首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《FEBS letters》2014,588(24):4672-4676
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) mediates physiological and pathological functions by its Ca2+-independent autonomous activity. Two novel mechanisms for generating CaMKII autonomy include oxidation and S-nitrosylation, the latter requiring both Cys280 and Cys289 amino acid residues in the brain-specific isoform CaMKIIα. Even though the other CaMKII isoforms have a different amino acid in the position homologous to Cys280, we show here that nitric oxide (NO)-signaling generated autonomy also for the CaMKIIβ isoform. Furthermore, although oxidation of the Met280/281 residues is sufficient to generate autonomy for most CaMKII isoforms, oxidation-induced autonomy was also prevented by a Cys289-mutation in the CaMKIIα isoform. Thus, all CaMKII isoforms can be regulated by physiological NO-signaling, but CaMKIIα regulation by oxidation and S-nitrosylation is more stringent.  相似文献   

3.
We investigated the changes in the total activity of superoxide dismutase (SOD) and the role of its isoforms in hardening potato (Solanum tuberosum L., cv. Desnitsa) plants of wild type and transformed with desA gene of Δ12-acyl-lipid desaturase from Synechocystis sp. PCC 6803. Hydroponically grown 8-week-old plants were exposed for six days to hardening temperature of 5°C. Before chilling, the total SOD activity in the transformed plants was somewhat greater than in the control plants. By the first day of hardening, SOD activity in both potato genotypes rose almost 1.5 times; however, the absolute value of SOD activity was considerably greater in the transformed plants. Subsequently, the total SOD activity in both genotypes decreased and by the end of the 6th day, it almost returned to the initial level. Electrophoretic and inhibitor analyses of potato plants revealed three types of SOD with one isoform of Mn-SOD, four isoforms of Fe-SOD, and two isoforms of Cu/Zn-SOD. In both genotypes, Fe-SOD3 manifested the greatest activity before chilling and in the course of hardening. Such changes in SOD activity corresponded to the rate of generation of superoxide anion radical and elevation of the content of products of peroxide oxidation of lipids (POL). Our data suggest that in the course of hardening of cold-resistant potato plants, the total SOD activity changed mostly due to Fe-SOD3 and to some extent as a result of elevated Cu/Zn-SOD2 activity, which was particularly evident at the beginning of hardening and more pronounced in the transformed plants. We assume that such temporal pattern is related to a greater rate of superoxide anion generation in the transformed plants as compared with control plants.  相似文献   

4.
ApoA-I and apoC-II are eluted in two isoforms and apoC-III2 is eluted in three isoforms by reversed phase high performance liquid chromatography (HPLC). The structural basis of these nongenetic heterogeneities was unravelled using HPLC of proteolytic peptides and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In apoA-I, the chromatographic microheterogeneity was caused by the formation of methionine sulfoxides (MetSO). However, only residues Met112 and Met148 were found oxidized, whereas Met86 was unaffected and also resistant towards artificial oxidation. To assess whether and to what extent amino acid substitutions in apoA-I might affect methionine sulfoxidation, the tryptic peptides of 13 different mutant apoA-I proteins from 24 heterozygous apoA-I variant carriers were analyzed by HPLC. In normal apoA-I, the ratios MetSO112/Met112 and MetSO148/Met148 were highly variable. By contrast, the relative ratio of oxidation of methionine residues 112 and 148 was constant. The amino acid changes Lys107----Met, Lys107----O, Glu139----Gly, Glu147----Val, and Pro165----Arg resulted in the preferential oxidation of Met112, and Asp103----Asn resulted in a preferential oxidation of Met148; whereas Pro3----Arg, Pro3----His, Pro4----Arg, Asp89----Glu, Ala158----Asp, Glu198----Lys, and Asp213----Gly had no impact. ApoC-II and apoC-III isoforms differed by the oxidation of the two methionine residues in these proteins. Whereas in apoC-II both methionine residues were oxidized in parallel, in apoC-III the two methionine residues differed in their susceptibility towards oxidation. We conclude that the formation of MetSO depends on the molecular microenvironment within a protein.  相似文献   

