首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyroid hormones are essential for vertebrate development. There is a characteristic rise in thyroid hormone levels in blood during critical periods of thyroid hormone-regulated development. Thyroid hormones are lipophilic compounds, which readily partition from an aqueous environment into a lipid environment. Thyroid hormone distributor proteins are required to ensure adequate distribution of thyroid hormones, throughout the aqueous environment of the blood, and to counteract the avid partitioning of thyroid hormones into the lipid environment of cell membranes. In human blood, these proteins are albumin, transthyretin and thyroxine-binding globulin. We analyzed the developmental profile of thyroid hormone distributor proteins in serum from a representative of each order of marsupials (M. eugenii; S.crassicaudata), a reptile (C. porosus), in two species of salmonoid fishes (S. salar; O. tshawytsch), and throughout a calendar year for sea bream (S. aurata). We demonstrated that during development, these animals have a thyroid hormone distributor protein present in their blood which is not present in the adult blood. At least in mammals, this additional protein has higher affinity for thyroid hormones than the thyroid hormone distributor proteins in the blood of the adult. In fish, reptile and polyprotodont marsupial, this protein was transthyretin. In a diprotodont marsupial, it was thyroxine-binding globulin. We propose an hypothesis that an augmented thyroid hormone distributor protein network contributes to the rise in total thyroid hormone levels in the blood during development.  相似文献   

2.
SYNOPSIS. The life histories of many vertebrates include complex,postembryonic developmental pathways that involve morphologicaland physiological changes that adapt juveniles to a new habitat.A survey of such developmental pathways, including lamprey metamorphosis,salmonid smoltification, and anuran metamorphosis, reveals acommon strategy of lipid metabolism consisting of two distinctphases. The first phase is characterized by lipid accumulationin storage sites and resultsfrom lipogenesis prevailing overlipolysis. The second phase is characterized by lipid depletionfrom storage sites and results from lipolysis prevailing overlipogenesis. Regulation of lipid deposition and lipid mobilizationis essential for ensuring availability of lipid during timesof need. Lipogenesis is promoted by insulin and, in lampreyand anurans, also by thyroid hormones. Lipolysis is promotedby a number of hormones, including prolactin, growth hormone,adrenocorticotropic hormone, corticosteroids, somatostatins,and thyroid hormones. The coordinate regulation of development-associatedchanges in lipid metabolism results from interactions amonghormones and other internal and environmental cues.  相似文献   

3.
The thyroid hormones are very hydrophobic and those that exhibit biological activity are 3',5',3,5-L-tetraiodothyronine (T4), 3',5,3-L-triiodothyronine (T3), 3',5',3-L-triiodothyronine (rT3) and 3,5',-L-diiothyronine (3,5-T2). At physiological pH, dissociation of the phenolic -OH group of these iodothyronines is an important determinant of their physical chemistry that impacts on their biological effects. When non-ionized these iodothyronines are strongly amphipathic. It is proposed that iodothyronines are normal constituents of biological membranes in vertebrates. In plasma of adult vertebrates, unbound T4 and T3 are regulated in the picomolar range whilst protein-bound T4 and T3 are maintained in the nanomolar range. The function of thyroid-hormone-binding plasma proteins is to ensure an even distrubtion throughout the body. Various iodothyronines are produced by three types of membrane-bound cellular deiodinase enzyme systems in vertebrates. The distribution of deiodinases varies between tissues and each has a distinct developmental profile. Thyroid hormones. (1) the nuclear receptor mode is especially important in the thyroid hormone axis that controls plasma and cellular levels of these hormones. (2) These hormones are strongly associated with membranes in tissues and normally rigidify these membranes. (3) They also affect the acyl composition of membrane bilayers and it is suggested that this is due to the cells responding to thyroid-hormone-induced membrane rigidificataion. Both their immediate effects on the physical state of membranes and the consequent changes in membrane composition result in several other thyroid hormone effects. Effects on metabolism may be due primarily to membrane acyl changes. There are other actions of thyroid hormones involving membrane receptors and influences on cellular interactions with the extracellulara matrix. The effects of thyroid hormones are reviewed and appear to b combinations of these various modes of action. During development, vertebrates show a surge in T4 and other thyroid hormones, as well as distinctive profiles in the appearance of the deiodinase enzymes and nuclear receptors. Evidence from the use of analogues supports multiple modes of action. Re-examination of data from th early 1960s supports a membrane action. Findings from receptor 'knockout' mice supports an important role for receptors in the development of the thyroid axis. These iodothyronines may be better thought of as 'vitamone'-like molecules than traditional hormonal messengers.  相似文献   

