首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singh PK  Wise SY  Ducey EJ  Brown DS  Singh VK 《Cytokine》2011,56(2):411-421
The purpose of this study was to elucidate the role of granulocyte colony-stimulating factor (G-CSF) induced by α-tocopherol succinate (TS) in protecting mice from total-body irradiation. CD2F1 mice were injected with a radioprotective dose of TS and the levels of cytokine in serum induced by TS were determined by multiplex Luminex. Neutralization of G-CSF was accomplished by administration of a G-CSF antibody and confirmed by cytokine analysis. The role of G-CSF on gastrointestinal tissue protection afforded by TS after irradiation (11 Gy, 0.6 Gy/min of 60Co γ-radiation) was determined by analysis of jejunum histopathology for crypt, villi, mitotic figures, apoptosis, and cell proliferation. Our results demonstrate that TS protected mice against high doses of radiation-induced gastrointestinal damage and TS also induced very high levels of G-CSF and keratinocyte-derived chemokine (KC) production in peripheral blood 24 h after subcutaneous administration. When TS-injected mice were administered a neutralizing antibody to G-CSF, there was complete neutralization of G-CSF in circulating blood, and the protective effect of TS was significantly abrogated by G-CSF antibody. Histopathology of jejunum from TS-injected and irradiated mice demonstrated protection of gastrointestinal tissue, yet the protection was abrogated by administration of a G-CSF antibody. In conclusion, our current study suggests that induction of G-CSF resulting from TS administration is responsible for protection from 60Co γ-radiation injury.  相似文献   

2.
Levels of serum granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) in patients with various leukocyte disorders were estimated by enzyme linked immunosorbent assay (ELISA). Some cases of acute myelogenous leukemia and aplastic anemia showed elevated serum levels of G-CSF and/or GM-CSF, whereas almost all of 23 healthy controls showed G-CSF and GM-CSF levels lower than 100 pg/ml. High levels of both types of CSF were noted in patients with granulocytosis due to infection. These levels became lower after resolution of the infection. Daily changes in serum CSF levels were also examined in a patient with autoimmune neutropenia, and it was found that the peripheral neutrophilic granulocyte count changed almost in parallel with the serum G-CSF level but not with GM-CSF, following the pattern with a delay of about 4–5 h, suggesting the possibility that G-CSF mainly regulates peripheral neutrophil circulation.  相似文献   

3.
Santos MD  Yasuike M  Hirono I  Aoki T 《Immunogenetics》2006,58(5-6):422-432
Granulocyte colony-stimulating factor (CSF3) is a glycoprotein cytokine, which influences the hematopoiesis of the phagocytic neutrophils and its precursors and was used extensively in cancer therapy and for the treatment of neutropenia in mammals. However, CSF3 is yet to be identified in nonmammalian species mainly because of its rapid mutation. Here, we report the first CSF3 genes from three teleost fishes: Japanese flounder (Paralichthys olivaceus), fugu (Takifugu rubripes), and green-spotted pufferfish (Tetraodon nigroviridis) and present evidence that the chicken (Gallus gallus) myelomonocytic growth factor is in fact the chicken CSF3 orthologue. We support this by showing significant conservation of the CSF3 genes’ structure, domains, regulatory motifs, and synteny across species and by phylogenetic analysis. CSF3 orthologues are indeed evolving rapidly and appears to be undergoing purifying selection in mammals but positive selection in fish and chicken. Furthermore, the paralogous fugu and pufferfish CSF3-1s and CSF3-2s are shown to be the ancestral and duplicate genes, respectively. Finally, we demonstrate that the Japanese flounder CSF3 gene is at least involved in immunity based on its basal expression in immune-related tissues and its upregulation in kidney and peripheral blood leukocytes after in vitro stimulation with lipopolysaccharide and a combination of concanavalin A/phorbol myristate acetate.Electronic Supplementary Material Supplementary material is available for this article at ()  相似文献   