5.
We have identified a novel Cu/Zn superoxide dismutase gene (termedSOD-4) in Caenorhabditis elegans. Characterization of its complementaryDNA revealed that the gene encodes two isoforms by alternativesplicing, SOD4-1 and SOD4-2 which differ in their C-terminalexons. Their predicted amino acid sequences include a consensussignal peptide at their N-termini and are homologous to theextracellular-types of Cu/Zn superoxide dismutase in mammals.In addition, SOD4-2 possesses a putative transmembrane domainat the C-terminal region. When transiently expressed in Chinesehamster ovary cells, both types were found in the membranesand SOD4-1 also in the culture fluid. It is, therefore, indicatedthat SOD4-1 is an extracellular form and SOD4-2 a membrane-boundform, the latter representing a novel type of SOD. In C. elegans,SOD4-2 mRNA was found to be preferentially expressed in eggs.  相似文献   

6.
7.
Chenopodium murale is a weed species having wide adaptation to different climatic regimes and experiences a temperature range of 5-45 degrees C during its life span. Higher temperatures may result in heat stress, which induces higher ROS production leading to oxidative stress in the plant. Superoxide dismutase enzyme (SOD, EC.1.15.1.1) is ubiquitous, being widely distributed among O(2)(-) consuming organisms and is the first line of defense against oxidative stress. In this study, we have characterized the thermostability of the SOD isozymes from C. murale in vitro. The leaf protein extracts, thylakoidal and stromal fractions were subjected to elevated temperatures ranging from 50 degrees C to boiling and analyzed for activity and isoform pattern of SOD. Out of six SOD isoforms, SOD V showed stability even after boiling the extract for 10min. Under high temperature treatment (>60 degrees C) there was an appearance of a new SOD band with higher electrophoretic mobility. The inhibitor studies and subcellular analysis revealed that the SOD V isoform was a chloroplastic Cu/Zn SOD. The stromal Cu/Zn SOD (SOD V) was more stable than the co-migrating thylakoidal isozyme at 80 degrees C and boiling for 10min. Hence, we report an unusual, constitutive thermostable chloroplastic Cu/Zn SOD from C. murale, which may contribute towards its heat tolerance.  相似文献   

8.
Kukavica B  Vucinić Z  Vuletić M 《Protoplasma》2005,226(3-4):191-197
Summary. The analysis of plasma membranes from maize roots by native gel electrophoresis revealed the existence of Mn-containing 120 kDa and CuZn-containing 70, 40, and 15 kDa superoxide dismutase (SOD) isoform activities. Isoelectric focusing of the plasma membranes differentiated anionic SOD isoforms with a pI of about 5 and cationic SOD isoforms at pI 8.6. Solubilization of the plasma membrane proteins further separated the cationic SOD into pI 8.6, 8.2, 8.4, and 7.2 isoforms. Double staining for both SOD and peroxidase activities showed an overlap of these activities only in the case of the high-molecular-mass (ca. 120 kDa) isoforms. High-temperature treatments demonstrated that the 120 kDa isoform was active even at 100 °C, indicating that it was a germin-like protein with superoxide-dismutating activity, different from the peroxidase with a similar molecular mass and the lower-molecular-mass CuZn-containing superoxide dismutases. These results are compared to those obtained from whole-tissue extract and apoplastic fluid. Correspondence and reprints: Maize Research Institute, POB 89-Zemun, 11081 Belgrade, Serbia and Montenegro.  相似文献   

9.
The extent of in vitro Cu(2+)-dependent oxidation of low-density lipoproteins (LDL) has been reported to vary widely depending upon reaction conditions. In this study, the effect of proteins and amino acids on Cu(2+)-induced LDL oxidation was examined. Treatment of LDL with 5 microM CuSO4 for 18 h in either phosphate-buffered saline (PBS) or Ham's F-10 medium resulted in extensive oxidation as determined by the content of thiobarbituric acid reactive substances (TBARS) and by increased lipoprotein electronegativity. In PBS, oxidation was entirely blocked by histidine and the tripeptide, gly-his-lys (GHK). Oxidation was also prevented by bovine serum albumin, but superoxide dismutase (SOD) provided only 20% protection. Both proteins bound similar amounts of Cu2+, but albumin appeared to be a more effective peroxyl radical trap as evidenced by its ability to prevent LDL oxidation induced by 2,2'-azo-bis(2-amidinopropane hydrochloride). In F-10 medium, SOD had marked inhibitory effects, in contrast to PBS. The addition of disulfides to PBS markedly enhanced the ability of SOD to inhibit oxidation. These results indicate that medium components which affect Cu2+ availability influence LDL oxidation and suggest that albumin is ideally suited as a plasma antioxidant to prevent oxidative modification of LDL. Furthermore, in certain instances, the inhibitory effects of SOD may be attributable to effects such as Cu2+ binding rather than dismutation of superoxide.  相似文献   