4.
Catecholamine and thyroid hormone metabolism in a case of anorexia nervosa   总被引:1,自引:0,他引:1  
Alterations in catecholamine (CA) and thyroid hormone metabolism were examined in a 12-year-old girl with anorexia nervosa during 3 months of treatment. According to her body weight change, the observation period was divided into 3 stages: initial emaciation (stage 1), stable maintenance of the -30% level of the previous weight (stage 2) and convalescent stage (stage 3). Stage 1 was characterized by relatively high urinary norepinephrine (NE) and epinephrine (E) but low dopamine (DA) excretion, elevated plasma DA-beta-hydroxylase (DBH) activity and reduced serum thyroid hormones, especially the triiodothyronine (T3) level. In stage 2, urinary CAs were markedly suppressed, while serum thyroid hormones gradually increase. In stage 3, a great increase in DA excretion, a fall in plasma DBH activity and normalization of thyroid hormones were observed. In the low T3 state below 60 ng/dl, urinary NE + E/DA ratios were elevated and widely fluctuated (0.58 +/- 0.30, SD), but were gradually decreased and completely stabilized in the normal T3 state (0.07 +/- 0.02, P less than 0.001). These results indicate that (1) although total CA production was depressed in anorexia nervosa, a change from an adrenergic-dominant to a dopaminergic-dominant state occurs in accordance with body weight gain, and (2) this shift in the CA profile is associated with concomitant recovery of reduced thyroid hormone concentrations. Thus, as for the energy expenditure, compensatory changes were observed in CAs and thyroid hormones in relation to caloric restriction.  相似文献   

5.
The larva of the sand dollar Peronella japonica lacks a mouth and gut, and undergoes metamorphosis into a juvenile sand dollar without feeding. In the present study, it was found that thyroid hormones accelerate the metamorphosis of P. japonica larvae. The contents of thyroid hormones in larvae increased gradually during development. Thiourea and potassium perchlorate, inhibitors of thyroid hormone synthesis, delayed larval metamorphosis and simultaneously repressed an increase in the content of thyroxine in the larval body. These results suggest that the P. japonica larva has a system for synthesis of thyroid hormones that act as factors for inducing metamorphosis.  相似文献   

6.
Acute and chronic exposure to high altitude induces various physiological changes, including activation or inhibition of various hormonal systems. In response to activation processes, a desensitization of several pathways has been described, especially in the adrenergic system. In the present study, we aimed to assess whether the hypophyseal hormones are also subjected to a hypoxia-induced decrease in their response to hypothalamic factors. Basal levels of hormones and the responses of TSH, thyroid hormones, prolactin, sex hormones, and growth hormone to the injection of TRH, gonadotropin-releasing hormone, and growth hormone-releasing hormone (GHRH) were studied in eight men in normoxia and on prolonged exposure (3-4 days) to an altitude of 4,350 m. Thyroid hormones were elevated at altitude (+16 to +21%), while TSH levels were unchanged, and follicle-stimulating hormone and prolactin decreased, while leutinizing hormone was unchanged. Norepinephrine and cortisol levels were elevated, while no change was observed in levels of epinephrine, dopamine, growth hormone (GH), IGF-1, and IGFBP-3. The mean response to hypothalamic factors was similar in both altitudes for all studied hormones, although total T4 was lower in hypoxia during 45 to 60 min after injection. The effect of hypoxia on the hypophyseal response to hypothalamic factors was similar among subjects, except for the GH response to GHRH administration. We conclude that prolonged exposure to high-altitude hypoxia induces contrasted changes in hormonal levels, but the hypophyseal response to hypothalamic factors does not appear to be blunted.  相似文献   

