首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mephedrone (4‐methylmethcathinone) is a β‐ketoamphetamine stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine. One of the most powerful actions associated with mephedrone is the ability to stimulate dopamine (DA) release and block its re‐uptake through its interaction with the dopamine transporter (DAT). Although mephedrone does not cause toxicity to DA nerve endings, its ability to serve as a DAT blocker could provide protection against methamphetamine‐induced neurotoxicity like other DAT inhibitors. To test this possibility, mice were treated with mephedrone (10, 20, or 40 mg/kg) prior to each injection of a neurotoxic regimen of methamphetamine (four injections of 2.5 or 5.0 mg/kg at 2 h intervals). The integrity of DA nerve endings of the striatum was assessed through measures of DA, DAT, and tyrosine hydroxylase levels. The moderate to severe DA toxicity associated with the different doses of methamphetamine was not prevented by any dose of mephedrone but was, in fact, significantly enhanced. The hyperthermia caused by combined treatment with mephedrone and methamphetamine was the same as seen after either drug alone. Mephedrone also enhanced the neurotoxic effects of amphetamine and 3,4‐methylenedioxymethamphetamine on DA nerve endings. In contrast, nomifensine protected against methamphetamine‐induced neurotoxicity. As mephedrone increases methamphetamine neurotoxicity, the present results suggest that it interacts with the DAT in a manner unlike that of other typical DAT inhibitors. The relatively innocuous effects of mephedrone alone on DA nerve endings mask a potentially dangerous interaction with drugs that are often co‐abused with it, leading to heightened neurotoxicity.  相似文献   

2.
Methylone, 3,4‐methylenedioxypyrovalerone (MDPV), and mephedrone are psychoactive ingredients of ‘bath salts’ and their abuse represents a growing public health care concern. These drugs are cathinone derivatives and are classified chemically as β‐ketoamphetamines. Because of their close structural similarity to the amphetamines, methylone, MDPV, and mephedrone share most of their pharmacological, neurochemical, and behavioral properties. One point of divergence in their actions is the ability to cause damage to the CNS. Unlike methamphetamine, the β‐ketoamphetamines do not damage dopamine (DA) nerve endings. However, mephedrone has been shown to significantly accentuate methamphetamine neurotoxicity. Bath salt formulations contain numerous different psychoactive ingredients, and individuals who abuse bath salts also coabuse other illicit drugs. Therefore, we have evaluated the effects of methylone, MDPV, mephedrone, and methamphetamine on DA nerve endings. The β‐ketoamphetamines alone or in all possible two‐drug combinations do not result in damage to DA nerve endings but do cause hyperthermia. MDPV completely protects against the neurotoxic effects of methamphetamine while methylone accentuates it. Neither MDPV nor methylone attenuates the hyperthermic effects of methamphetamine. The potent neuroprotective effects of MDPV extend to amphetamine‐, 3,4‐methylenedioxymethamphetamine‐, and MPTP‐induced neurotoxicity. These results indicate that β‐ketoamphetamine drugs that are non‐substrate blockers of the DA transporter (i.e., MDPV) protect against methamphetamine neurotoxicity, whereas those that are substrates for uptake by the DA transporter and which cause DA release (i.e., methylone, mephedrone) accentuate neurotoxicity.

  相似文献   


3.
Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine with close structural analogy to substituted amphetamines and cathinone derivatives. Abuse of mephedrone has increased dramatically in recent years and has become a significant public health problem in the United States and Europe. Unfortunately, very little information is available on the pharmacological and neurochemical actions of mephedrone. In light of the proven abuse potential of mephedrone and considering its similarity to methamphetamine and methcathinone, it is particularly important to know if mephedrone shares with these agents an ability to cause damage to dopamine nerve endings of the striatum. Accordingly, we treated mice with a binge-like regimen of mephedrone (4 × 20 or 40 mg/kg) and examined the striatum for evidence of neurotoxicity 2 or 7 days after treatment. While mephedrone caused hyperthermia and locomotor stimulation, it did not lower striatal levels of dopamine, tyrosine hydroxylase or the dopamine transporter under any of the treatment conditions used presently. Furthermore, mephedrone did not cause microglial activation in striatum nor did it increase glial fibrillary acidic protein levels. Taken together, these surprising results suggest that mephedrone, despite its numerous mechanistic overlaps with methamphetamine and the cathinone derivatives, does not cause neurotoxicity to dopamine nerve endings of the striatum.  相似文献   

4.