10.
Superoxide dismutase (SOD, EC 1.15.1.1) is an important metal-containing antioxidant enzyme that provides the first line of defense against toxic superoxide radicals by catalyzing their dismutation to oxygen and hydrogen peroxide. SOD is classified into four metalloprotein isoforms, namely, Cu/Zn SOD, Mn SOD, Ni SOD and Fe SOD. The structural models of soybean SOD isoforms have not yet been solved. In this study, we describe structural models for soybean Cu/Zn SOD, Mn SOD and Fe SOD and provide insights into the molecular function of this metal-binding enzyme in improving tolerance to oxidative stress in plants.  相似文献   

11.
Khaĭtlina SIu 《Tsitologiia》2007,49(5):345-354
Actin sequences are conserved to a much greater degree than those in almost any other proteins, so that two cytoplasmic isoforms differ by only four of 374 amino acid residues. Nevertheless, the results of biochemical, immunocytochemical and molecular biology experiments demonstrate that appearance, amount and localization of actin isoforms are strongly controlled by cell machinery. Although at the early stages of cell differentiation expression of any actin gene is potentially possible, under normal physiological conditions, while differentiation proceeds, synthesis of specific actin isoforms is temporally regulated and the produced proteins are segregated spatially. Pathological situations of tissue injury or mammalian disease correlate either with up- and down-regulation of distinct actin genes returning to a fetal gene program or with a failure to sort actin isoforms. Different actin isoforms cannot substitute for each other, and changes in expression of specific actin genes are accompanied by alterations in cell structure and function suggesting that specific actin isoforms perform unique cellular functions. This article summarizes the data on segregation of actin isoforms in cell compartments and analyses the mechanisms suggested to explain spatial segregation of cytoplasmic actin isoforms within a cell.  相似文献   

12.
Actin sequences are conserved to a much greater degree than those of almost any other proteins, such that two cytoplasmic isoforms differ by only 4 out of 374 amino acid residues. Nevertheless, the results of biochemical, immunocytochemical, and molecular biology experiments demonstrate that the appearance, amount, and localization of actin isoforms are strongly controlled by the cellular machinery. Although at the early stages of cell differentiation expression of any actin gene is potentially possible, under normal physiological conditions, while differentiation proceeds, synthesis of specific actin isoforms is temporally regulated and the produced proteins are segregated spatially. Pathological situations of a tissue injury or a mammalian disease correlate either with up-and down-regulation of distinct actin genes returning to a fetal gene program or with a failure to sort actin isoforms. Different actin isoforms cannot substitute for each other, and changes in the expression of specific actin genes are accompanied by alterations in cell structure and function, suggesting that specific actin isoforms perform unique cellular functions. This article summarizes the data on the segregation of actin isoforms in cell compartments and analyzes the mechanisms suggested to explain spatial segregation of cytoplasmic actin isoforms in the cell.  相似文献   