7.
In seawater fishes, osmotic homeostasis requires uptake of ions and water in the intestine and these processes are governed by the combined trans- and paracellular pathways. The current study examined mRNA expression of two tight junction proteins (claudin-15 and -25b) predominantly expressed in the intestine of Atlantic salmon. We examined the response in pyloric caecae, middle and posterior intestine to seawater challenge, during smoltification and after injection with osmoregulatory hormones. Seawater (SW) transfer elevated levels of claudin-15 and -25b while no change was induced throughout the smolt stage. In freshwater, cortisol and growth hormone inhibited claudin-15 expression in the two anterior segments. Claudin-25b was elevated in all intestinal segments by growth hormone, while cortisol had an inhibitory effect. In seawater, prolactin and cortisol inhibited claudin expression. The data suggest that claudin expression is involved in the reorganisation of intestinal epithelium and possibly change paracellular permeability during SW acclimation. The lack of preparatory change during smoltification suggests that this process is not completed during smolt development. The effects of the tested hormones cannot explain the sum of changes induced by salinity, which, like the smoltification data, suggests the importance of additional factors and possibly contact with the imbibed SW per se.  相似文献   

8.
Objective: Peptide YY (PYY) 3‐36 has recently been recognized as an important gut hormone that influences food intake. Peripheral injections of PYY 3‐36 in rats inhibit food intake in experimental animals as well as in lean and obese human subjects. This hormone has been suggested as an attractive therapeutic option for obesity. The aim of this study was to assess the influence of age, sex, thyroid status, growth hormone (GH), pregnancy, and food restriction on PYY levels in rat. Research Methods and Procedures: We determined plasma PYY levels in all experimental sets. Results: PYY levels were influenced by age, with the highest hormone levels achieved in early postnatal life (day 10) and decreasing thereafter. PYY levels were also dependent on thyroid hormone status being decreased in hyperthyroid rats. Exogenous GH administration led to a clear‐cut decrease in PYY levels in both normal and GH‐deficient rats. Acute food deprivation or chronic food restriction led to decreased PYY levels in virgin and pregnant rats. In pregnant rats with food available ad libitum, PYY levels were enhanced at late gestation. Discussion: Our observations indicate that PYY levels are influenced by age, thyroid hormones, and GH. These data indicate that PYY could be involved in the changes of food intake associated with these conditions. The PYY levels observed in acute and chronic food‐restricted rats indicate that, in situations of decreased energy intake, the lower PYY levels could serve to disinhibit central pathways and facilitate food intake.  相似文献   

9.
The purpose of this study was to investigate thyroid hormone concentrations, thyroxine (T4) and triiodothyronine (T3), in order to determine basal levels in Steller sea lions of different ages and over seasons. Serum concentrations of total T4 were highest in Steller sea lions followed by total T3 concentrations. Concentrations of free T4 and free T3 were three to four orders of magnitude lower. Concentrations for all four thyroid hormone measurements tended to a lower level as animals matured beyond the neonatal stage. When thyroid hormones from captive sea lions were evaluated across seasons, all thyroid hormones were highest in the July to September period. When compared across the geographic range, animals in southeast Alaska tended to have lower thyroid hormone levels, while the Steller sea lions west of Prince William Sound and animals from the Russian Far East had significantly higher concentrations. Significant inter-annual differences in concentrations were also observed across the geographic range. With an understanding of the basic changes in thyroid hormone concentrations, changes in plane of nutrition or life history states (i.e. fasting, pregnancy or lactation) can now be evaluated for their effect on the overall health of this endangered species.  相似文献   

10.
We used thiourea-induced thyroid hormone depletion as a strategy to understand the influence of thyroid hormones on testicular recrudescence of the air-breathing catfish, Clarias gariepinus. Treatment with 0.03% thiourea via immersion for 21 days induced hypothyroidism (thyroid hormone depletion) as evidenced by significantly reduced serum T(3) levels. Thiourea-treated males had narrowed seminiferous lobules with fewer spermatozoa in testis, very little or no secretory fluid, reduced protein and sialic acid levels in seminal vesicles when compared to controls. The histological changes were accompanied by reduction in serum and tissue levels of testosterone (T) and 11-ketotestosterone (11-KT), a potent male specific androgen in fish. Qualitative changes in the localization of catfish gonadotropin-releasing hormone (cfGnRH) and luteinizing hormone (LH, heterologous system) revealed a reduction in the distribution of immunoreactive neuronal cells and fibers in thyroid depleted fish. Interestingly, thiourea-withdrawal group showed physiological and histological signs of recovery after 21 days such as reappearance of spermatozoa and partial restoration of 11-KT and T levels. These data demonstrate that thyroid hormones play a significant role in testicular function of catfish. The mechanism of action includes modulating sex steroids either directly or through the hypothalamo (GnRH)-hypophyseal (LH) axis.  相似文献   