Objective

To study the effect of rhynchophylline on N-methyl d-aspartate receptor subtype 2B subunit in hippocampus of Methamphetamine-induced conditioned place preference (CPP) mice.

Methods

Place preference mice models were established by methamphetamine; the expression of NR2B was observed by immunohistochemistry technique and Western blot.

Results

Methamphetamine (4 mg/kg)-induced place preference mice model was successfully established; ketamine (15 mg/kg), rhynchophylline (40 mg/kg) and rhynchophylline (80 mg/kg) can eliminate place preference; Immunohistochemistry showed that the number of NR2B-positive neurons in hippocampus was increased in the methamphetamine model group, whereas less NR2B-positive neurons were found in the ketamine group, low and high dosage rhynchophylline group. Western blot showed that the expression of NR2B protein was significantly increased in the model group, whereas less expression was found in the ketamine group, low and high dosage rhynchophylline group.

Conclusions

NR2B plays an important role in the formation of methamphetamine-induced place preference in mice. Rhynchophylline reversed the expression of NR2B in the hippocampus demonstrates the potential effect of mediates methamphetamine induced rewarding effect.  相似文献   

5.

Background

The C-terminus of the serotonin transporter (SERT) contains binding domains for different proteins and is critical for its functional expression. In endogenous and heterologous expression systems, our proteomic and biochemical analysis demonstrated that an intermediate filament, vimentin, binds to the C-terminus of SERT. It has been reported that 5HT-stimulation of cells leads to disassembly and spatial reorientation of vimentin filaments.

Methodology/Principal Findings

We tested the impact of 5HT-stimulation on vimentin-SERT association and found that 5HT-stimulation accelerates the translocation of SERT from the plasma membrane via enhancing the level of association between phosphovimentin and SERT. Furthermore a progressive truncation of the C-terminus of SERT was performed to map the vimentin-SERT association domain. Deletion of up to 20, but not 14 amino acids arrested the transporters at intracellular locations. Although, truncation of the last 14 amino acids, did not alter 5HT uptake rates of transporter but abolished its association with vimentin.To understand the involvement of 5HT in phosphovimentin-SERT association from the plasma membrane, we further investigated the six amino acids between Δ14 and Δ20, i.e., the SITPET sequence of SERT. While the triple mutation on the possible kinase action sites, S611, T613, and T616 arrested the transporter at intracellular locations, replacing the residues with aspartic acid one at a time altered neither the 5HT uptake rates nor the vimentin association of these mutants. However, replacing the three target sites with alanine, either simultaneously or one at a time, had no significant effect on 5HT uptake rates or the vimentin association with transporter.

Conclusions/Significance

Based on our findings, we propose that phosphate modification of the SITPET sequence differentially, one at a time exposes the vimentin binding domain on the C-terminus of SERT. Conversely, following 5HT stimulation, the association between vimentin-SERT is enhanced which changes the cellular distribution of SERT on an altered vimentin network.  相似文献   

6.

Background

Cancer cells have extremely active metabolism, which supports high proliferation rates. Metabolic profiles of human colon cancer cells have been extensively studied, but comparison with non-tumour counterparts has been neglected.

Methods

Here we compared the metabolic flux redistribution in human colon adenocarcinoma cells (HT29) and the human colon healthy cell line NCM460 in order to identify the main pathways involved in metabolic reprogramming. Moreover, we explore if induction of differentiation in HT29 by trichostatin A (TSA) reverts the metabolic reprogramming to that of NCM460. Cells were incubated with [1,2-13C2]-d-glucose as a tracer, and Mass Isotopomer Distribution Analysis was applied to characterize the changes in the metabolic flux distribution profile of the central carbon metabolism.

Results

We demonstrate that glycolytic rate and pentose phosphate synthesis are 25% lower in NCM460 with respect to HT29 cells. In contrast, Krebs cycle activity in the former was twice that recorded in the latter. Moreover, we show that TSA-induced HT29 cell differentiation reverts the metabolic phenotype to that of healthy NCM460 cells whereas TSA does not affect the metabolism of NCM460 cells.

