首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-2-Hydroxyglutaric aciduria (DHGA) is a neurometabolic disorder biochemically characterized by tissue accumulation and excretion of high amounts of D-2-hydroxyglutaric acid (DGA). Although the affected patients have predominantly severe neurological findings, the underlying mechanisms of brain injury are virtually unknown. In previous studies we have demonstrated that DGA, at concentrations as low as 0.25 mM, significantly decreased creatine kinase activity and other parameters of energy metabolism in cerebral cortex of young rats. In the present study, we investigated the effect of DGA (0.25-5 mM) on total creatine kinase (tCK) activity, as well as on CK activity in cytosolic (Cy-CK) and mitochondrial (Mi-CK) preparations from cerebellum of 30-day-old Wistar rats in order to test whether the inhibitory effect of DGA on CK was tissue specific. We verified that tCK (22% inhibition) and Mi-CK (40% inhibition) activities were moderately inhibited by DGA at concentrations of 2.5 mM and higher, in contrast to Cy-CK, which was not affected by the acid. Kinetic studies revealed that the inhibitory effect of DGA was non-competitive in relation to phosphocreatine. We also observed that this inhibition was fully prevented by preincubation of the homogenates with reduced glutathione, suggesting that the inhibition of CK activity by DGA is possibly mediated by modification of essential thiol groups of the enzyme. Our present results therefore demonstrate a relatively weak inhibitory effect of DGA on cerebellum Mi-CK activity, as compared to that provoked in cerebral cortex, and may possibly be related to the neuropathology of DHGA, characterized by cerebral cortex abnormalities.  相似文献   

2.
A common feature of most peroxisomal disorders is the accumulation of very-long-chain fatty acids (VLCFAs) and/or pristanic and phytanic acid in plasma. Previously described methods utilizing either gas chromatography alone or gas chromatography–mass spectrometry are, in general, time-consuming and unable to analyze VLCFAs, pristanic and phytanic acid within a single analysis. We describe a simple, reproducible and rapid method using gas chromatography/mass spectrometry with deuterated internal standards. The method was evaluated by analysing 30 control samples and samples from 35 patients with defined peroxisomal disorders and showed good discrimination between controls and patients. This method is suitable for routine screening for peroxisomal disorders.  相似文献   

3.
Quantification of pristanic acid, phytanic acid, and very long chain fatty acids (i.e., hexacosanoic, tetracosanoic, and docosanoic acids) in plasma is the primary method for investigateing a multitude of peroxisomal disorders (PDs). Typically based on GC-MS, existing methods are time-consuming and laborious. In this paper, we present a rapid and specific liquid chromatography tandem mass spectrometric method based on derivatization with 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole (DAABD-AE). Derivatization was undertaken to improve the poor mass spectrometric properties of these fatty acids. Analytes in plasma (20 mul) were hydrolyzed, extracted, and derivatized with DAABD-AE in approximately 2 h. Derivatives were separated on a reverse-phase column and detected by positive-ion electrospray ionization tandem mass spectrometry with a 5 min injection-to-injection time. Calibration plots were linear over ranges that cover physiological and pathological concentrations. Intraday (n = 12) and interday (n = 10) variations at low and high concentrations were less than 9.2%. Reference intervals in normal plasma (n = 250) were established for each compound and were in agreement with the literature. Using specimens from patients with established diagnosis (n = 20), various PDs were reliably detected. In conclusion, this method allows for the detection of at least nine PDs in a 5 min analytical run. Furthermore, this derivatization approach is potentially applicable to other disease markers carrying the carboxylic group.  相似文献   

4.
High pressure liquid chromatography with a narrow bore C8 column has been used to separate pristanic, phytanic and very long chain fatty acids, important in the diagnosis of peroxisomal disorders, for their accurate isotope dilution quantification by tandem mass spectrometry. The fatty acids, isolated from plasma, were analysed as trimethylaminoethyl ester (quaternary ammonium) derivatives. Analysis time was 2.5 h and sample requirement was 10 microl of plasma. Good agreement with GC-MS methods for the levels of pristanic and phytanic acids, C26:0/C22:0 and C24:0/C22:0 ratios were obtained for 12 plasma samples from peroxisomal disorder patients and a set of controls.  相似文献   