11.
To evaluate the role of perinatal thyroid status in the development of pituitary-thyroid axis regulation, we administered triiodothyronine to newborn rats for the first five days postpartum to achieve hyperthyroidism, or propylthiouracil perinatally to rat dams and pups from gestational day 17 through postnatal day 5 to achieve hypothyroidism. Plasma T4, T3, and TSH levels were determined from birth through 50 days postpartum. Administration of exogenous T3 produced the expected immediate suppression of plasma T4 and TSH, with recovery toward normal values beginning within days of discontinuing the T3 regimen. Plasma T3 values were markedly elevated during the period in which T3 was being given, but subsequently became subnormal, with deficits persisting into young adulthood. With the PTU regimen, plasma T4 and T3 levels were markedly suppressed through postnatal day 10, rose over the ensuing two weeks, but nevertheless showed significant deficits into adulthood. TSH levels in the immediate neonatal period were subnormal in the PTU group, despite the marked lowering of circulating thyroid hormones; TSH then rose dramatically to levels four times normal, subsiding to control values by the end of the first month. These results suggest that a critical period exists in which regulation of pituitary-thyroid axis function is programmed. During this phase, TSH secretion can be suppressed by excess thyroid hormones, but cannot be increased by hormone deficiencies. Perhaps more importantly, perinatal thyroid status "programs" its own future reactivity, so that early hypothyroidism results in reduced T4 and T3 levels in adulthood, despite normal levels of TSH.  相似文献   

12.
We designed three experiments to determine both the optimal dose of and time on experiment for methimazole (MMI; 1-methyl-2-mercaptimidazole). Our goals were to determine if chicken growth was related to thyroid hormone levels and if intermediary metabolism changed along with changes in thyroid hormone levels. Initiating MMI at one week of age decreased (P<0.01) plasma thyroid levels and growth in four-week old birds. In contrast, initiating MMI at two and three weeks of age decreased (P<0.05) hormone levels without affecting growth as severely. Although initiating MMI at two weeks of age depressed (P<0.05) plasma thyroid hormones at four weeks, there was little change in vitro lipogenesis at four weeks. Again, initiating MMI at one week of age decreased body weight, plasma thyroid hormones and in vitro lipogenesis at four weeks of age. In addition, this treatment also decreased (P<0.05) malic enzyme activity at this same age period. The second experiment showed that MMI, initiated at 14 days, had no significant effect on 28-day body weight and again decreased both plasma T(3) and T(4) but T(3) replacement increased plasma T(3) in both 14-28-day treatment groups. All body weights were similar at 30 days, however. Lastly, diets containing graded levels of MMI decreased thyroid hormones and body weight (0>0.25>0.5>1 g MMI/kg). In contrast, only the two higher levels (0.5 and 1 g MMI/kg) decreased in vitro lipogenesis. Growth depression, caused by MMI feeding, can occur without changes in lipid metabolism. The length of MMI administration may be as important as dose level in obtaining effects (growth, thyroid hormone depression and inhibition of lipogenesis).  相似文献   

13.
Although glucocorticoid and thyroid hormones are known to act synergistically to stimulate surfactant production, they have opposite effects on other parameters of fetal lung maturation. We recently reported that the developmental increases in de novo fatty acid synthesis and glycogen accumulation in fetal rat lung were accelerated by dexamethasone but prevented by triiodothyronine and that the dexamethasone-induced increases were diminished when the two hormones were administered together. We have now examined the effects of maternal administration of these hormones on activities of enzymes of lung fatty acid synthesis and glycogen metabolism in the rat. There was a developmental increase in fatty-acid synthase activity between 19 and 21 days gestation. This activity was increased by dexamethasone but decreased by triiodothyronine. When the two hormones were administered together the stimulatory effect of dexamethasone was decreased from 56% to 29%. The stimulatory effect on fatty-acid synthase was also observed in fetal lung explants cultured in the presence of dexamethasone. This shows that the effect of the hormone was directly on the fetal lung. Dexamethasone had no effect on liver fatty-acid synthase. There was a developmental decrease in acetyl-CoA carboxylase activity but it was not affected by the hormones. These data show that the developmental and hormone-induced changes in fetal lung de novo fatty acid synthesis are mediated by fatty-acid synthase. Although there were developmental changes in fetal lung 6-phosphofructokinase, glycogen synthase and glycogen phosphorylase activities, these enzymes were not affected by the hormones.  相似文献   

14.
Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT3, FT4, TT3, and TT4) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.  相似文献   