Conclusions

We conclude that pentose phosphate pathway, glycolysis, and Krebs cycle are key players of colon adenocarcinoma cellular metabolic remodeling and that NCM460 is an appropriate model to evaluate the results of new therapeutic strategies aiming to selectively target metabolic reprogramming.

General significance

Our findings suggest that strategies to counteract robust metabolic adaptation in cancer cells might open up new avenues to design multiple hit and targeted therapies.  相似文献   

7.

Background

Oxidative stress is a leading cause of various diseases, including ischemia and inflammation. Peroxiredoxin2 (PRX2) is one of six mammalian isoenzymes (PRX1–6) that can reduce hydrogen peroxide (H2O2) and organic hydroperoxides to water and alcohols.

Methods

We produced PEP-1-PRX2 transduction domain (PTD)-fused protein and investigated the effect of PEP-1-PRX2 on oxidative stress-induced neuronal cell death by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Western blot, immunofluorescence microscopy, and immunohistochemical analysis.

Results

Our data showed that PEP-1-PRX2, which can effectively transduce into various types of cells and brain tissues, could be implicated in suppressing generation of reactive oxygen species, preventing depolarization of the mitochondrial membrane, and inhibiting the apoptosis pathway in H2O2-stimulated HT22, murine hippocampal neuronal cells, likely resulting in protection of HT22 cells against H2O2-induced toxicity. In addition, we found that in a transient forebrain ischemia model, PEP-1-PRX2 inhibited the activation of astrocytes and microglia in the CA1 region of the hippocampus and lipid peroxidation and also prevented neuronal cell death against ischemic damage.

Conclusions

These findings suggest that the transduced PEP-1-PRX2 has neuroprotective functions against oxidative stress-induced cell death in vitro and in vivo.

General significance

PEP-1-PRX2 could be a potential therapeutic agent for oxidative stress-induced brain diseases such as ischemia.  相似文献   

8.

Background

Nowadays, there is a tremendous need for cheap disposable sensing devices for medical applications. Materials such as Carbon Nanotubes (CNTs) and regioregular P3HT are proven to offer a huge potential as cost-effective and solution processable semiconductors for (bio)sensing applications.

Methods

CNT-based field-effect transistors (CNT-FETs) as well as regioregular P3HT-based ones (P3HT-FETs) are fabricated and operated in the so-called electrolyte-gated configuration. The active layer of the P3HT-FETs consists of a spin-coated regioregular P3HT layer, which serves on one hand as the active sensing element and on the other hand as passivation layer for the transistor's metal contacts. The active layer of the nanotube transistors consists of a randomly distributed single walled CNT-network (> 90% semiconducting tubes) deposited from a CNT-ink solution by spin-coating.

Results

We compare both devices concerning their stability in aqueous environment and their response when exposed to buffers with different pH. We found that even if P3HT shows lower stability its pH sensitivity is reproducible even after long-term measurements.

Conclusion

CNT-FETs and P3HT-FETs offer different advantages and drawbacks concerning their stability in solution and the ease of fabrication. A discussion of their different sensing mechanisms as well as sensitivity is given here.

General Significance

This work reports on fast and cost-effective production of solution processable thin-film transistors based on carbon nanotubes and regioregular P3HT and demonstrates their suitability as reliable pH sensors. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   

9.

Introduction

Hippocampal sclerosis is the most common lesion in patients with mesial temporal lobe epilepsy. Recently, there has been growing evidence on the involvement of mitochondria also in sporadic forms of epilepsy. In addition, it has been increasingly argued that mitochondrial dysfunction has an important role in epileptogenesis and seizure generation in temporal lobe epilepsy. Although mtDNA polymorphisms have been identified as potential risk factors for neurological diseases, the link between homoplasmy and heteroplasmy within tissues is not clear. We investigated whether mitochondrial DNA (mtDNA) polymorphisms are involved in a case report of a patient with mesial temporal lobe epilepsy-hippocampal sclerosis (MTLE-HS).