4.
Two recombinant human granulocyte colony-stimulating factor (rhG-CSF) isoforms were isolated from the medium conditioned by an engineered Chinese hamster ovary (CHO) cell line. The two rhG-CSFs were characterized and were found to differ in the carbohydrate structure attached to Thr-133. The glycoform, referred to as Peak 1, contains the O-linked glycan Neu5Ac(alpha 2-3)Gal(beta 1-3)GalNAc; the Peak 2 glycoform contains the O-linked glycan Neu5Ac(alpha 2-3)Gal(beta 1-3)[Neu5Ac(alpha 2-6)]GalNAc. The two glycoforms displayed a similar biological activity in cultures of a mouse 32D C13 cell line and human bone-marrow myelo-monocytic progenitor cells (CFU-GM). In the latter test both glycoforms displayed a higher activity than nonglycosylated rMet-hG-CSF from Escherichia coli. The pharmacokinetic profile and activity of the two rhG-CSF glycoforms and of a mixture of them (Pool) were investigated in mice treated with a single injection of rhG-CSF at the doses of 125 micrograms and 250 micrograms/kg, given via the intravenous (i.v.) and the subcutaneous (s.c.) route, respectively. The plasma concentration profiles obtained were similar for all three substances and did not show any relevant differences in absorption or elimination. The pharmacokinetic parameters indicate that the three substances have similar area under the curve (AUCs), volumes of distribution, and terminal half-life. Furthermore, our data indicate a high bioavailability of the two different glycoforms of rhG-CSF when given to mice via the s.c. route either singularly or as a mixture. Detectable levels of rhG-CSF persisted for more than 8 h in the i.v. and more than 24 h in the s.c. route of administration. All three substances induced early neutrophilia in mice. All rhG-CSF-treated mice developed a two-four-fold rise in neutrophil counts as early as 4 h after the intravenous and 2 h after the subcutaneous injection. Relatively high levels of neutrophils were maintained for at least 8 and 24 h after i.v. and s.c. administration, respectively.  相似文献   

5.
The hybridoma cell line KM50 originally produces a monoclonal antibody at a concentration of ∼40 mg ml-1 in ascites. To investigate the possibility to apply this expression system to the production of useful proteins, the cDNA encoding human granulocyte colony-stimulating factor was inserted by homologous recombination into just downstream of the promoter of the active immunoglobulin heavy chain gene of KM50. Site directed integration of targeting DNAs resulted in the disruption of expression of the immunoglobulin heavy chain proteins with a frequency of 1 in 10 ∼ 100 G418-resistance transfectants. One of the monoclonal antibody-deficient transfectants produced25 ng ml-1 of granulocyte colony-stimulating factor in the supernatant of its cell culture the number of molecules of which corresponds to that of the monoclonal antibody originally produced by KM50. However, when this transfectant was injected intraperitoneally, it produced only a 9 μg ml-1 concentration of granulocyte colony-stimulating factor in ascites, which is approximately 3 orders of magnitude less than the monoclonal antibody. This method may be applicable to production of other recombinant proteins, although further optimization in the conditions of production would be needed in order to reach much higher yields. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Recent studies have suggested that dendritic cell (DC)-based immunotherapy is one promising approach for the treatment of cancer. We previously studied the clinical toxicity, feasibility, and efficacy of cancer vaccine therapy with peptide-pulsed DCs. In that study, we used granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood monocytes as a cell source of DCs. However, previous investigations have suggested that G-CSF-mobilized peripheral blood monocytes produce reduced levels of proinflammatory cytokines such as interleukin (IL)-12 and tumor necrosis factor (TNF)-α. These T helper (Th)-1-type cytokines are thought to promote antitumor immune response. In this study, we assessed the functional abilities of DCs generated from G-CSF-mobilized monocytes obtained from 13 patients with CEA-positive advanced solid cancers. Peripheral blood mononuclear cells were obtained from leukapheresis products collected before and after systemic administration of G-CSF (subcutaneous administration of high-dose [5–10 μg/kg] human recombinant G-CSF for five consecutive days). In vitro cytokine production profiles after stimulation with lipopolysaccharide (LPS) were compared between monocytes with and without G-CSF mobilization. DCs generated from monocytes were also examined with respect to cytokine production and the capacity to induce peptide-specific T cell responses. Administration of G-CSF was found to efficiently mobilize peripheral blood monocytes. Although G-CSF-mobilized monocytes (G/Mo) less effectively produced Th-1-type cytokines than control monocytes (C/Mo), DCs generated from G/Mo restored the same level of IL-12 production as that seen in DCs generated from C/Mo. T cell induction assay using recall antigen peptide and phenotypic analyses also demonstrated that DCs generated from G/Mo retained characteristics identical to those generated from C/Mo. Our results suggest that G-CSF mobilization can be used to collect monocytes as a cell source for the generation of DCs for cancer immunotherapy. DCs generated in this fashion were pulsed with HLA-A24-restricted CEA epitope peptide and administered to patients safely; immunological responses were induced in some patients.  相似文献   