15.
Evidence has been presented that alterations in thyroidal status produce marked changes in the metabolism of several biogenic amines in developing brain. Neonatal hypothyroidism induced either by 131I or by an anti-thyroid agent, methimazole, markedly decreased the concentrations of norepinephrine, dopamine and 5-hydroxytryptamine and the activity of their rate-limiting enzymes, tyrosine hydroxylase and tryptophan hydroxylase. However, the levels of 5-hydroxyindoleacetic acid, the chief metabolite of 5-hydroxytryptamine were elevated in several regions of the brain. Whereas thyroid deficiency in early life produced no appreciable change in whole brain monoamine oxidase activity, it was increased in mid brain and decreased in the hypothalamus. Brain acetylcholine levels were significantly elevated and the activity of acetylcholinesterase remained unchanged in rats made hypothyroid at 1 day of age. Delaying thyroidectomy for 20 days after birth produced less appreciable changes in norepinephrine and 5-hydroxytryptamine metabolism. Thyroid deficiency suppressed the ontogenesis of behavioural arousal and spontaneous locomotor activity. The administration of L-triiodothyronine to hypothyroid animals in early life restored the metabolism of various neurohumors virtually to the normal limits. However, when the replacement therapy was postponed until adulthood, L-triiodothyronine failed to produce any restorative effects, suggesting that a critical period exists in early life during which thyroid hormone must be present to permit normal developmental pattern of central amines. Data also have been obtained demonstrating that neonatal hyperthyroidism induced by daily administration of L-triiodothyronine results in an increased turnover of norepinephrine and 5-hydroxytryptamine. These amine changes were accompanied by a marked rise in the spontaneous locomotor activity in hyperthyroid rats. Finally, chronic treatment with lithium, an antimanic drug, also known to suppress thyroid hormone production, significantly decreased not only the spontaneous locomotor activity, but also changes in the turnover of 5-hydroxytryptamine and norepinephrine in neonatally hyperthyroid rats.  相似文献   

16.
Despite the introduction of salt iodization programmes as national measures to control iodine deficiency, several European countries are still suffering from mild iodine deficiency (MID). In iodine sufficient or mildly iodine deficient areas, iodine deficiency during pregnancy frequently appears in case the maternal thyroid gland cannot meet the demand for increasing production of thyroid hormones (TH) and its effect may be damaging for the neurodevelopment of the foetus. MID during pregnancy may lead to hypothyroxinaemia in the mother and/or elevated thyroid-stimulating hormone (TSH) levels in the foetus, and these conditions have been found to be related to mild and subclinical cognitive and psychomotor deficits in neonates, infants and children. The consequences depend upon the timing and severity of the hypothyroxinaemia. However, it needs to be noted that it is difficult to establish a direct link between maternal iodine deficiency and maternal hypothyroxinaemia, as well as between maternal iodine deficiency and elevated neonatal TSH levels at birth. Finally, some studies suggest that iodine supplementation from the first trimester until the end of pregnancy may decrease the risk of cognitive and psychomotor developmental delay in the offspring.  相似文献   

17.
Recently we reported that hyperglucagonemia induced by glucagon infusion causes a decline in serum T3 and a rise in reverse T3 in euthyroid healthy volunteers. These changes in T3 and rT3 levels were attributed to altered T4 metabolism in peripheral tissues. However, the contribution of altered release of thyroid hormones by the thyroid gland could not be excluded. Since the release of thyroid hormones is inhibited in primary hypothyroidism and is almost totally suppressed following L-thyroxine replacement therapy, we studied thyroid hormone levels for up to 6 hours after intravenous administration of glucagon in subjects with primary hypothyroidism who were rendered euthyroid by appropriate L-thyroxine replacement therapy for several years. A control study was conducted using normal saline infusion. Plasma glucose rose promptly following glucagon administration demonstrating its physiologic effect. Serum T4, Free T4, and T3 resin uptake were not altered during both studies. Glucagon infusion induced a significant decline in serum T3 (P less than 0.05) and a marked rise in rT3 (P less than 0.05) whereas saline administration caused no alterations in T3 or rT3 levels. Thus the changes in T3 and rT3 were significantly different during glucagon study when compared to saline infusion. (P less than 0.01 for both comparisons). Since, the release of thyroid hormones is suppressed by exogenous LT4 administration in these subjects; we conclude that changes in serum T3 and rT3 observed following glucagon administration reflect altered thyroid hormone metabolism in peripheral tissues and not altered release by the thyroid gland.  相似文献   