Design

We report the whole genome mtDNA deep sequencing results and clinical features of a 36-year-old woman with MTLE-HS. We used pyrosequencing technology to sequence a whole mitochondrial genome isolated from six different regions of her brain and blood. To assess the possible role of mitochondrial DNA variations in affected tissues, we compared all specimens from different regions of the hippocampus and blood.

Results

In total, 35 homoplasmic and 18 heteroplasmic variations have been detected in 6 different regions of the hippocampus and in blood samples. While the samples did not display any difference in homoplasmic variations, it has been shown that hippocampus regions contain more heteroplasmic variations than blood. The number of heteroplasmic variations was highest in the CA2 region of the brain and accumulated in ND2, ND4 and ND5 genes. Also, dentate and subiculum regions of the hippocampus had similar heteroplasmic variation profiles.

Discussion

We present a new rare example of parallel mutation at 16223 position. Our case suggests that defects in mitochondrial function might be underlying the pathogenesis of seizures in temporal lobe epilepsy.  相似文献   

10.
Mephedrone (4‐methylmethcathinone) is a synthetic cathinone designer drug that alters pre‐synaptic dopamine (DA) activity like many psychostimulants. However, little is known about the post‐synaptic dopaminergic impacts of mephedrone. The neuropeptide neurotensin (NT) provides inhibitory feedback for basal ganglia and limbic DA pathways, and post‐synaptic D1‐like and D2‐like receptor activity affects NT tissue levels. This study evaluated how mephedrone alters basal ganglia and limbic system NT content and the role of NT receptor activation in drug consumption behavior. Four 25 mg/kg injections of mephedrone increased NT content in basal ganglia (striatum, substantia nigra and globus pallidus) and the limbic regions (nucleus accumbens core), while a lower dosage (5 mg/kg/injection) only increased striatal NT content. Mephedrone‐induced increases in basal ganglia NT levels were mediated by D1‐like receptors in the striatum and the substantia nigra by both D1‐like and D2‐like receptors in the globus pallidus. Mephedrone increased substance P content, another neuropeptide, in the globus pallidus, but not in the dorsal striatum or substantia nigra. Finally, the NT receptor agonist PD149163 blocked mephedrone self‐administration, suggesting reduced NT release, as indicated by increased tissue levels, likely contributing to patterns of mephedrone consumption.

  相似文献   


11.

Rationale and Objective

Little is known on the effects of ecstasy (MDMA, a potent 5-HT-releaser and neurotoxin) exposure on brain development in teenagers. The objective of this study was to investigate whether in humans, like previous observations made in animals, the effects of MDMA on the 5-HT system are dependent on age-of-first exposure.

Methods

5-HT transporter (SERT) densities in the frontal cortex and midbrain were assessed with [123I]β-CIT single photon emission computed tomography in 33 users of ecstasy. Subjects were stratified for early-exposed users (age-at-first exposure 14–18 years; developing brain), and late-exposed users (age-at-first exposure 18–36 years; mature brain). In parallel, we investigated the effects of age experimentally with MDMA in early-exposed (adolescent) rats and late-exposed (adult) rats using the same radioligand.

Results

On average, five years after first exposure, we found a strong inverse relationship, wherein age-at-first exposure predicted 79% of the midbrain SERT variability in early (developing brain) exposed ecstasy users, whereas this was only 0.3% in late (mature brain) exposed users (p = 0.007). No such effect was observed in the frontal cortex. In rats, a significant age-BY-treatment effect (p<0.01) was observed as well, however only in the frontal cortex.

Conclusions

These age-related effects most likely reflect differences in the maturational stage of the 5-HT projection fields at age-at-first exposure and enhanced outgrowth of the 5-HT system due to 5-HT’s neurotrophic effects. Ultimately, our findings stress the need for more knowledge on the effects of pharmacotherapies that alter brain 5-HT levels in the pediatric population.  相似文献   

12.

Aims

Depression is a chronic, recurring and potentially life-threatening illness. Current treatments for depression are characterized by a low success rate and associated with a wide variety of side effects. The aim of the present study was to evaluate the behavioral and biological anti-depressant effects of a novel herbal treatment (NHT), as well as to assess its potential side effects, in comparison to treatment with the selective serotonin reuptake inhibitor escitalopram.

