首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some decalcified crustacean cuticle reflects left and transmits right circularly polarized light. The form optical rotatory dispersion is negative at lower and positive at higher wavelengths than that giving the interference colour for the system. The helicoidal structure deduced from the optics is supported by parabolic patterning in electron micrographs of oblique sections. The cuticle helicoid is anti-clockwise so that the right circularly polarized light transmitted through it rotates in the same sense as the helicoid from which it is produced.  相似文献   

2.
Neville AC 《Tissue & cell》1988,20(1):133-143
1. To be mechanically effective, supporting structures which are helicoidal need to be monodomain, with planar or concentric layers. 2. To achieve this in cholesteric liquid crystalline chemical models, a constraining surface is required. 3. The prediction which logically follows from this is that natural helicoidal systems in plant cell walls, spores, animal eggshells and cuticles need to be secreted within an initial constraining layer. 4. Evidence in support of this prediction is presented for a wide range of living systems, by reinterpretation of published work. This helps, at least partly, to explain the profusion of different kinds of layers in skeletal structures. 5. By contrast, systems lacking constraining layers have polydomain texture. 6. In plants, normal turgor pressure appears to be required for the deposition of monodomain helicoidal wall layers: reduced pressure leads to polydomain helicoid.  相似文献   

3.
Neville AC  Luke BM 《Tissue & cell》1969,1(4):689-707
Insect cuticles consist of planes of microfibrils which may either form preferred oriented layers or rotate progressively to form a helicoid. The two types may alternate to form daily growth layers. In Hydrocyrius exo-cuticle, microfibrils of diameter 45 A rotate at angles of 7 degrees to 8 degrees to form a helicoid with a 44-to 50-fold screw axis, and have an axial periodicity of about 65 A. The sense of rotation of helicoidal systems is bilaterally asymmetrical indicating a crystallization assembly process, whereas variations in their pitch and directions of preferred oriented layers both show bilateral symmetry, indicating specific cellular control.  相似文献   

4.
The composite fibrous architectures of the wing cuticles of Locusta migratoria, Tropidacris (= Eutropidacris) cristata and Romalea microptera (Orthoptera : Acrididae) have been established. The wing cuticle in all the 3 species consists of: (i) an exocuticle, which is either pigmented or birefringent, and which under an electron microscope shows constantly helicoidal architecture of chitin microfibrils; (ii) endocuticle, which shows alternately birefringent and isotropic layers when sectioned transversely across the wing veins; these layers show helicoidal and unidirectional architecture, respectively of chitin microfibrils under the electron microscope. In transverse section, the chitin microfibrils appear as clear rods (2.8 nm in diameter) in a darkly stained matrix. However, in the hinge called the “claval furrow”, these microfibrils are considerably larger, being 25 nm in diameter. This presumably gives sufficient hardness to the claval hinge, which is the most vulnerable area for wear and tear during flight. The pore canals follow the parabolic pattern of microfibrils in the helicoidal layer, but remain straight in the unidirectional layers. The thickness of wing cuticle increases up to about 10–12 days, the time at which the acridids most probably attain the optimum flight ability. It is suggested that changes in the wing cuticle are related to increased wing beat frequency and speed of flight with age, and may help in resisting the simultaneous increase in the bending and twisting forces on the wing.  相似文献   

5.
The structure of the sclerite and intersegmental cuticle of the opithosoma of the desert scorpion, Hadrurus arizonensis, has been examined by transmission electron microscopy. The sclerite cuticle contains a four-layered epicuticle, a hyaline exocuticle, an inner exocuticle and an endocuticle. The outer part of the hyaline exocuticle and the whole of the inner exocuticle are constructed of helicoidally arranged planes of microfibrils. Within the endocuticle, the overall architecture is not helicoidal as previously assumed, but consists of bundles of microfibrils oriented horizontally and vertically. Microbibrils of the inner exocuticle and the endocutile are seen as simple unstained rods, but those of the hyaline exocuticle are electron dense rods with an unstained central core. The intersegmental cuticle contains a four-layered epicuticle and a procuticle. In detail, its fine structure differs in most respects from that of the sclerite cuticle. Electron microscopy reveals that hyaline exocuticle, previously assumed to be continuous from sclerite to intersegmental membrane, is absent in the latter.  相似文献   

