expression of genes of TGF-beta1, plasminogen activator inhibitor-1, and type I collagen were significantly reduced in the kidney in the CGP group. There were no significant effects on these parameters in the PD group. However, this anti-fibrotic action by CGP-48933 was totally abolished by co-treatment with PD-123319 in the CGP/PD group. The gene expression of renin was significantly increased in the kidneys in the CGP and CGP/PD groups, suggesting that CGP-48933 had increased Ang II generation in those groups. In conclusion, counter-activation of AT(2)R by increased Ang II under AT(1)R blockade likely conferred an anti-fibrotic protection in this model.  相似文献   

14.
Thrombin increases the cytosolic Ca2+ concentrations and induces NO production by activating proteinase‐activated receptor 1 (PAR1) in vascular endothelial cells. The store‐operated Ca2+ influx is a major Ca2+ influx pathway in non‐excitable cells including endothelial cells and it has been reported to play a role in the thrombin‐induced Ca2+ signaling in endothelial cells. Recent studies have identified stromal interaction molecule 1 (STIM1) to function as a sensor of the store site Ca2+ content, thereby regulating the store‐operated Ca2+ influx. However, the functional role of STIM1 in the thrombin‐induced Ca2+ influx and NO production in endothelial cells still remains to be elucidated. Fura‐2 and diaminorhodamine‐4M fluorometry was utilized to evaluate the thrombin‐induced changes in cytosolic Ca2+ concentrations and NO production, respectively, in porcine aortic endothelial cells transfected with small interfering RNA (siRNA) targeted to STIM1. STIM1‐targeted siRNA suppressed the STIM1 expression and the thapsigargin‐induced Ca2+ influx. The degree of suppression of the STIM1 expression correlated well to the degree of suppression of the Ca2+ influx. The knockdown of STIM1 was associated with a substantial inhibition of the Ca2+ influx and a partial reduction of the NO production induced by thrombin. The thrombin‐induced Ca2+ influx exhibited the similar sensitivity toward the Ca2+ influx inhibitors to that seen with the thapsigargin‐induced Ca2+ influx. The present study provides the first evidence that STIM1 plays a critical role in the PAR1‐mediated Ca2+ influx and Ca2+‐dependent component of the NO production in endothelial cells. J. Cell. Biochem. 108: 499–507, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
Intestinal epithelial cells interact with immune cells located in the intestinal epithelium via soluble factors. An in vitro model system using coculture was constructed to analyze the effect of macrophages on intestinal epithelial cells, and human intestinal epithelial-like Caco-2 monolayers and activated macrophage-like THP-1 cells were used in this study. Coculturing with THP-1 cells resulted in an increase of lactate dehydrogenase release from Caco-2 and a decrease in the transepithelial electrical resistance of the monolayers, showing that coculturing with THP-1 induced cell damage to Caco-2 cells. This disruption was significantly suppressed by adding anti-TNF-alpha antibody and etanercept, strongly suggesting that TNF-alpha secreted from THP-1 had caused cell damage to Caco-2 monolayers. The disrupted Caco-2 monolayers showed both apoptotic and necrotic characteristics by morphological and biochemical analyses. TNFRI and NF-kappaB seem to have been involved in this regulation. It is suggested that this phenomenon is similar in some respects to that observed with IBD and that this in vitro coculture system could be a good model for searching for the drugs or food substances that can be used to treat or prevent IBD.  相似文献   

17.
18.
19.
Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-α decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号