7.
We investigated whether recombinant human granulocyte colony-stimulating factor (rhG-CSF) en hanced the cytotoxicity of PSK-induced polymorphonuclear leukocytes (PMNs) in the peritoneal cavity. Male C3H/He mice, 8- to 10-week-old, received single subcutaneous (s.c.) or intraperitoneal (i.p.) injection of 2.5 µg/animal of rhG-CSF at different time points before or after an i.p. administration of PSK. In other experiments, mice were s.c. or i.p. treated with the same dosage of rhG-CSF every day for 7 or 14 consecutive days and i.p. injected with 2.5 mg/animal of PSK on the last day. Peritoneal PMNs were harvested 6 hrs after the administration of PSK and purified to more than 95% by Ficoll-Paque for in vitro cytotoxic assay.In vitro cytotoxic assays with51Cr labeled MM46 mammary carcinoma cells were added with 5–20 µg/ml of Nocardia rubra cell wall skeleton (N-CWS) at the beginning of the assay to augment the cytotoxic activity of PMNs.In vitro addition of rhG-CSF to the assay did not enhance the cytotoxicity of PSK-induced PMNs. However, the cytotoxicity was signifi cantly increased when rhG-CSF was s.c. administered 12 hrs before a PSK injection or 2 or 5 hrs after that. On the other hand, the cytotoxicity was rather weak when mice s.c. or i.p. received consecutive injections of rhG-CSF. This cytotoxicity may be mediated by H2O2, since H2O2 production of PMNs during the cytotoxic assay appears to correlate with the levels of cytotoxicity under suppressed H2O2 generation by catalase or enhanced generation by rhG-CSF. These results suggest that rhG-CSF augments the cytotoxicity of PSK-induced PMNs when administeredin vivo timely.  相似文献   

8.
A chimeric toxin in which the cell-surface binding domain of Pseudomonas exotoxin A was replaced with mature human granulocyte colony-stimulating factor (G-CSF) was produced in Escherichia coli, purified and tested for its biological activity on the human G-CSF-responsive myeloid leukemia cell line, UT7/GR. This fusion protein, termed G-CSF-PE40, showed potent cytotoxicity in the cell line in a dose-dependent manner. G-CSF-PE40 displaced binding of biotinylated G-CSF to its receptor, and the cytotoxicity of G-CSF-PE40 was neutralized by an excess of wild-type G-CSF, indicating the receptor-mediated effects of this chimeric toxin. When G-CSF-PE40 was injected into normal mice, they showed transient neutropenia but no significant changes in the numbers of red blood cells or platelets. Furthermore, G-CSF-PE40 prolonged the survival of mice transplanted with syngeneic myeloid leukemia cells. These observations suggest that G-CSF-PE40 may be useful in targeted therapy of myeloid leukemia cells expressing G-CSF receptors.  相似文献   

9.
Voltage-gated whole-cell currents were recorded from cultured microglial cells which had been developed in the presence of the macrophage/microglial growth factor granulocyte/macrophage colony-stimulating factor. Outward K+ currents (I K) were most prominent in these cells. I Kcould be activated at potentials more positive than –40 mV. Half-maximal activation of I Kwas achieved at –13.8 mV and half-maximal inactivation of I Kwas determined at –33.8 mV. The recovery of I Kfrom inactivation was described by a time constant of 7.9 sec. For a tenfold change in extracellular K+ concentration the reversal potential of I Kshifted by 54 mV.Extracellularly applied 10 mm tetraethylammonium chloride reduced I K by about 50%, while 5 mm 4-aminopyridine almost completely abolished I K. Several divalent cations (Ba2+, Cd2+, Co2+, Zn2+) reduced current amplitudes and shifted the activation curve of I Kto more positive values. Charybdotoxin (IC50 = 1.14 nm) and noxiustoxin (IC50=0.89 nm) blocked I Kin a concentration-dependent manner, whereas dendrotoxin and mast cell degranulating peptide had no effect on the current amplitudes.  相似文献   