5.
To elucidate molecular and cellular mechanisms of peroxisome biogenesis, we have isolated Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by making use of enhanced green fluorescent protein (EGFP) and a frameshift-inducing mutagen ICR191. CHO-TKa cells stably expressing Pex2p were transformed with a cDNA encoding EGFP fused with peroxisomal targeting signal type 2 (PTS2-EGFP), termed Tka/EG2. TKa/EG2 cells were mutagenized with ICR191 and cultured in the presence of P9OH (9-(1'-pyrene) nonanol) followed by an exposure to UV. P9OH/UV-resistant and morphologically peroxisome-deficient mutant cells were isolated by directly observing cytosolic localization of EGFP, without cell staining. By a combination of cell-fusion and PEX transfection, we determined complementation groups (CGs) of 16 cell mutants isolated here. The mutants were classified into five CGs, including pex2, pex3, pex5, pex6, and pex7 cell mutants. In contrast to typical pex6 mutants with the impaired import of both PTS1- and PTS2-proteins, two clones, ZPEG236 and ZPEG244, showed a distinct, novel phenotype where PTS1-protein import was normal despite the abrogated PTS2 import. Dysfunction of Pex3p in pex3 ZPEG 238 was due to one base (G) insertion in the codon for Asn7 resulting in a frameshift, thereby inducing a distinct 31 amino-acid sequence and a termination. pex2 ZPEG239 showed a mutation in codon GAG for Glu(201) to a nonsense mutation, TAG. Thus, the method developed here using ICR191 could be useful for isolation of further novel cell mutants impaired in peroxisome biogenesis.  相似文献   

6.
7.
The distinctive and unique features of gallic acid metabolism in plants are discussed and recent observations on new metabolites are presented. The potential application of these results to taxonomic questions is outlined.  相似文献   

8.
Female Wistar rats (100 weeks old) were divided into two groups; one group was fed a high-cholesterol diet (HC) and the other a high-cholesterol diet plus docosahexaenoic acid (HC-fed DHA rats). Fatty acid concentrations in brain tissues were analyzed by gas chromatography. In the HC-fed DHA rats, brain catalase (CAT), GSH, and glutathione peroxidase (GPx) increased in the cerebrum but not in the brainstem or cerebellum. The rate of increase was 23.0% for CAT, 24.5% for GSH, and 26.3% for GPx compared with that in the HC animals (p < 0.05). In the cerebrum of the HC-fed DHA rats, CAT and GPx increased, with an increase in the ratio of DHA to arachidonic acid. The cerebrum, unlike the other areas of the brain, seems to be more sensitive to DHA in stimulating CAT and GPx. We suggest that DHA plays an important role in inducing an antioxidative defense against active oxygen by enhancing the cerebral activities of CAT, GPx, and GSH.  相似文献   

9.
In this study, renal tissue, subdivided into the cortex and medulla of Wistar rats subjected to a cafeteria diet (CAF) for 24 days or to normal diet, was used to analyze whether the renal enzyme Na,K-ATPase activity was modified by CAF diet, as well as to analyze the α1 subunit of renal Na,K-ATPase expression levels. The lipid profile of the renal plasma membrane and oxidative stress were verified. In the Na,K-ATPase activity evaluation, no alteration was found, but a significant decrease of 30% in the cortex was detected in the α1 subunit expression of the enzyme. There was a 24% decrease in phospholipids in the cortex of rats submitted to CAF, a 17% increase in cholesterol levels in the cortex, and a 23% decrease in the medulla. Lipid peroxidation was significantly increased in the groups submitted to CAF, both in the cortical region, 29%, and in the medulla, 35%. Also, a reduction of 45% in the glutathione levels was observed in the cortex and medulla with CAF. CAF showed a nearly two-fold increase in glutathione peroxidase (GPX) activity in relation to the control group in the cortex and a 59% increase in the GPx activity in the medulla. In conclusion, although the diet was administered for a short period of time, important results were found, especially those related to the lipid profile and oxidative stress, which may directly affect renal function.  相似文献   