18.
The aim of the present study was to investigate histological alterations of rat thyroid gland after short-term treatment with supraphysiological doses of thyroid hormones. Rats from experimental groups were treated with triiodothyronine (T3) or thyroxine (T4) during five days. In both treated groups, thyrocyte height was reduced and follicular lumens were distended. Progressive involutive changes of the thyroid parenchyma were apparent, including follicular remodeling (fusion) and death of thyrocytes. Morphological changes confirmed by quantitative analysis were more pronounced in the T4-treated group. Our results demonstrate that thyrotoxicosis, whether induced by T3 or T4, leads to different grades of thyroid tissue injury, including some irreversible damages. These changes might be explained at least in part by lack of trophic and cytoprotective effects of the thyroid stimulating hormone. Since the period required for morphophysiological recovery may be unpredictable, findings presented here should be taken into consideration in cases where the thyroid hormones are used as a treatment for thyroid and non-thyroid related conditions.  相似文献   

19.
In the chicken the transition of a poikilotherm to a homeotherm reaction upon cold exposure takes place in the perinatal period between pipping and hatching. However, newly hatched chicks cannot maintain their body temperature within narrow limits after cold exposure. The fact that relatively little attention was payed on the role of thyroid hormones in the thermoregulatory reaction to cold of young chicks was probably due to the hypothetically long latention time that was thought to be necessary to bring about changes in secretory activity by cold stimulation. However, more recently, rapid changes (within hours) of thyroid hormone concentrations upon cold exposure were described in the chickens and the quail. In this study, changes in circulating T3 and T4 concentrations upon cold exposure of young chicks during the first two weeks were followed, that means during the period wherein NST (non-shivering thermogenesis), if it exists at all, should be progressively replaced by ST (shivering thermogenesis). Because of the importance of feeding condition on thyroid hormone levels, the experiments were carried out with and without a preceeding fasting period. In all experiments a short-term cold exposure of young chickens (1-11 days) fed ad lib decreased T3 but increased T4 levels while a reversed picture was found after short cold exposure of the fasted animals. However, after prolonged cold stimulus (15 degrees C) of young chickens fed ad lib, plasma T3 was also significantly elevated over that of controls whereas T4 levels returned to normal values. A prolonged warm treatment (37 degrees C) of young chickens fed ad lib resulted in significantly lower T3 and higher T4 concentrations. After a prolonged cold treatment no differences in T4 or T3 response upon TRH were found whereas the warm treatment abolished these responses upon TRH. However, a cold treatment at the stage of incubation during which the hypothalamo-hypophyseal control of thyroid function is established (dag 10-14) enhanced the T4 response to TRH with a long lasting effect extending to the posthatch period. Since T3 is thought to be the active form of thyroid hormones with regard to thermopoiesis we have studied more specifically the effect of blocking peripheral conversion of T4 on thermoregulatory abilities in young chicks and the influence of temperature treatment on monodeiodination capacity. The lower rectal temperatures following the interference with the peripheral monodeiodination of T4, the effect being more pronounced at the lower ambient temperature, are indicative for a preponderant role of T3 on thermogenesis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Endocrine Control of Osmoregulation in Teleost Fish   总被引:9,自引:0,他引:9  
As the primary link between environmental change and physiologicalresponse, the neuroendocrine system is a critical part of osmoregulatoryadaptations. Cortisol has been viewed as ‘the’ seawater-adaptinghormone in fish and prolactin as ‘the’ fresh wateradapting hormone. Recent evidence indicates that the growthhormone/insulin-like growth factor I axis is also importantin seawater adaptation in several teleosts of widely differingevolutionary lineages. In salmonids, growth hormone acts insynergy with cortisol to increase seawater tolerance, at leastpartly through the upregulation of gill cortisol receptors.Cortisol under some conditions may promote ion uptake and interactswith prolactin during acclimation to fresh water. The osmoregulatoryactions of growth hormone and prolactin are antagonistic. Insome species, thyroid hormones support the action of growthhormone and cortisol in promoting seawater acclimation. Althougha broad generalization that holds for all teleosts is unlikely,our current understanding indicates that growth hormone promotesacclimation to seawater, prolactin promotes acclimation to freshwater, and cortisol interacts with both of these hormones thushaving a dual osmoregulatory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号