10.
We tested the hypothesis that granulocyte colony-stimulating factor (G-CSF) administration would enhance the efficacy of cellular cardiomyoplasty with embryonic stem (ES) cell-derived cardiomyocytes in infarcted myocardium. Three weeks after myocardial infarction by cryoinjury, Sprague-Dawley rats were randomized to receive either an injection of medium, ES cell-derived cardiomyocyte transplantation, G-CSF administration, or a combination of G-CSF administration and ES cell-derived cardiomyocyte transplantation. Eight weeks after treatment, the cardiac tissue formation, neovascularization, and apoptotic activity in the infarct regions were evaluated by histology and immunohistochemistry. The left ventricular (LV) dimensions and function of the treated heart were evaluated by echocardiography. Transplanted ES cell-derived cardiomyocytes survived and participated in the myocardial regeneration in the infarcted heart. A combination of G-CSF treatment and ES cell-derived cardiomyocyte transplantation significantly promoted angiogenesis and reduced the infarct area and cell apoptosis in the infarcted myocardium compared with ES cell-derived cardiomyocyte transplantation alone. The combination therapy also attenuated LV dilation, as compared with ES cell-derived cardiomyocyte transplantation alone. G-CSF treatment can enhance the efficacy of cellular cardiomyoplasty by ES cell-derived cardiomyocyte transplantation to treat myocardial infarction.  相似文献   

11.
Cost-effective production of soluble recombinant protein in a bacterial system remains problematic with respect to expression levels and quality of the expressed target protein. These constraints have particular meaning today as "biosimilar" versions of innovator protein drugs are entering the clinic and the marketplace. A high throughput, parallel processing approach to expression strain engineering was used to evaluate soluble expression of human granulocyte colony-stimulating factor (G-CSF) in Pseudomonas fluorescens. The human g-csf gene was optimized for expression in P. fluorescens and cloned into a set of periplasmic expression vectors. These plasmids were transformed into a variety of P. fluorescens host strains each having a unique phenotype, to evaluate soluble expression in a 96-well growth and protein expression format. To identify a strain producing high levels of intact, soluble Met-G-CSF product, more than 150 protease defective host strains from the Pfēnex Expression Technology? toolbox were screened in parallel using biolayer interferometry (BLI) to quantify active G-CSF binding to its receptor. A subset of these strains was screened by LC-MS analysis to assess the quality of the expressed G-CSF protein. A single strain with an antibiotic resistance marker insertion in the pfaI gene was identified that produced>99% Met-GCSF. A host with a complete deletion of the autotransporter-coding gene pfaI from the genome was constructed, and expression of soluble, active Met-GSCF in this strain was observed to be 350mg/L at the 1 liter fermentation scale.  相似文献   