10.
Short-chain acyl-CoA dehydrogenase deficiency is an inherited metabolic disorder biochemically characterized by tissue accumulation of ethylmalonic (EMA) and methylsuccinic (MSA) acids and clinically by severe neurological symptoms. In the present study we investigated the in vitro effects of EMA and MSA on the activity of creatine kinase (CK) in homogenates from cerebral cortex, skeletal and cardiac muscle of rats. EMA significantly inhibited CK activity from cerebral cortex, but did not affect this activity in skeletal and cardiac muscle. Furthermore, MSA had no effect on this enzyme in all tested tissues. Glutathione (GSH), ascorbic acid and -tocopherol, and the nitric oxide synthase inhibitor L-NAME, did not affect the enzyme activity per se, but GSH fully prevented the inhibitory effect of EMA when co-incubated with EMA. In contrast, -tocopherol, ascorbic acid and L-NAME did not influence the inhibitory effect of the acid. The data suggest that inhibition of brain CK activity by EMA is possibly mediated by oxidation of essential groups of the enzyme, which are protected by the potent intracellular, endogenous, naturally occurring antioxidant GSH.  相似文献   

11.
12.
The medullary thick ascending limb (MTAL) of the kidney displays structural changes during long term diabetes. After twelve weeks of diabetes, there is controversy over the changes in Na,K-ATPase activity. To observe the long-term changes, we studied MTAL Na,K-ATPase activity and protein expression in diabetic animals 6 (6W) and 12 weeks (12W) after induction of diabetes with streptozotocin. Three groups were studied, one control group, one group 6W after, and one group 12W after induction of diabetes. Membrane fractions from the inner strip of the outer medulla representing MTAL were isolated. Na,K-ATPase activity and western blottings of alpha1- and beta1-subunits were carried out. 6W diabetes resulted in an increase, and 12W in a decrease in the MTAL Na,K-ATPase activity versus the control group (respectively 63.3 +/- 21.2; 7.5 +/- 2.4 and 31.6 +/- 11.4; micromol Pi/mg prot/hr +/- SEM). The Na,K-ATPase subunit expression was increased at 6W, and decreased after 12W, resulting in amounts below control values for both alpha1- and beta1-subunits. Our results confirm a diabetes-induced biphasic time-dependent alteration MTAL Na,K-ATPase activity, supported by similar changes in alpha1 and beta1 Na,K-ATPase subunits-expression.  相似文献   

13.
Corosolic acid (CRA), a constituent of banaba leaves, has been reported to have anti-inflammatory and hypoglycemic activities. The aim of this study was to determine the effects of CRA on metabolic risk factors including obesity, hypertension, hyperinsulinemia, hyperglycemia, and hyperlipidemia together with oxidative stress and inflammation, all of which are characteristic of the SHR/NDmcr-cp (cp/cp) (SHR-cp) rat, an animal model of metabolic syndrome. Six-week-old male SHR-cp rats were fed a high fat diet containing 0.072% CRA for 14 weeks. Treatment with CRA lowered blood pressure, which was elevated in control animals, by 10% after 8 weeks, and serum free fatty acids by 21% after 2 weeks. CRA treatment resulted in decreases in the levels of the oxidative stress markers thiobarbituric acid-reactive substances and 8-hydroxydeoxyguanosine by 27% and 59%, respectively, after 2 weeks. CRA treatment also reduced the levels of myeloperoxidase markers, 3-nitrotyrosine and 3-chlorotyrosine by 38% and 39%, respectively, after 10 weeks, and tended to decrease the levels of high sensitivity C-reactive protein, a marker of inflammation, after 6 weeks. However, CRA had no effect on weight gain or hyperglycemia. These results demonstrate that CRA can ameliorate hypertension, abnormal lipid metabolism, and oxidative stress as well as the inflammatory state in SHR-cp rats. This implies that CRA can be beneficial for preventing atherosclerosis-related diseases that are an increasing health care problem worldwide.  相似文献   