6.
Insect exoskeletons are composed of the cuticle, a biomaterial primarily formed from the linear and relatively rigid polysaccharide, chitin, and structural proteins. This extracellular material serves both as a skin and skeleton, protecting insects from environmental stresses and mechanical damage. Despite its rather limited compositional palette, cuticles in different anatomical regions or developmental stages exhibit remarkably diverse physicochemical and mechanical properties because of differences in chemical composition, molecular interactions and morphological architecture of the various layers and sublayers throughout the cuticle including the envelope, epicuticle and procuticle (exocuticle and endocuticle). Even though the ultrastructure of the arthropod cuticle has been studied rather extensively, its temporal developmental pattern, in particular, the synchronous development of the functional layers in different cuticles during a molt, is not well understood. The beetle elytron, which is a highly modified and sclerotized forewing, offers excellent advantages for such a study because it can be easily isolated at precise time points during development. In this study, we describe the morphogenesis of the dorsal and ventral cuticles of the elytron of the red flour beetle, Tribolium castaneum, during the period from the 0 d-old pupa to the 9 d-old adult. The deposition of exocuticle and mesocuticle is substantially different in the two cuticles. The dorsal cuticle is four-fold thicker than the ventral. Unlike the ventral cuticle, the dorsal contains a thicker exocuticle consisting of a large number of horizontal laminae and vertical pore canals with pore canal fibers and rib-like veins and bristles as well as a mesocuticle, lying right above the enodcuticle. The degree of sclerotization appears to be much greater in the dorsal cuticle. All of these differences result in a relatively thick and tanned rigid dorsal cuticle and a much thinner and less pigmented membrane-like ventral cuticle.  相似文献   

7.
This paper proposes an overview of the last few years' investigations regarding the helicoid formation in extracellular matrices (ECMs). Despite the architectural polymorphism displayed among the layered ECM throughout the living kingdom, helicoidal structures are often described in ECMs and appear as an optimal mechanical device. Helicoids correspond to complex two-phases composites, formation and regulation of which are still a source of debate. Taking the time-event into consideration, it is clear that helicoid in ECMs are regulable structures. On the other hand, analogies with helicoidal formations in cholesteric liquid crystals strongly support the hypothesis of involvement of self-assembly processes. Therefore the balance between self-assemblies and cell regulation is questioned. By gathering animal and plant data on the topic and by analysing the characteristics of these helicoids in ECMs, it is clear that cells have the necessary machinery to interfere with the self-assembly processes in response to physiological or mechanical mechanisms. They are able to modify the physicochemical conditions outside the plasma membrane, therefore acting on the pattern of self-assembly. Several mechanisms are proposed to explain sudden variations occurring in the helicoidal formation with time.  相似文献   

8.
Dong Y  Wu Y  Zhao Y  Wang H  Ruan Y  Zhang H  Fang X 《Carbohydrate research》2003,338(16):1699-1705
The influence of concentration on the helicoidal change of N-phthaloylchitosan (PhCh) solutions in Me2SO, DMAc and DMF was investigated by means of circular dichroism (CD). The critical concentrations to form liquid crystal phase in these three solvents were 43, 45 and 48 wt.%, respectively as measured with polarized optical microscope. There were two kinds of CD peaks, sharp peaks with absorption maximum at about 330 nm induced by the helical conformation of molecular chain, and very broad peaks covering almost whole visible region induced by the cholesteric helix of mesophase. The later only appeared in concentrated solutions with the concentration higher than the critical concentration. The handedness of both levels of helicoidal structures changed from left- to right-handed with the increase of concentration for PhCh/Me2SO solutions. The chirality transfer occurred between these two chiral levels. For PhCh/DMAc and PhCh/DMF systems, only the handedness of helical conformation reversed, but the cholesteric helix did not change. As a method to measure critical concentration, CD is more sensitive than polarized optical microscopy (POM).  相似文献   

9.
The ultrastructure and formation of the cuticle of a myodocopan ostracod, Euphilomedes japonica, are investigated utilizing scanning and transmission electron microscopy. The outer lamella cuticle consists of four layers; epicuticle, exocuticle, endocuticle, and membranous layer like in the cuticle of other arthropods. The exocuticle and endocuticle are well-calcified and the organic matrix develops within the both cuticles. The outermost layer of new cuticle (epicuticle) is secreted first and the inner layers (exocuticle, endocuticle and membranous layer) are added proximally in the pre-, and postmoult stages. The calcification takes place in the whole area of carapace at the same time together with the synthesis of organic matrix within the endocuticle. This study demonstrates that the ultrastructure and formation of the cuticle in myodocopans are different from those in podocopans, and that the myodocopan carapaces have achieved a structural diversity for adaptation to different lifestyles.  相似文献   