Main methods

Depressive-like behavior was evaluated using the forced swim test (FST) and the tail suspension test (TST). Sexual behavior was evaluated following treatment by measuring latency before first mount and number of total mounts. Brain derived neurotrophic factor (BDNF) levels were evaluated using enzyme-linked immunosorbent assay. Serotonin transporter (SERT) levels in the pre-frontal cortex (PFC) and hypothalamus were evaluated using high affinity binding assay.

Key findings

(1) The NHT reduced depressive-like behavior in the FST and TST; (2) BDNF levels in the PFC of mice treated both with the NHT and escitalopram were increased; (3) SERT levels in the hypothalamus were significantly higher in the NHT group, in comparison to escitalopram and the control groups, and significantly lower in the PFC of the NHT group in comparison to the escitalopram group; and (4) the NHT led to less sexual dysfunction, compared to treatment with escitalopram.

Significance

Our NHT has the potential of being highly efficacious in treating depression in humans, while causing minimal to no influence on sexual function.  相似文献   

13.

Aims

The effects of methamphetamine are linked to stimulation of dopaminergic neurons, which can be accompanied by production of reactive oxygen species (ROS). Apocynin (4-hydroxy-3-methoxy-acetophenone) is a nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) inhibitor shown to mitigate oxidative stress in a number of models. The present study aimed at testing whether apocynin suppresses the dopamine-releasing and locomotor-activating properties of methamphetamine.

Main methods

(1) Apocynin (0.01–100 μM) was applied to rat striatal slices preloaded with [3H]dopamine and its efficacy to evoke [3H]overflow and to alter methamphetamine (3 μM)-evoked [3H]overflow was measured. (2) Groups of rats received apocynin (15 or 50 mg/kg/day) or vehicle injection for seven consecutive days, and the efficacy and potency of methamphetamine to evoke [3H]overflow were determined. (3) Groups of apocynin-treated rats were administered methamphetamine (0.5 or 1 mg/kg) or saline to determine the effect of apocynin on stimulant-induced hyperactivity.

Key findings

(1) Apocynin applied to striatal slices did not evoke [3H]overflow or alter methamphetamine-evoked [3H]overflow. (2) However, subchronic apocynin treatment significantly and dose-dependently decreased methamphetamine's potency and efficacy to evoke [3H]overflow. (3) Subchronic apocynin treatment also decreased the locomotor activity evoked by methamphetamine.

Significance

Subchronic apocynin treatment diminished methamphetamine induced dopamine-release and its locomotor-activating properties. The pattern of results indicates that apocynin is more effective after repeated, rather than after acute, treatment. The findings also suggest that NOX inhibitors or agents suppressing oxidative stress may constitute a new area for research to understand how methamphetamine produces its deleterious and neurotoxic outcomes in the brain.  相似文献   

14.

Aims

L-Aspartate (L-Asp) and D-aspartate (D-Asp) are physiologically important amino acids in mammals and birds. However, the functions of these amino acids have not yet been fully understood. In this study, we therefore examined the effects of L-Asp and D-Asp in terms of regulating body temperature, plasma metabolites and catecholamines in chicks.

Main methods

Chicks were first orally administered with different doses (0, 3.75, 7.5 and 15 mmol/kg body weight) of L- or D-Asp to monitor the effects of these amino acids on rectal temperature during 120 min of the experimental period.

Key findings

Oral administration of D-Asp, but not of L-Asp, linearly decreased the rectal temperature in chicks. Importantly, orally administered D-Asp led to a significant reduction in body temperature in chicks even under high ambient temperature (HT) conditions. However, centrally administered D-Asp did not significantly influence the body temperature in chicks. As for plasma metabolites and catecholamines, orally administered D-Asp led to decreased triacylglycerol and uric acid concentrations and increased glucose and chlorine concentrations but did not alter plasma catecholamines.

Significance

These results suggest that oral administration of D-Asp may play a potent role in reducing body temperature under both normal and HT conditions. The alteration of plasma metabolites further indicates that D-Asp may contribute to the regulation of metabolic activity in chicks.  相似文献   

15.