14.
Mitochondrial bioenergetic function is often reported to decline with age and the accumulation of oxidative damage is thought to contribute. However, there are considerable uncertainties about the amount and significance of mitochondrial oxidative damage in aging. We hypothesized that, as radical production in mitochondria is greater than the rest of the cell, protein oxidative damage should accumulate more in mitochondria than the cytoplasm, and that this relative accumulation should increase with age. To test these hypotheses we measured the accumulation of three markers of protein oxidative damage in liver, brain, and heart from young and old rats. Ortho- and meta-tyrosine levels in protein hydrolysates were measured by a gas chromatography/mass spectrometry assay, and protein carbonyl content was determined by ELISA. Using these assays we found no evidence for increased protein oxidative damage in mitochondria relative to the cytosol. Most increases found in protein oxidative damage on aging were modest for all three tissues and there was no consistent pattern of increased oxidative damage in mitochondrial proteins on aging. Mitochondrial oxidative phosphorylation complex activities were also assessed revealing 39-42% decreases in F0F1--ATP synthase activity in liver and heart on aging, but not in other oxidative phosphorylation complexes. These findings have implications for the contribution of mitochondrial oxidative damage and dysfunction to aging.  相似文献   

15.
Diabetic patients reveal significant disorders, such as nephropathy, cardiomyopathy, and neuropathy. As oxidative stress and inflammation seem to be implicated in the pathogenesis of diabetic brain, we aimed to investigate the effects of caffeic acid phenethyl ester (CAPE) on oxidative stress and inflammation in diabetic rat brain. Diabetes was induced by a single dose of streptozotocin (45 mg kg−1, i.p.) injection into rats. Two days after streptozotocin treatment 10 μM kg−1 day−1 CAPE was administrated and continued for 60 days. Here, we demonstrate that CAPE significantly decreased the levels of nitric oxide and malondialdehyde induced by diabetes, and the activities of catalase, glutathione peroxidase, and xanthine oxidase in the brain. However, glutathione levels were increased by CAPE. The mRNA expressions of tumor necrosis factor (TNF)-α and interferon (IFN)-γ, and inducible nitric oxide synthase (iNOS) were remarkably enhanced in brain by diabetes. CAPE treatments significantly suppressed these inflammatory cytokines (about 70% for TNF-α, 26% for IFN-γ) and NOS (completely). Anti-inflammatory cytokine IL-10 mRNA expression was not affected by either diabetes or CAPE treatments. In conclusion, diabetes induces oxidative stress and inflammation in the brain, and these may be contributory mechanisms involved in this disorder. CAPE treatment may reverse the diabetic-induced oxidative stress in rat brains. Moreover, CAPE reduces the mRNA expressions of TNF-α and IFN-γ in diabetic brain; suggesting CAPE suppresses inflammation as well as oxidative stress occurred in the brain of diabetic patients.  相似文献   

16.
Cardiac oxidative ATP generation is finely tuned to match several-fold increases in energy demand. Calcium has been proposed to play a role in the activation of ATP production via PKA phosphorylation in response to intramitochondrial cAMP generation. We evaluated the effect of cAMP, its membrane permeable analogs (dibutyryl-cAMP, 8-bromo-cAMP), and the PKA inhibitor H89 on respiration of isolated pig heart mitochondria. cAMP analogs did not stimulate State 3 respiration of Ca2 +-depleted mitochondria (82.2 ± 3.6% of control), in contrast to the 2-fold activation induced by 0.95 μM free Ca2 +, which was unaffected by H89. Using fluorescence and integrating sphere spectroscopy, we determined that Ca2 + increased the reduction of NADH (8%), and of cytochromes bH (3%), c1 (3%), c (4%), and a (2%), together with a doubling of conductances for Complex I + III and Complex IV. None of these changes were induced by cAMP analogs nor abolished by H89. In Ca2 +-undepleted mitochondria, we observed only slight changes in State 3 respiration rates upon addition of 50 μM cAMP (85 ± 9.9%), dibutyryl-cAMP (80.1 ± 5.2%), 8-bromo-cAMP (88.6 ± 3.3%), or 1 μM H89 (89.7 ± 19.9%) with respect to controls. Similar results were obtained when measuring respiration in heart homogenates. Addition of exogenous PKA with dibutyryl-cAMP or the constitutively active catalytic subunit of PKA to isolated mitochondria decreased State 3 respiration by only 5–15%. These functional studies suggest that alterations in mitochondrial cAMP and PKA activity do not contribute significantly to the acute Ca2 + stimulation of oxidative phosphorylation.  相似文献   

