首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction and rejoining of gamma-ray-induced DNA strand breaks were measured in a Chinese hamster ovary cell line, AA8, and in two radiosensitive clones (EM9 and NM2) derived from it. The kinetics of recovery from sublethal damage (SLD) and potentially lethal damage (PLD) has previously been characterized in each of these lines [vanAnkeren et al., Radiat. Res., 115, 223-237 (1988)]. No significant differences were observed among the cell lines in the yields of either DNA single-strand breaks (SSBs) or double-strand breaks (DSBs) as assayed by filter elution. Data for SSB rejoining in AA8 and NM2 cells irradiated with 7.5 Gy were fit by a biexponential process (t1/2 values of approximately 4 and 80 min). In comparison, SSB rejoining in EM9 cells was initially slower (t1/2 = 10 min) and a higher level of SSBs was unrejoined 6 h after irradiation. DSB rejoining in AA8 cells assayed at pH 9.6 was also biphasic (t1/2 values of 15 and 93 min), although when assayed at pH 7.0, most (approximately 80%) of the damage was rejoined at a constant rate (t1/2 = 45 min) during the first 2 h. EM9 cells exhibited a slower initial rate of DSB rejoining when assayed at pH 9.6 but showed no difference compared with AA8 cells in DSB rejoining when assayed at pH 7.0. These results indicate that radiosensitive EM9 cells, whose kinetics of recovery from SLD and PLD was the same as that of AA8 cells, have a defect in the fast phase of SSB rejoining but no measurable defect in DSB rejoining. Conversely, NM2 cells, which displayed a reduced shoulder width on their survival curve and decreased recovery from SLD, had no demonstrable defects in the rate or extent of rejoining of DSBs or SSBs. When compared with the SLD and PLD data reported previously, these results suggest that there is no direct correlation between either of these recovery processes and the rejoining of SSBs or DSBs as assayed here.  相似文献   

2.
In this study we investigated the induction and rejoining of DNA single-strand breaks (SSBs) produced by H2O2 in the repair-deficient EM9 mutant Chinese hamster ovary (CHO) cell line. The effect of the poly(ADP-ribose)-transferase inhibitor 3-aminobenzamide (3-ABA) on SSB-rejoining and on cell killing was also evaluated. Results were compared with those obtained previously with the parent cell line (AA8). Cells were treated with H2O2 on ice for 1 h, after which they were either harvested or allowed to repair their damage at 37 degrees C either in the presence or absence of 3-ABA (5 mM). The cells were then assayed either for survival using a colony-forming assay or for their level of DNA SSBs using alkaline elution. EM9 cells were somewhat more sensitive than AA8 cells to the cytotoxic effects of H2O2. However, because the repair mutant showed slightly lower levels of DNA SSBs than did its parental cell line, this sensitivity could not be explained on the basis of alterations in initial damage. The rejoining of the H2O2-induced DNA SSBs followed exponential kinetics in both cell lines; however, EM9 cells rejoined these breaks at a slower rate (t1/2 of 10 min) than did AA8 cells (t1/2 of 5 min). The increased sensitivity of the EM9 cells therefore appears to correlate with a reduced ability to remove these lesions from their DNA. As previously demonstrated for the AA8 cells, 3-ABA treatment resulted in both a retardation of the removal of H2O2-induced DNA SSBs and potentiation of cytotoxicity in the EM9 cells. However, the degree of these effects were similar for both AA8 and EM9 cells. These data provide further evidence that the cytotoxic effects of low concentrations of H2O2 are mediated by damage to DNA, and suggest that the rate at which DNA SSBs are rejoined is important for cell survival.  相似文献   