Aim

In multiple cervical root transection injuries, motor and sensory recovery has been demonstrated after repairing both dorsal and ventral roots with autologous grafts applied to the dorsal and ventral aspects, respectively. However, in clinical situations, autologous grafts may not be sufficient to repair both roots in this situation. In this study, the authors evaluated whether repairing ventral root alone is sufficient for simultaneous sensory and motor function recovery.

Main methods

In the transected group, the left 6th–8th cervical roots were pulled and transected at the spinal cord junction. In the repair group, the transected root was anastomosed to a single autologous nerve graft, which was inserted into the ventral horn through a pial incision. Acidic fibroblast growth factor mixed with fibrin glue was applied to the surgical area. Motor function, sensory function, cortical somatosensory evoked potentials (SSEPs), axon tracing, and CGRP+ fibers were evaluated.

Key findings

The repaired rats exhibited simultaneous sensory and motor function recovery. At the 16th weeks, SSEPs reappeared in all animals of the repair group, but not in the transected group. Retrograde axon tracing demonstrated an increased number of sensory neurons in the dorsal root ganglia and regenerating nerve fibers in the dorsal horn. CGRP+ fibers were significantly increased in the repair group and restricted to laminae I and II.

Significance

This is the first report that in multiple root avulsions with insufficient grafts, repairing ventral roots alone leads to both sensory recovery and motor recovery. This finding may help patients with multiple cervical root avulsions.  相似文献   

16.

Background

Serum C-reactive protein (CRP) and genetic variation of CRP gene have been reported as a strong, independent predictor of myocardial infarction and stroke. But there is rare association evidence of CRP genetic variation and hypertension (HT).

Methods

A community-based case–control study including 1331 cases with HT and 1400 controls was used to evaluate the association of tagSNPs covered CRP gene, CRPP1 gene and 40 kb upstream with HT in a Chinese Han population. Haplotypes and stratification analysis were applied to further evaluate relationships between the screened SNPs and HT and general linear model (GLM) was applied to compare blood pressure levels between genotypes.

Results

In stage 1, five SNPs had positive association with HT (P < 0.05) and entered stage 2 and two SNPs rs876537 and rs10737175 polymorphisms showed significant association with HT in joint sample. Haplotype analysis showed that comparing with common haplotype T–C which was constructed by rs6677719 and rs10737175, haplotype T–T significantly associated with HT after adjusted covariates. Stratification analysis found significant associations of HT for rs876537, rs2808630, rs6677719 and rs10737175 in ≥ 50 years group, rs876537, rs10737175 in female, rs876537 and rs10737175 in non-smoking and non-drinking populations as well as rs2808630 in non-drinking population. Furthermore, quantitative trait analysis indicated significant differences of SBP and DBP between the genotypes of rs10737175, rs876537 and rs2808630 in non-treatment hypertensive cases and control population.

Conclusions

The findings of this study support that CRP gene polymorphisms have significant association with genetic susceptibility of HT and quantitative traits of blood pressure.  相似文献   

17.

Objective

In the present study, the effect of stimulation of the Po-shen and Shen-hun scalp-acupuncture bands on tissue amino acid concentrations in several brain regions in awake and pentobarbital-sedated immature rats was evaluated.

Materials and methods

Sprague–Dawley rats (aged 15 days) were organized in four groups of at least eight animals: control groups received saline solution 0.9% or sodium pentobarbital at 30 mg/kg dosage via intraperitoneal. Experimental groups received saline solution or sodium pentobarbital plus stimulation in Po-shen and Shen-hun scalp-acupuncture bands for one continuous hour during 10 sessions by using scalp-acupuncture.

Results

As compared to rats receiving saline solution, scalp-acupuncture produced significant changes in amino acid concentrations, depending on the analyzed region, as follows: in inhibitory amino acids, a GABA increase was observed in amygdala and hippocampus (491 and 184%, respectively), but a decrease in the substantia nigra (80%); glycine showed decrease in all the analyzed regions, except for an increase in brainstem(78%); glutamine presented an increase in hippocampus and cortex (42 and 149%, respectively). In the case of excitatory amino acids, glutamate decreased in all the analyzed regions; whereas aspartate decreased in substantia nigra and brainstem (77.08 and 35%, correspondingly) but increased in hippocampus and cortex (32 and 54%, respectively). The combined treatment of scalp-acupuncture and a GABAergic depressant drug like pentobarbital resulted in almost all changes induced in amino acids for scalp-acupuncture alone being significantly reverted.