10.
Spatial organization of collagen in annelid cuticle: order and defects   总被引:1,自引:0,他引:1  
The epidermis of Paralvinella grasslei (Polychaete, Annelida) is covered by an extracellular matrix, the cuticle, mainly composed as in other annelids of superimposed layers of non-striated collagen fibrils. The collagen fibrils of annelid cuticle are shown to be composed of parallel and sinuous microfibrils (thin sections and freeze-fracture replicas). The 3-dimensional organization of collagen is characterized by 2 different types of geometrical order: (a) Fibrils form a quasiorthogonal network, whose structure is comparable to that of a "plywood"; (b) Fibrils are helical, and goniometric studies show that microfibrils present a definite order within each fibril, which is termed "cylindrical twist". These 2 characteristics are those which have recently been evidenced in "blue phases", i.e., liquid crystals which are closely related to cholesteric liquid crystalline phases. Non-fluid analogues of cholesteric liquids are widespread among invertebrate cuticles and the presence of blue phase analogues suggests that a self-assembly mechanisms is involved in cuticle morpho-genesis, which is derived from that governing blue phase growth. The cuticular network presents local rearrangements of fibrils called "defects", despite the fact that they are elaborate structures which trigonal and pentagonal singularities. Branched fibrils are regularly observed. We discuss the involvement of these pattern disruptions in the cuticle growth process.  相似文献   

11.
Archimedean nanospirals exhibit many far-field resonances that result from the lack of symmetry and strong intra-spiral plasmonic interactions. Here, we present a computational study, with corroborating experimental results, on the plasmonic response of the 4π Archimedean spiral as a function of incident polarization, for spirals in which the largest linear dimension is less than 550 nm. We discuss the modulation of the near-field structure for linearly and circularly polarized light in typical nanospiral configurations. Computational studies of the near-field distributions excited by circularly polarized light illustrate the effects of chirality on plasmonic mechanisms, while rotation of linearly polarized light provides a detailed view of the effects of broken symmetry on nanospiral fields in any given direction in the plane of the spiral. The rotational geometry exhibits a preference for circular polarization that increases near-field enhancement compared to excitation with linearly polarized light and exchanges near-field configurations and resonant modes. By analyzing the effects of polarization and wavelength on the near-field configurations, we also show how the nanospiral could be deployed in applications such as tunable near-field enhancement of nonlinear optical signals from chiral molecules.  相似文献   

12.
The helicoidal plant cell wall can be considered as a composite in which cellulose is the constant reinforcing fiber. In order to strengthen the analogy with cholesteric liquid crystals, and taking into account a range of data, we describe a progressive series showing that cellulosic helicoidal systems are versatile and multifunctional. The following examples were considered: a) the cellulose microfibrils, with their rigid backbone possibly coated with a plastifying matrix; b) actual cholesteric cellulosic derivatives, such as in vitro liquid crystals and in vitro cellulosic mucilages; c) viscoplastic. growing cell walls; d) consolidated “stony” cell walls with their adaptation to intercellular communications. The series shows a dramatic progression from a liquid construction to what is the hardest in the plant cells, i.e. the sclerified walls.  相似文献   

13.
The sclerotized cuticle of adult Tenebrio shows (1) an exocuticle composed of rotating lamellate layers and of columns of cuticular material, the fibres of which run perpendicularly through the lamellae, (2) an endocuticle composed of layers with preferred orientation. In the exocuticle, the pore canals are numerous and run along the columns; they do not rotate with the lamellate layers. They show several filaments some of which leave the canals and form a dense intracuticular network. In the last layers of exocuticle, the pericolumnar canals fuse and form large endocuticular canals which rotate in phase with the cuticular fibres. The formation of columns and canals is in relation with cellular expansions which penetrate into the cuticle during cuticle deposition. Exocuticular columns seem characteristic of highly sclerotized cuticles and the intracuticular filaments may have a role in the transport of sclerotisation precursors.  相似文献   

14.
The chitin architecture of Mecoptera cuticle is of two kinds: helicoidal and helicoidal preferred with the preferred layers being cross-plied. Comparison of both systems of terminology currently in use to differentiate the subtypes of cuticle indicates that neither provides much information about the arrangement of chitin within cuticle and that both give information only about the extent of hardening in cuticle. All of the specimens of solid cuticle broken in tension exhibited a similar fracture behaviour in which the exocuticle failed in a brittle manner and the endocuticle failed plastically. The mode of endocuticular failure is dependent upon the arrangement of chitin microfibres within this region. The ultrastructural patterns of chitin microfibres determined by electron microscopy cannot be related to current notions about the phylogenetic interrelationships among Mecoptera and the usefulness of chitin fibre arrangement as a phylogenetic tool remains an open question.  相似文献   

15.
Fischer P  Hache F 《Chirality》2005,17(8):421-437
We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality. They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest.  相似文献   