3.
The effects of multiple-dose gamma irradiation on the shape of survival curves were studied with mouse C3H 10T1/2 cells maintained in contact-inhibited plateau phase. The dose-fractionation intervals included 3, 6, and 24 h. Following three fractionated doses (5 Gy per dose) of exposures, cells responded to further irradiation by displaying a survival curve with a much reduced shoulder width (Dq) compared to that of the survival curve measured in cells irradiated with single-graded doses alone. The effect on the mean lethal dose (D0) was small and appeared to be significant. The effect on reduction of Dq could not be completely overcome by lengthening the fractionation intervals from 3 to 6 h or 24 h, times in which repair of sublethal damage (SLD) measured by simple split-dose scheme and potentially lethal damage (PLD) measured by postirradiation incubation was completed. Other experiments showed that pretreatments of cells with fractionated irradiation appeared to slow down the cellular repair processes of SLD and PLD. Therefore, the observed change in the shape of survival curves after fractionation treatments may be attributed to a reduction of the cells' capacity for damage accumulation by an enhancement of the lethal expression of SLD and PLD. Although the molecular mechanism(s) is not known, the results of this study indicate that the acute graded dose-survival curve cannot be used a priori to extrapolate and reliably predict results of hyperfractionation. It is probable that for a nondividing or slowly dividing cell population, such an extrapolation may lead to an underestimation of cell killing. Furthermore, the findings of this investigation appear to support an interpretation, alternative to the high-linear energy transfer (LET) track-end postulate, for the effects on cell survival seen at low doses or low dose rates.  相似文献   

4.
It has been suggested that DNA strand breaks are the molecular lesions responsible for radiation-induced lethality and that their repair is the basis for the recovery of irradiated cells from sublethal and potentially lethal damage. EM9 is a Chinese hamster ovary cell line that is hypersensitive to killing by X rays and has been reported to have a defect in the rate of rejoining of DNA single-strand breaks. To establish the importance of DNA strand-break repair in cellular recovery from sublethal and potentially lethal X-ray damage, those two parameters, recovery from sublethal and potentially lethal damage, were studied in EM9 cells as well as in EM9's parental repair-proficient strain, AA8. As previously reported, EM9 is the more radiosensitive cell line, having a D0 of 0.98 Gy compared to a D0 of 1.56 Gy for AA8 cells. DNA alkaline elution studies suggest that EM9 cells repair DNA single-strand breaks at a slower rate than AA8 cells. Neutral elution analysis suggests that EM9 cells also repair DNA double-strand breaks more slowly than AA8 cells. All of these data are consistent with the hypothesis that DNA strand-break ligation is defective in EM9 cells and that this defect accounts for increased radiosensitivity. The kinetics and magnitude of recovery from sublethal and potentially lethal damage, however, were similar for both EM9 and AA8 cells. Six-hour recovery ratios for sublethal damage repair were found to be 2.47 for AA8 cells and 1.31 for EM9 cells. Twenty-four-hour recovery ratios for potentially lethal damage repair were 3.2 for AA8 and 3.3 for EM9 cells. Both measurements were made at approximately equitoxic doses. Thus, the defect in EM9 cells that confers radiosensitivity and affects DNA strand-break rejoining does not affect sublethal damage repair or potentially lethal damage repair.  相似文献   

5.
Summary The effects on cell survival of maintaining bone marrow cells (CFU-S) in situ following irradiation and before assay by transplantation was investigated. When the CFU-S cells are maintained in situ following irradiation survival drops and plateaus at about 9 h post-irradiation. Evidence is presented that this decrease in survival may be due to potentially lethal damage repair (PLD) inhibition caused by post-irradiation in situ holding. This effect on PLD repair is different than that usually found in cells in vitro and in vivo tumors in that it mainly alters the shoulder rather than the slope of the survival curve of CFU-S cells. It is different than PLDR found in vivo for normal mammary and thyroid gland epithelial cells because in situ holding decreases rather than increases the survival of CFU-S cells. Evidence is also presented that the radiation survival curve for in situ bone marrow cells (CFU-S) may not have a shoulder.Supported in part by NIH, NCI grants P01 CA 19298 and P30 CA 14520Supported in part by an American Cancer Society Clinical Fellowship  相似文献   