12.
Ammonium ion concentrations ranging from 0 to 10 mM are shown to significantly reduce the sialylation of granuiocyte colony-stimulating factor (G-CSF) produced by recombinant Chinese hamster ovary cells. Specifically, the degree of completion of the final reaction in the O-linked glycosylation pathway, the addition of sialic acid in an alpha(2,6) linkage to N-acetylgalactosamine, is reduced by NH(4) (+) concentrations of as low as 2 mM. The effect of ammonia on sialylation is rapid, sustained, and does not affect the secretion rate of G-CSF. Additionally, the effect can be mimicked using the weak base chloroquine, suggesting that the effect is related to the weak base characteristics of ammonia. In support of this hypothesis, experiments using brefeldin A suggest that the addition of sialic acid in an alpha(2,6) linkage to N-acetylgalactosamine occurs in the trans-Golgi compartment prior to the trans-Golgi network, which would be expected under normal conditions to have a slightly acidic pH in the range from 6.5 to 6.75. Ammonium ion concentrations of 10 mM would be expected to reduce significantly the differences in pH between acidic intracellular compartments and the cytoplasm. The pH-activity profile for the CHO O-linked alpha(2,6) sialytransferase using monosialylated G-CSF as a substrate reveals a twofold decrease in enzymatic activity across the pH range from 6.75 to 7.0.Mathematical modeling of this sialylation reaction supports the hypothesis that this twofold decrease in sialyltransferase activity resulting from an ammoniainduced increase in trans-Golgi pH could produce the observed decrease in G-CSF sialylation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
Circulating hematopoietic stem cells exhibit robust circadian fluctuations, which influence the mobilized cell yield, even during enforced stem cell mobilization. However, alterations in the expression of circadian clock genes during granulocyte colony-stimulating factor (G-CSF)-induced peripheral blood stem cell (PBSC) mobilization are not fully elucidated. Therefore, we measured the expression of these genes in human peripheral blood leukocytes from 21 healthy donors. While CRY1 mRNA expression significantly increased by 3.9-fold (p?<?0.01), the expression of PER3, CRY2 and BMAL1 mRNAs significantly decreased (by 0.2-fold, 0.2-fold, and 0.6-fold, respectively; p?<?0.001) after G-CSF administration. Moreover, CRY1 mRNA expression was inversely correlated with the plasma level of noradrenaline (r?=??0.36, p?<?0.05), while PER3, CRY2, and BMAL1 mRNA expression directly correlated with the plasma level of noradrenaline (r?=?0.55, r?=?0.66, and r?=?0.57, respectively; p?<?0.001). Thus, significant correlations between the levels of circadian clock gene mRNAs and the plasma level of noradrenaline, a sympathetic nervous system neurotransmitter, were established. The modulation of sympathetic activation and of the circadian clock may be novel therapeutic targets for increasing stem cell yields in PBSC donors.  相似文献   

14.
Recombinant human granulocyte colony-stimulating factor (rhG-CSF) was investigated for its clinical efficacy in the treatment of various types of neutropenia (3 cases with idiopathic neutropenia of suspected drug induction, 5 cases with idiopathic neutropenia of other origin, and 2 cases with cyclic neutropenia). Treatment with glycosylated rhG-CSF produced in the Chinese Hamster Ovary cells at dose levels of 2–5g/kg/day caused rapid increases of neutrophil counts associated with an improvement of the infection. In cyclic neutropenia patients, marked reduction in the duration of the neutropenic period was observed with rhG-CSF administration started before the period. Intercurrent stomatitis, which occurred in 1 patient, was markedly milder as compared to a previous episode which occurred during an untreated neutropenic period.The treatment of rhG-CSF was well tolerated and no adverse events were observed, nor was there any detectable anti-rhG-CSF antibody in any patients studied; hence the clinical use of rhG-CSF is considered to be safe.These results suggest beneficial effects of rhG-CSF on the recovery of neutrophil counts in cyclic and other types of idiopathic neutropenias, as well as for the treatment of neutropenia-associated infection.  相似文献   

15.
Colony-stimulating factor (CSF), a protein required for the in vitro formation of colonies composed of granulocytes and/or macrophages, was isolated from the urine of anemic patients by using a seven-step procedure. The purified, homogeneous CSF had a specific activity of 1.9 X 10(8) U/absorbance unit at 280 nm (AU). This represents an overall purification of 25,330-fold and a total recovery of 3.8%. Upon iodination of the protein, the radioactivity migrated on sodium dodecyl sulfate (SDS) gel electrophoresis as a single peak with an apparent molecular weight of 46,000; reduction with mercaptoethanol caused dissociation to a single component of molecular weight 23,000. Only the dimer is active in stimulating colony formation. Urinary CSF stimulates formation of colonies comprising only macrophages in the mouse bone marrow cell culture assay. A neutralizing antibody raised against mouse L-cell CSF did not neutralize the activity of the urinary CSF but did bind it. This may indicate that the relative positions of antibody binding sites and the active sites are different in these two glycoproteins.  相似文献   

16.
Human granulocyte-macrophage colony-stimulating factor (hGM-CSF), also known as sargramostim or molgramostin, is a cytokine that functions as a hematopoietic cell growth factor. Here we report a near complete assignment for the backbone and side chain resonances for the mature polypeptide.  相似文献   