17.
Summary The relative contents of Na,K-ATPase subunit mRNAs in rat renal cortex; ventricular myocardium, skeletal muscle (hind limb), liver and brain (cerebrum) were measured. Expressed per unit DNA, mRNA1 content was 2-fold greater in the kidney and brain as compared to either heart, skeletal muscle or liver. The hierarchy of mRNA2 expression was brain > skeletal muscle > heart, whereas mRNA3 was restricted to brain. Betal subunit mRNA content in both kidney and brain exceeded the abundance of liver mRNA 1 by 7-fold. In all tissues examined, the combined abundances of the alpha subunit mRNAs exceeded the content of mRNA 1 The hierarchy of Na,K-ATPase activity expressed per unit. DNA was brain > kidney > skeletal muscle = heart > liver. The sum of mRNA as well as mRNA 1 content, expressed per g of tissue, was highest in brain and kidney. A statistically significant correlation between mRNA 1 content and Na,K-ATPase activity was evident.  相似文献   

18.
The possibility that H+ might substitute for Na+ at Na+ sites of Na+,K+-ATPase was studied. Na+,K+-ATPase purified from pig kidney showed ouabain-sensitive K+-dependent ATPase activity in the absence of Na+ at acid pH (H+,K+-ATPase). The specific activity was 1.1 mumol Pi/mg/min at pH 5.7, whereas the specific activity of Na+,K+-ATPase was 14 mumol Pi/mg/min at pH 7.5. The enzyme was phosphorylated from ATP in the absence of Na+ at the acid pH. The initial rate of the phosphorylation was also accelerated at the acid pH in the absence of Na+, and the maximal rate obtained at pH 5.5 without Na+ was 9% of the rate at pH 7.0 with Na+. The phosphoenzyme was sensitive to K+ but almost insensitive to ADP. The phosphoenzyme was sensitive to hydroxylamine treatment and the alpha-subunit of the enzyme was found to be phosphorylated. H+,K+-ATPase was inhibited as effectively as Na+,K+-ATPase by N-ethylmaleimide but was less inhibited by oligomycin or dimethyl sulfoxide. These results indicate that protons have an Na+-like effect on the Na+ sites of Na+,K+-ATPase and suggest that protons can be transported by the sodium pump in place of Na+.  相似文献   

19.
The content of DNA, RNA and protein in cerebellum at different stages of the life span of rat as well as the ratios of protein to DNA, showed-that in this region extensive cell proliferation occurs between the 1st and 7th day after birth and once again between the ages of 225 and 750 days. The putative DNA degrading enzymes, acid and alkaline DNases, showed a positive correlation with the rapid DNA accretion noticed during developmental stages as well as during old age. From these results, it could be presumed that there was a second bout of glial cell multiplication in aging cerebellum and that DNases must be playing some important role in the process.  相似文献   

20.
The effects of lipoic acid on intensity of free radical reactions, citrate content, and aconitate hydratase during myocardial ischemia have been investigated. Treatment with lipoic acid normalized biochemiluminescence parameters and citrate level, which were increased in the myocardial pathology. Treatment with lipoic acid also increased specific activity of aconitate hydratase, which was decreased in myocardium and blood of animals with myocardial ischemia. Administration of lipoic acid decreased DNA fragmentation observed during myocardial ischemia. The data suggest that lipoic acid can be effectively used as a cardioprotector preventing the development of free radical oxidation during myocardial ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号