13.
Superoxide dismutase (SOD) in-gel activity assay with selective inhibitors (KCN and H2O2) is one of the most commonly used methods for identification of SOD isoform types, i.e., FeSOD, MnSOD or Cu/ZnSOD, and evaluation of oxidative stress response in plants. However, there are potential pitfalls that surround this assay, such as problem to detect isoforms with low activity, comigration of SOD isoforms or application of inappropriate inhibitor concentration. We propose an improved method based on the combination of in-gel analysis of SOD activity and native-PAGE immunoblotting for identification of isoforms and determination of SOD isoenzyme activity pattern in potato. Depending on cultivar and growing conditions, one MnSOD, 3 FeSOD and 5–6 Cu/ZnSOD isoforms were identified in potato leaves. The most important qualitative difference between ex vitro- and in vitro-grown plants was the presence of additional FeSOD and Cu/ZnSOD isoforms in plantlets grown in vitro. Compared with results of in-gel activity assay with selective inhibitors, new method allowed accurate identification of comigrating FeSOD and Cu/ZnSOD isoforms and two protein bands of ambiguous identities. Potato SODs were also characterized by SDS-PAGE immunoblotting and single MnSOD (23.6 kDa), three Cu/ZnSOD polypeptides (17.9, 17 and 16.3 kDa) and single FeSOD (25.1 kDa) polypeptide were detected in leaves of four examined cultivars. The difference in the number of FeSOD and Cu/ZnSOD isoforms/polypeptides between native-PAGE and SDS-PAGE immunoblots suggests that SOD proteins may have undergone post-translational modifications affecting protein mobility or existence of isoforms that differ from each other in total protein charge, but not in molecular weight.  相似文献   

14.
The number and type of isoforms of superoxide dismutase (SOD) and their activities were compared in mitochondria and peroxisomes isolated from cotyledons of three different oilseed seedlings. Mitochondrial and peroxisomal isoforms of SOD could be distinguished in nondenaturing polyacrylamide gels by their differential sensitivities to KCN and/or H2O2. The type of SOD was not the same for each organelle in each of the three oilseed species. For example, a single Mn–SOD was found in cotton and cucumber mitochondria, whereas four CuZn–SODs were present in mitochondria from sunflower. At least one CuZn–SOD isoform was found in the peroxisomes of all three species. Cucumber peroxisomes contained both a CuZn–SOD and a Mn–SOD, cotton peroxisomes contained a single CuZn–SOD, whilst four separate CuZn–SODs, but no Mn–SOD were found in sunflower peroxisomes. Using antibodies against CuZn–SOD from watermelon peroxisomes or from chloroplasts of Equisetum , a single polypeptide of c . 16·5 kDa was detected on immunoblots of peroxisomal fractions from the three species. Post-embedment, electron-microscopic double immunogold-labelling showed that CuZn–SOD, with malate synthase used as marker enzyme of peroxisomes, was localized in the matrix of these organelles of all three species. These results suggest that CuZn–SOD is a characteristic matrix enzyme of peroxisomes in oilseed cotyledons.  相似文献   

15.
Yoshida H  Goedert M 《Biochemistry》2002,41(51):15203-15211
Tau is a major microtubule-associated protein in mammalian brain, where it exists as multiple isoforms that are produced from a single gene by alternative mRNA splicing. Here we present the first report on the structure and function of tau protein from a nonmammalian vertebrate. In the adult chicken brain, five main tau isoforms are expressed. One isoform has three tandem repeats, two isoforms have four repeats each, and two isoforms have five repeats each. Similar to mammalian tau, some chicken tau isoforms contain an amino-terminal insert of 53 amino acids. Unlike mammalian tau, a 34 amino acid insert in the proline-rich region upstream of the repeats is alternatively spliced in chicken tau. It is preceded by a constitutively expressed sequence of 17 amino acids that is absent in tau from human and rodent brains. The expression of chicken tau isoforms and their phosphorylation are developmentally regulated, similar to what has been described in mammalian brain. Functionally, chicken tau isoforms with five repeats have the greatest ability to promote microtubule assembly, followed by isoforms with four and three repeats, respectively. The 34 amino acid insert positively influences both the rate and the extent of microtubule assembly, whereas the 53 amino acid insert only influences the extent of assembly.  相似文献   

16.
Oxidative stress in fish (Sparus aurata) as a consequence of food restriction and fasting, has been studied. Four groups of fish were maintained for 46 days under different conditions of food supplementation: a control group with no food restriction (ratio of food/fish of 2% w/w), two groups of animals with restricted food supplement (1 and 0.5%) and a fasting group (no meal addition). Finally, all the fish were provided with food at the same ratio as the control group for the last 7 days. Sampling and weighing of fish were carried out every week and their livers were used for the analysis of known biomarkers of oxidative stress. Malondialdehyde and oxidized glutathione levels increased at the third week in fish with partial or total food deprivation, but these levels returned to normal values when the fish readapted to the control conditions. Antioxidant enzymes were also analyzed and significant increases in superoxide dismutase (SOD), glutathione reductase and glutathione peroxidase activities were found in parallel with food restriction; however catalase activity decreased in fasting fish. New SOD isoforms were detected by isoelectrofocusing in fish under food restriction at the second week, which disappeared when starved fish returned to the control conditions. These new SOD isoforms were detected before the appearance of other usual oxidative stress biomarkers.  相似文献   