17.
The 35-year-old man with myelodysplastic syndrome (MDS) and granulocytopenia with dry cough and high fever was eventually found to have a left perinephric abscess ofStaphylococcus aureus. He underwent left nephrectomy and drainage of perinephric space in conjunction with appropriate antibiotics. However, because of persistent granulocytopenia,Staph. aureus never cleared up with formation of only poor granulation. Recombinant human granulocyte colony-stimulating factor (G-CSF) was added to the above treatment leading to prompt improvement in granulocytopenia and emergence of the good granulation tissue. G-CSF will probably become one of the important agents in treating MDS with granulocytopenia.  相似文献   

18.
Granulocyte colony-stimulating factor (G-CSF) has been used for the treatment of neutropenia in hematologic disorders. The neuroprotective effects of G-CSF were reported in neurological disease models. In the present study, we examined whether G-CSF can protect dopaminergic neurons against MPTP-induced cell death in a mouse model of Parkinson's disease. Mice of one group were injected intraperitoneally with MPTP for five consecutive days, those of another group with MPTP and intraperitoneal G-CSF at 2 days and 1 day before the first MPTP injection, and 30 min before each MPTP injection, while control mice received saline injections. Immunohistochemistry, western blotting analysis, and HPLC were performed to evaluate damage of substantia nigra dopaminergic neurons and expression of Bcl-2 and Bax protein. MPTP induced dopaminergic cell death in the substantia nigra. G-CSF significantly prevented MPTP-induced loss of tyrosine hydroxylase-positive neurons (p < 0.05), increased Bcl-2 protein and decreased Bax protein expression. Our findings indicate that G-CSF provides neuroprotection against MPTP-induced cell death and this effect is mediated by increasing Bcl-2 expression levels and decreasing Bax expression levels in C57BL/6 mice.  相似文献   

19.
We have previously shown that the overexpression of a Src family kinase, Lyn, and its kinase-negative form, LynKN, in a granulocyte progenitor cell line, GM-I62M, accelerates neutrophilic nuclear lobulation when the cells are cultured in the presence of granulocyte colony-stimulating factor. In this study, we investigated the role of the Src homology 2 (SH2) and SH3 domains of Lyn in the accelerated induction of nuclear lobulation. In contrast to wild-type Lyn, the overexpression of its SH2 domain mutant did not induce the accelerated nuclear morphological changes, but the overexpressed SH3 domain mutant had the same effects as wild-type Lyn. Therefore, the SH2 domain of Lyn is responsible for the accelerated induction of neutrophilic nuclear lobulation upon G-CSF stimulation.  相似文献   

20.
The tumoricidal effects of M-CSF were examined using two subcutaneously-transplanted rat brain tumor cell lines, 9L and T9 gliomas. In rats treated with high-dose M-CSF (16 million U/kg administered for 4 days a week for 3 weeks), 9L glioma growth was inhibited by 81.9% following subcutaneous (s.c.) injection and by 70.5% after intraperitoneal (i.p.) injection and T9 glioma growth was inhibited by 69.2% after i.p. injection. After short-term treatment with high-dose M-CSF (32 million U/kg administered s.c. for 6 consecutive days, 9L glioma growth was inhibited by 82.1%. All these inhibitory effects differed significantly compared with the respective untreated control groups. However, treatment with low-dose M-CSF (1.6 million U/kg administered s.c. for 4 days a week for 3 weeks) showed no significant effects against 9L and T9 glioma growth compared with the untreated controls. No significant effects of M-CSF against cell proliferation, measured as PCNA expression, were observed in any group. Significant hematopoietic effects on the leukocyte counts were observed only in the groups treated with high dose M-CSF. These results suggest that M-CSF at a high dose which produces hematopoietic effects on peripheral leukocytes inhibits the growth of gliomas. This inhibitory effect may have been due to a tumoricidal mechanism of M-CSF that depended on the production or release of some hematopoietic soluble factors, but was independent of PCNA expression by the tumors.Abbreviations BBB blood-brain barrier - G-CSF granulocyte colony-stimulating factor - GM-CSF granulocyte-macrophage colony-stimulating factor - hM-CSF human macrophage colony-stimulating factor - IFN interferon - IL-1 interleukin-1 - IL-6 interleukin-6 - M-CSF macrophage colony-stimulating factor - PCNA proliferating cell nuclear antigen - rhM-CSF recombinant human macrophage colony-stimulating factor - TNF tumor necrosis factor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号