6.
DNA-ligase activities appear normal in the CHO mutant EM9   总被引:6,自引:1,他引:5  
The Chinese hamster ovary (CHO) mutant strain EM9 was previously shown to be hypersensitive to killing by ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS), to have a 12-fold increased baseline incidence of sister-chromatid exchanges (SCE), and to be defective in rejoining DNA strand breaks after treatment with EMS, MMS, or X-rays. A study was performed to determine if the primary biochemical defect might be a DNA ligase. DNA-ligase activities were assayed and compared after separation of the multiple forms of ligase by AcA 34 gel-filtration chromatography of total cellular extracts. In EM9 cells the levels of the presumptive replicative forms, DNA ligase Ia (480 kd) and ligase Ib (240 kd) were about 50% and 60%, respectively, of those in the parental AA8 cells, whereas DNA ligase II (80 kd) was unaltered in EM9 . In a phenotypic revertant line ( 9R1 ) ligases Ia, Ib and II levels were 35%, 37% and 100%, respectively, of those in AA8 . The reduced levels of ligases Ia and Ib in EM9 and 9R1 cells are apparently not related directly to the mutant phenotype and may be attributable to the somewhat slower growth rates of these strains compared with those of AA8 . To determine if the repair defect in EM9 might reside in the ability to induce DNA-ligase activity after treatment with a DNA-damaging agent, AA8 and EM9 cells were treated with MMS at 30 micrograms/ml for 60 min before preparing fractions for ligase assays. Under these conditions the activities of ligases Ia and Ib decreases 70-80% in both cell lines, but ligase II increased 2.0- and 2.6-fold, respectively, in AA8 and EM9 . As a further test of defective ligase activities in EM9 , assays were performed in the presence of 0.1 M NaCl or after heating the fractions for 10 min at 50 degrees C. Although all 3 forms of ligase showed altered activity under both of these conditions, there were no significant differences between EM9 and AA8 cells. These data combined with the above results provide strong evidence that the site of the primary defect in EM9 is not in either of the DNA ligases .  相似文献   

7.
Mouse lymphoma strains L5178Y-R (LY-R) and L5178Y-S (LY-S), which are differentially sensitive to the cytotoxic effects of ionizing radiation, were found to differ in their abilities to repair potentially lethal damage (PLD) and sublethal damage (SLD). The results showed that strain LY-R was more proficient than strain LY-S in the repair of SLD. The split dose recovery observed in strain LY-S could be accounted for by its recovery during postirradiation incubation. In contrast, SLD repair occurred in the absence of PLD repair in strain LY-R. The possibility that the repair of PLD might be completed prior to the postirradiation incubation in strain LY-R was suggested by the decreased survival observed when the cells were irradiated in a hypotonic solution. The repair of PLD and SLD in strain LY-S was temperature sensitive, occurring during postirradiation incubations between 15 and 34 degrees C, but not at 37 or 40 degrees C. This temperature sensitivity is very similar to the temperature sensitivity of the repair of pH 9.6-labile lesions in DNA in strain LY-S, as reported previously. Thus postirradiation cellular recovery processes in strain LY-S may involve the repair of pH 9.6-labile lesions in DNA. Temperature-dependent changes in the postirradiation distribution of cells throughout the cell cycle were observed which could contribute to the temperature sensitivity of the postirradiation recovery of strain LY-S.  相似文献   

8.
Tonicity shock or caffeine postirradiation treatment makes evident fast-type potentially lethal damage (PLD). Caffeine expresses fast-type PLD more efficiently than tonicity shock in X-irradiated B-16 mouse melanoma cells, compared with V79 Chinese hamster cells. The survival curves of thermal neutrons for either V79 or B-16 cells exhibit no shoulder. Neither V79 nor B-16 cells show the sublethal damage (SLD) repair of thermal neutrons. Caffeine-sensitive fast-type PLD repairs exist in X-irradiated B-16 cells, as well as V79 cells. The fast-type PLD repair of B-16 cells exposed to thermal neutrons alone is rather less than that of X-irradiated cells. Furthermore, an extremely low level of fast-type PLD repair of B-16 cells with 10B1-paraboronophenylalanine (BPA) preincubation (20 hours) followed by thermal neutron irradiation indicated that 10B(n,alpha)7Li reaction effectively eradicates actively growing melanoma cells. The plateau-phase B-16 cells are well able to repair the slow-type PLD of X-rays. However, cells can not repair the slow-type PLD induced by thermal neutron irradiation with or without 10B1-BPA preincubation. These results suggest that thermal neutron capture therapy can effectively kill radioresistant melanoma cells in both proliferating and quiescent phases.  相似文献   