16.
Circular polarization vision in a stomatopod crustacean   总被引:2,自引:0,他引:2  
We describe the addition of a fourth visual modality in the animal kingdom, the perception of circular polarized light. Animals are sensitive to various characteristics of light, such as intensity, color, and linear polarization [1, 2]. This latter capability can be used for object identification, contrast enhancement, navigation, and communication through polarizing reflections [2-4]. Circularly polarized reflections from a few animal species have also been known for some time [5, 6]. Although optically interesting [7, 8], their signal function or use (if any) was obscure because no visual system was known to detect circularly polarized light. Here, in stomatopod crustaceans, we describe for the first time a visual system capable of detecting and analyzing circularly polarized light. Four lines of evidence-behavior, electrophysiology, optical anatomy, and details of signal design-are presented to describe this new visual function. We suggest that this remarkable ability mediates sexual signaling and mate choice, although other potential functions of circular polarization vision, such as enhanced contrast in turbid environments, are also possible [7, 8]. The ability to differentiate the handedness of circularly polarized light, a visual feat never expected in the animal kingdom, is demonstrated behaviorally here for the first time.  相似文献   

17.
F Livolant 《Tissue & cell》1984,16(4):535-555
The fine structure of chromatin in sperm heads was investigated by different microscopic techniques: in vivo examinations in the polarizing microscope, thin sections and freeze-fracture replicas observed by transmission electron microscopy. The freeze-fractured chromatin appears to be formed of superimposed lamellae, each one 330 A thick. These lamellae are parallel to the flattening plane of the sperm head. This situation was already described in other mammal spermatozoa and in particular in the bull and the rabbit. This work presents a new interpretation of this lamellated aspect. The chromatin structure of these spermatozoa is that of a cholesteric liquid crystal. This structure resembles that of a plywood, made of superimposed layers of parallel filaments, but instead of having a right angle between two successive layers, there is a progressive rotation and similar orientation occurs at each 180 degrees rotation. The apparent lamellae result from cleavages due to freeze-fracture between levels of parallel filament orientation. The thickness of lamellae corresponds therefore to the half helicoidal pitch of the cholesteric liquid crystal. This model is consistent with our observations by polarizing microscopy. The lamellation is not visible in thin sections of stallion spermatozoa. There are however biochemical methods to decondense chromatin and we are able to observe this lamellation in sections normal to the flattening plane of sperm heads. The methods used classically to decondense the sperm chromatin lead to extremely varied aspects which are discussed, some of them being closely related to the structure of cholesteric liquid crystals.  相似文献   

18.
The crustacean cuticle is an interesting model to study the properties of mineralized bio-composites. The cuticle consists of an organic matrix composed of chitin–protein fibres associated with various amounts of crystalline and amorphous calcium carbonate. It is thought that in isopods the relative amounts of these mineral polymorphs depend on its function and the habitat of the animal. In addition to the composition, the distribution of the various components should affect the properties of the cuticle. However, the spatial distribution of calcium carbonate polymorphs within the crustacean cuticle is unknown. Therefore, we analyzed the mineralized cuticles of the terrestrial isopods Armadillidium vulgare and Porcellio scaber using scanning electron-microscopy, electron probe microanalysis and confocal μ-Raman spectroscopic imaging. We show for the first time that the mineral phases are arranged in distinct layers. Calcite is restricted to the outer layer of the cuticle that corresponds to the exocuticle. Amorphous calcium carbonate is located within the endocuticle that lies below the exocuticle. Within both layers mineral is arranged in rows of granules with diameters of about 20 nm. The results suggest functional implications of mineral distribution that accord to the moulting and escape behaviour of the animals.  相似文献   

19.
Summary A new model of rotating fibre components (helicoidal model) is proposed to explain the architecture of some plant cell walls. On the basis of tilting observations under the electron microscope, we establish the validity of this model for the cell wall ofChara vulgaris oospores. We suggest that this model explains the architecture seen in a number of published micrographs from a variety of different plant cell walls. Helicoidal architecture is shown to be distinct from the previously established crossed polylamellate architecture. The diagnostic features of helicoidal architecture are given. Morphogenesis of plant cell walls is discussed, with particular reference to self assembly in cholesteric liquid crystals.  相似文献   

20.
We present a new method based on optical null methods for simultaneously measuring the optical rotatory dispersion (ORD) and absorption spectra of chiral substances. The optical rotation angle at a specific wavelength can be obtained from the optical nulls of the Malus curves with and without the sample. We use the optical nulls of the two curves as benchmark points and the readings to the right of the benchmark points by a certain angular offset to eliminate the influence of the analyzer on the light intensity and obtain the absorbance of the chiral substance at a specific wavelength. The 4096 pixels of the line scan CCD can measure multiple wavelengths simultaneously so that continuous ORD and absorption spectra can be obtained. The experimental results show that the standard deviation of the specific optical rotation is 0.11 deg mL g−1 dm−1, the standard deviation of the maximum absorption wavelength is 0.45 nm, and that absorbance of the sample varies linearly with the concentration. This method is helpful for simplifying the experiment and has a profound influence on the analysis of the contents and molecular configurations of chiral substances in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号