Conclusion

Stimulation of the Po-shen and Shen-hun scalp-acupuncture bands by using scalp-acupuncture alone might produce depressant activity by changes in amino acids, but the combination with a GABAergic tranquilizer like sodium pentobarbital can interfere with this response.  相似文献   

18.
Multiple administrations of methamphetamine (METH) rapidly decreased serotonin (5HT) transporter (SERT) function in rat striatum and hippocampus. The purpose of this study was to identify the mechanisms/ factors contributing to this METH-induced decrease in SERT function. Multiple high-dose METH injections rapidly decreased 5HT uptake without altering binding of the 5HT transporter ligand paroxetine. Hyperthermia contributed to this deficit in transporter function in striatum and hippocampus, as prevention of METH-induced hyperthermia attenuated this decrease. A role for dopamine (DA) was suggested by findings that pretreatment with the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine, the D1 antagonist SCH-23390, or the D2 antagonist eticlopride attenuated the METH-induced decrease in striatal, but not hippocampal, SERT activity. These effects were independent of the ability of these DA-antagonizing drugs to prevent METH-induced hyperthermia. These results suggest that DA contributes to the decrease in SERT function caused by multiple METH injections in the striatum, but not hippocampus, and that hyperthermia facilitates these deficits in SERT function in both brain regions. In contrast, the response of SERT to a single administration of METH was DA and hyperthermia independent. These findings suggest that the mechanisms/ factors involved in decreasing SERT activity after a single administration of METH are distinct from that caused by multiple administrations.  相似文献   

19.

Aims

Activation of retinal microglial cells (RMCs) is known to contribute to retinal ganglion cell (RGC) death after optic nerve injury. The purpose of this study was to investigate the effects of intravenous injection of α-crystallin on RGC survival and RMC activation in a rat model of optic nerve crush.

Main methods

RGCs were retrogradely labeled with fluorogold. Rats were intravenously injected with normal saline or α-crystallin (0.05 g/kg, 0.5 g/kg, and 5 g/kg) at 2, 4, 6, 8, 10, and 12 days after the optic nerve crush. Activated RMCs were characterized using immunofluorescence labeling with CD11b, and TNF-α and iNOS expression was detected using immunoblot analyses. We analyzed the morphology and numbers of RGC and RMC 2 and 4 weeks after injury using fluorescence and confocal microscopy.

Key findings

The number of RGCs decreased after optic nerve injury, accompanied by significantly increased numbers of activated RMCs. Intravenous injection of α-crystallin decreased the number of RMCs, and enhanced the number of RGCs compared to saline injection. α-Crystallin administration inhibited TNF-α and iNOS protein expression induced by optic nerve injury.

Significance

Our results suggest that α-crystallin promotes RGC survival and inhibits RMC activation. Intravenous injection of α-crystallin could be a possible strategy for the treatment of optic nerve injury.  相似文献   

20.

Background

Estrogens modulate the morphology and function of the hippocampus. Recent studies have focused on the effects of different types of estrogens on neuroplasticity in the hippocampus and cognition. There are three main forms of estrogens found in mammals: estradiol, estrone, and estriol. The vast majority of studies have used estradiol to investigate the effects of estrogens on the brain.

Scope of review

This review focuses on the effects of different estrogens on adult hippocampal neurogenesis, synaptic plasticity in the hippocampus, and cognition in female rats.

Major conclusions

Different forms of estrogens modulate neuroplasticity and cognition in complex and intriguing ways. Specifically, estrogens upregulate adult hippocampal neurogenesis (via cell proliferation) and synaptic protein levels in the hippocampus in a time- and dose-dependent manner. Low levels of estradiol facilitate spatial working memory and contextual fear conditioning while high levels of estradiol impair spatial working, spatial reference memory and contextual fear conditioning. In addition, estrone impairs contextual fear conditioning.

General significance

Advances in our knowledge of how estrogens exert their effects on the brain may ultimately lead to refinements in targeted therapies for cognitive impairments at all stages of life. However caution should be taken in interpreting current research and in conducting future studies as estrogens likely work differently in males than in females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号