9.
Summary Diploid wild type yeast strains 211, X2180 and the radiation sensitive mutantsrad2, 6, 9, 18, 50–55, and57 were exposed to cobalt-60 gamma radiation, in the presence and absence of oxygen, in order to identify the RAD loci involved in the repair of sublethal damage (SLD), recovery from potentially lethal damage (PLD) and oxygen enhancement ratio (OER). Response of wild type and mutants were compared in terms of survival curve parameters Dq, D10, D1, and D0. As compared to wild type the mutants showed increased sensitivity to radiation lethality, both under euoxic and hypoxic conditions, as judged by the reduction in Dq and D0 values. OER was reduced in therad2, 9, 18, 50, 51, and57 mutants indicating that these genes could be associated with the repair of gamma radiation damage produced under hypoxic condition.Shoulder (Dq) a measure of the ability of the cells to repair SLD, was reduced in therad6, 9, 18, 50, 53, and57 strains and was almost absent in therad51, 52, 54, and55 mutants. The ability to recover from PLD was equal to that of wild type strain in therad2, 6, 9, and18 strains, reduced in therad53, 55, and57 strains and was absent in therad50–52 and54 strains. In the mutants with liquid holding recovery ability, the extent of recovery from PLD produced under euoxic and hypoxic conditions was the same. These observations suggest that different groups of loci are involved in the control of different repair processes and that the expression of therad50–57 loci play a very important role in the repair of ionising radiation damage.On the basis of the liquid holding recovery data presented here and the observations made by others it is suggested that the unrepaired DSB constitute the PLD and that the repair of DSB involves recombination between homologous chromosomes.  相似文献   

10.
Plateau-phase Chinese V79 hamster cells were sequentially treated after exposure to gamma rays in medium made hypertonic by the addition of sodium chloride (370 mM) and with various concentrations of 9-beta-D-arabinofuranosyladenine (araA) to study their combined effect on fixation of potentially lethal damage (PLD). A 10-min treatment in hypertonic medium fixed an extensive amount of PLD and caused a decrease in D0 from 1.8 to 1.2 Gy without significantly affecting Dq. Subsequent treatment with araA caused further fixation of PLD but resulted in a specific, concentration-dependent reduction in Dq from 4.9 to 1.6 Gy after a 4-h exposure to 150 microM araA. A 30-min treatment in hypertonic medium reduced not only Do (from 1.8 to 1.0 Gy) but also Dq (from 4.9 to 2.7 Gy). Subsequent treatment with araA in this case affected only the residual shoulder, reducing it to 1.6 Gy after a 4-h treatment with 100 microM araA, a value similar to that obtained after treatment with araA of cells exposed to salt for only 10 min. When the repair of PLD fixed by a 10-min treatment with salt was measured by delaying its postirradiation application in the presence of various amounts of araA, a small decrease in the repair rate was observed but no significant effect on the relative increase in survival. Qualitatively similar results were obtained for repair of PLD sensitive to araA after a 10-min treatment in hypertonic medium. These results suggest the radiation induction of forms of PLD with different sensitivity to fixation by postirradiation treatments. araA is proposed to fix a form of PLD termed alpha-PLD, the repair of which takes place within 4-6 h and which causes the formation of the shoulder in the survival curve of cells plated immediately after irradiation. Short treatments in hypertonic medium (less than 10 min) are proposed to fix a form of PLD termed beta-PLD, the repair of which takes place within 1 h and leads to restoration of the slope to values equal to those obtained in the survival curve of cells plated immediately after irradiation. However, longer treatments in hypertonic medium also affect Dq and thus also alpha-PLD. Repair of beta-PLD was not significantly affected by araA and repair of alpha-PLD was not significantly affected by short hypertonic treatment, thus indicating the independence of the two forms of PLD.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
EM9 cells are a line of Chinese hamster ovary cells that are sensitive to killing by ethylmethanesulfonate (EMS) and X ray, since they are unable to repair the DNA damage inflicted by these agents. Through DNA-mediated gene transfer, human DNA and a selectable marker gene, pSV2neo, were transfected into EM9 cells. Resistant clones of transfected cells were selected for by growth in EMS and G418 (an antibiotic lethal to mammalian cells not containing the transfected neo gene). One primary clone (APEX1) and one secondary clone (TEMS2) were shown to contain both marker and human DNA sequences by Southern blot. In cell survival studies, APEX1 was shown to be as resistant to EMS and X ray as the parental cell type AA8 (CHO cells). TEMS2 cells were found to be partially resistant to EMS and X ray, displaying an intermediate phenotype more sensitive than AA8 cells but more resistant than EM9 cells. Alkaline elution was used to assess the DNA strand-break rejoining ability of these cells at 23 degrees C. APEX1 cells showed DNA repair capacity equal to that of AA8 cells; 75% of the strand breaks were repaired with a rejoining T 1/2 of 3 min. TEMS2 showed similar levels of repair but a T 1/2 for repair of 9 min. EM9 cells repaired only 25% of the breaks and showed a T 1/2 for repair of 16 min. The DNA repair data are consistent with the survival data in that the more resistant cell lines showed a greater capacity for DNA repair. The data support the conclusion that APEX1 and TEMS2 cells contain a human DNA repair gene.  相似文献   