17.
水分胁迫及复水过程中小麦抗氧化酶的变化   总被引:9,自引:0,他引:9  
对两个抗旱性不同的小麦品种进行水分胁迫和复水处理,研究其抗氧化酶活性的响应。在水分胁迫下,陇春-20的相对含水量高于优鉴-24,复水24h后,优鉴-24的相对含水量恢复较快且高于陇春-20。水分胁迫下,优鉴-24中H2O2含量增加迅速,而且各阶段含量均高于陇春-20,复水后两个品种的H2O2含量都下降,这表明优鉴-24在水分胁迫时受到更严重的氧化胁迫。采用温和胶电泳结合抑制剂实验发现小麦有3条Mn—SOD,一条Fe—SOD和Cu/Zn-SOD同工酶带,CAT同工酶有3条谱带。在水分胁迫和复水期间,优鉴-24的SOD和CAT活性高于陇春-20,随着水分胁迫程度的增加,两个品种的SOD和CAT活性都增强,复水后,优鉴-24的SOD活性继续增强,而陇春-20的Mn—SOD—3活性略微降低,Fe—SOD和Cu/Zn—SOD活性略微升高,陇春-20的CAT活性降低。水分胁迫诱导了Mn—SOD—1在优鉴-24及Mn—SOD-2和Fe—SOD在陇春-20中的表达。  相似文献   

18.
Up to date, only limited information is available on genetically and functionally different isoforms of CPT I enzyme in fish. In the study, molecular characterization and their tissue expression profile of three CPT Iα isoforms (CPT Iα1a, CPT Iα1b and CPT Iα2a) and a CPT Iβ isoform from yellow catfish Pelteobagrus fulvidraco is determined. The activities and kinetic features of CPT I from several tissues have also been analyzed. The four CPT I isoforms in yellow catfish present distinct differences in amino acid sequences and structure. They are widely expressed in liver, heart, white muscle, spleen, intestine and mesenteric adipose tissue of yellow catfish at the mRNA level, but with the varying levels. CPT I activity and kinetics show tissue-specific differences stemming from co-expression of different isoforms, indicating more complex pathways of lipid utilization in fish than in mammals, allowing for precise control of lipid oxidation in individual tissue.  相似文献   

19.
20.
The processes that are photoinduced by [Ru(bpz)(3)](2+) (bpz = 2,2'-bipyrazyl) in the presence of Cu/Zn superoxide dismutase (Cu/Zn SOD) are investigated by laser flash photolysis and electron paramagnetic resonance (EPR) spectroscopy; they are compared to those of the system [Ru(bpy)(3)(2+)-Cu/Zn SOD]. Although the mechanism is complicated, primary and secondary reactions can be evidenced. First, the excited [Ru(bpz)(3)](2+) complex is quenched reductively by Cu/Zn SOD with the production of a reduced complex and an oxidized enzyme. The oxidation site of Cu/Zn SOD is proposed to correspond to amino acids located on the surface of the protein. Afterward and only when this reductive electron transfer to the excited complex has produced enough oxidized protein, another electron-transfer process can be evidenced. In this case, however, the charge-transfer process takes place in the other direction, i.e., from the excited complex to the Cu(II) center of the SOD with the formation of Ru(III) and Cu(I) species. This proposed mechanism is supported by the fact that [Ru(bpy)(3)](2+), which is less photo-oxidizing than [Ru(bpz)(3)](2+), exhibits no photoreaction with Cu/Zn SOD. Because Ru(III) species are generated as intermediates with [Ru(bpz)(3)](2+), they are proposed to be responsible for the enhancement of [poly(dG-dC)](2) and [poly(dA-dT)](2) oxidation observed when Cu/Zn SOD is added to the [Ru(bpz)(3)](2+)-DNA system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号