12.
Results are reported of studies to measure the extent of recovery of potentially lethal damage (PLD) in rat rhabdomyosarcoma tumor cells after irradiation both in vivo and in vitro with either high-LET or low-LET radiation. Stationary-phase cultures were found to exhibit repair of PLD following irradiation in vitro either with low-LET X rays or with high-LET neon ions in the extended-peak ionization region. Following a 9-Gy dose of 225-kVp X rays or a 3.5-Gy dose of peak neon ions, both of which reduced the initial cell survival to 6-8%, the maximum PLD recovery factors were 3.4 and 1.6, respectively. In contrast, the standard tumor excision assay procedure failed to reveal any recovery from PLD in tumors irradiated in situ with either X rays or peak neon ions. PLD repair by the in vivo tumor cells could be observed, however, when the excision assay procedure was altered by the addition of a known PLD repair inhibitor beta-arabinofuranosyladenine (beta-ara-A). When a noncytotoxic 50 microM concentration of beta-ara-A was added to the excised tumor cells immediately following a 14.5-Gy in situ dose of X rays, cell survival in the inhibitor-treated cells was lower than in the untreated cells (0.018 compared to 0.056), resulting in a PLD repair inhibition factor of 3.1. Delaying the addition of beta-ara-A for 1, 2, or 3 h following tumor excision reduced the PLD repair inhibition factor to 1.6, 1.5, and 0.9, respectively. Following tumor irradiation in situ with neon ions in the extended-peak ionization region (median LET = 145 keV/micron), less PLD repair was observed than after X irradiation. For 5.8 Gy of peak neon ions, the PLD repair inhibition factors were 2.1, 1.5, 1.3, and 1.1 at 0, 1, 2, and 3 h, respectively. We interpret the absence of measurable PLD repair using the standard tumor excision assay procedure as resulting from undetectable repair occurring during the long interval (about 2 h) required for the cell dissociation and plating procedures. We conclude that at least for our tumor system, PLD repair does occur after irradiation of tumors in situ, even though it is not detectable using the standard tumor excision assay procedure. Thus a failure to measure such repair by this assay in a given tumor system does not necessarily mean the cells are incapable of PLD repair.  相似文献   

13.
Summary The relationship between the inhibition of repair of radiation-induced DNA damage and the inhibition of recovery from radiation-induced potentially lethal damage (PLD) by hypertonic treatment was compared in 9L/Ro rat brain tumor cells. Fed plateau phase cultures were-irradiated with 1500 rad and then immediately treated for 20 min with a 37° C isotonic (0.15 M) or hypertonic (0.50 M) salt solution. The kinetics of repair of radiation-induced DNA damage as assayed using alkaline filter elution were compared to those of recovery from radiation-induced PLD as assayed by colony formation. Hypertonic treatment of unirradiated cells produced neither DNA damage nor cell kill. Post-irradiation hypertonic treatment inhibited both DNA repair and PLD recovery, while post-irradiation isotonic treatment inhibited neither phenomenon. However, by 2 h after irradiation, the amount of DNA damage remaining after a 20 min hypertonic treatment was equivalent to that remaining after a 20 min isotonic treatment. In contrast, cell survival after hypertonic treatment remained 2 logs lower than after isotonic treatment even at times up to 24 h. These results suggest that the repair of radiation-induced DNA damageper se is not causally related to recovery from radiation-induced PLD. However, the data are consistent with the time of DNA repair as an important parameter in determining cell survival and, therefore, tend to support the hypothesis that imbalances in sets of competing biochemical or metabolic processes determine survival rather than the presence of a single class of unrepaired DNA lesions.  相似文献   

14.
Plateau-phase V79 cells were exposed sequentially to fast neutrons and gamma rays. A dose-dependent reduction in the shoulder width of the gamma-ray survival curve was observed after preexposure of cells to neutrons. A similar effect was demonstrated on the neutron survival curve when cells were preirradiated with gamma rays. Treatment of cells with 150 microM beta-araA after either gamma or neutron irradiation reduced primarily the shoulder of the survival curve. When beta-araA was given to the cells after exposure to mixed radiation modalities, survival curves similar to those observed after exposure to a single radiation modality and treatment with beta-araA were obtained. The kinetics of loss of the interaction observed after exposure of cells to gamma rays following neutron irradiation was similar to the kinetics of loss of sensitivity to beta-araA (T1/2 = 1 h) measured by delaying drug administration after exposure to gamma rays. The results suggest that the PLD expressed by beta-araA is at least partly involved in the interactive effect observed after combined exposure of plateau-phase V79 cells to neutrons and gamma rays.  相似文献   

15.
The alteration of potentially lethal damage repair by postirradiation treatment with hypertonic saline (0.5 M PBS) was investigated in exponentially growing and quiescent 9L cells in vitro. A single dose of X rays (8.5 Gy) immediately followed by a 30-min treatment with hypertonic PBS at 37 degrees C reduced the survival of exponentially growing 9L cells by a factor of 13-18 compared to survival of irradiated immediately and delayed-plated cells, while the survival of quiescent cells was reduced by only a factor of 5-8. Survival curves confirmed the relative resistance of the quiescent 9L cells versus exponentially growing 9L cells to X rays plus hypertonic treatment. Both the slope and the shoulder of the survival curve were reduced to a greater extent in exponentially growing cells than in the quiescent cells by hypertonic treatment. The response of quiescent cells cannot be explained by either the duration of hypertonic treatment or the redistribution of the cells into G1 phase. We show that quiescent 9L cells can recover from hypertonically induced potentially lethal damage when incubated under conditions which have been found to delay progression through the cell cycle, and postulate that an altered chromatin structure or an enhanced repair capacity of quiescent 9L cells may be responsible for their resistance.  相似文献   

16.
We have studied the influence of postirradiation conditions resulting in repair or fixation of X-ray-induced potentially lethal damage (PLD) on the induction of 6-thioguanine-resistant mutants in plateau phase Ehrlich ascites tumour cells. For repair of PLD cells were incubated under plateau-phase conditions for 6–8 hours after irradiation. For fixation of PLD we used either a 4-h treatment with 120 μM β-araA or a 50-min treatment in hypertonic medium (2.5 times the normal tonicity). These treatment are known to effectively reduce or eliminate the shoulder of the X-ray survival care. The mutants were allowed to form colonies in agar medium containing 1.5 μg/ml 6-thioguanine, after expression times of 6–12 days.We observed a decrease in the number of mutants induced (per 105 cells) when the cells were allowed to repair PLD, as compared with that of cells processed immediately after irradiation, and an increase in their number after treatment either with β-araA or in hypertonic medium. The curves obtained for the induction of mutants as a function of the radiation dose were usually upward bending.After irradiation at low dose rate we obtained an exponential survival curve and a linear induction of mutants as a function of the dose.Based on these results we suggest that potentially lethal lesions resulting in the formation of the shoulder of the survival curve are not identical with those lesions responsible for the induction of mutants.  相似文献   

17.
Cells that have been grown as multicell tumor spheroids exhibit radioresistance compared to the same cells grown in monolayers. Comparison of potentially lethal damage (PLD) repair and its kinetics was made between 9L cells grown as spheroids and confluent monolayers. Survival curves of cells plated immediately after irradiation showed the typical radioresistance associated with spheroid culture compared to plateau-phase monolayers. The dose-modification factor for spheroid cell survival is 1.44. Postirradiation incubations in normal phosphate-buffered saline (PBS), conditioned media, or 0.5 M NaCl in PBS reduced the differences in radiosensitivity between the two culture conditions. Postirradiation treatment in PBS or conditioned medium promoted repair of potentially lethal damage, and 0.5 M NaCl prevented the removal of PLD and allowed the fixation of damage resulting in lower survival. Survival of spheroid and monolayer cells after hypertonic NaCl treatment was identical. NaCl treatment reduced Do more than it did the shoulder (Dq) of the survival curve. PLD repair kinetics measured after postirradiation incubation in PBS followed by hypertonic NaCl treatment was the same for spheroids and for plateau-phase monolayers. The kinetics of PLD repair indicates a biphasic phenomenon. There is an initial fast component with a repair half-time of 7.9 min and a slow component with a repair half-time of 56.6 min. Most of the damage (59%) is repaired slowly. Since the repair capacity and kinetics are the same for spheroids and monolayers, the radioresistance of spheroids cannot be explained on this basis. Evidence indicates that the time to return from a Go (noncycling G1 cells) state to a proliferative state (recruitment) for cells from confluent monolayers and from spheroids after dissociation by protease treatment may be the most important determinant of the degree of PLD repair that occurs. Growth curves and flow cytometry cell cycle analysis indicate that spheroid cells have a lag period for reentry into a proliferative state. Since plating efficiency remains high and unchanging during this period, one cannot account for the delay on the basis of the existence of a large fraction of Go cells which are not potentially clonogenic. The cell cycle progression begins in 6-8 h for monolayer cells and in 14-15 h for spheroids. It is hypothesized that the slower reentry of spheroid cells into a cycling phase allows more time for repair than for the rapidly proliferating monolayer cells.  相似文献   

18.
We evaluated the genotoxicity of the food-flavouring agent estragole in V79 cells using the sister chromatid exchange (SCE) assay and the alkaline comet assay. Unexpectedly, we observed an increase in SCE without an exogenous biotransformation system (S9) and a decrease in its presence. Positive results were also observed in the alkaline comet assay without S9, indicating DNA strand breakage. To ascertain repair of damage, we performed the comet assay in V79 cells after two hours of recovery, and observed a reduction of the genotoxic response. Estragole did not produce strand breaks in plasmid DNA in vitro. We then evaluated the formation of DNA adducts in V79 cells by use of the (32)P-postlabelling assay and detected a dose-dependent formation of DNA adducts, which may be responsible for its genotoxicity. We then assayed estragole in the comet assay with two CHO cell lines, a parental AA8 cell line, and an XRCC1-deficient cell line, EM9. Results confirmed the genotoxicity of estragole without biotransformation in both cell lines, although the genotoxicity in EM9 cells compared with that in AA8 cells was not significantly different, suggesting that the XRCC1 protein is not involved in the repair of estragole-induced lesions. Estragole induces apoptosis, but only with high doses (2000μM), and after long treatment periods (24h). Overall, our results suggest that estragole, besides being metabolized to genotoxic metabolites, is a weak direct-acting genotoxin that forms DNA adducts.  相似文献   

19.
V79 cells have been exposed to X-rays or 238Pu alpha-particles or to X-rays following priming alpha-particle doses of 0.5, 2 or 2.5 Gy. The survival curve for exposure to alpha-particles was exponential with a D0 of 0.89 Gy. Following exposure to priming alpha-particle doses the resulting X-ray survival curves had the same slope as the single dose X-ray curve, but a reduced shoulder. For alpha-particle priming doses of 0.5 and 2 Gy this reduction was the same as for the same X-ray doses. 2.5 Gy alpha-particles reduced the subsequent X-ray curve Dq to almost zero. alpha-particles do cause damage capable of interacting with X-ray damage.  相似文献   

20.
Quiescence in 9L cells and correlation with radiosensitivity and PLD repair   总被引:4,自引:0,他引:4  
The onset of quiescence, changes in X-ray sensitivity, and changes in capacity for potentially lethal damage (PLD) repair of unfed plateau-phase 9L44 cell cultures have been systematically investigated. The quiescent plateau phase in 9L cells was the result of nutrient deprivation and was not a cell contact effect. Eighty-five to 90% of the plateau-phase cells had a G1 DNA content and a growth fraction less than or equal to 0.15. The cell kinetic shifts in the population were temporally correlated with a developing radioresistance, which was characterized by a larger shoulder in the survival curve of the quiescent cells (Dq = 5.71 Gy) versus exponentially growing cells (Dq = 4.48 Gy). When the quiescent plateau-phase cells were refed, an increase in radiosensitivity resulted which approached that of exponentially growing 9L cells. Delayed plating experiments after irradiation of exponentially growing cells, quiescent plateau-phase cells, and synchronized early to mid-G1-phase cells indicated that while significant PLD repair was evident in all three populations, the quiescent 9L cells had a higher PLD repair capacity. Although data for immediate plating indicated that 9L cells may enter quiescence in the relatively radioresistant mid-G1 phase, the enhanced PLD repair capacity of quiescent cells cannot be explained by redistribution into G1 phase. When the unfed quiescent plateau-phase 9L cells were stimulated to reenter the cell cycle by replating into fresh medium, the first G1 was extended by 6 h compared with the G1 of exponentially growing or refed plateau-phase 9L cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号