首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
深入研究EGF对靶细胞的作用有助于揭示细胞增殖、转化、凋亡以及胚胎发育的分子机理。本文采用cDNA微阵列技术,检测EGF持续作用48小时后人胚肺二倍体成纤维细胞基因表达谱的变化。结果显示:EGF长期作用诱导广泛的基因表达变化,在所检测的4096种人类基因中,有855种发生了变化,这些表达变化的基因参与细胞的能量代谢、生物合成、细胞周期调控及受体酪氨酸激酶和G蛋白耦连受体信号转导等细胞反应,其中最显著的变化趋势是GPCR及其相关蛋白基因表达的下调。  相似文献   

2.
The mechanisms by which receptor tyrosine kinases (RTKs) utilize intracellular signaling pathways to direct gene expression and cellular response remain unclear. A current question is whether different RTKs within a single cell target similar or different sets of genes. In this study we have used the ErbB receptor network to explore the relationship between RTK activation and gene expression. We profiled growth factor-stimulated signaling pathway usage and broad gene expression patterns in two human mammary tumor cell lines expressing different complements of ErbB receptors. Although the growth factors epidermal growth factor (EGF) and neuregulin (NRG) 1 similarly stimulated Erk1/2 in MDA-MB-361 cells, EGF acting through an EGF receptor/ErbB2 heterodimer preferentially stimulated protein kinase C, and NRG1beta acting through an ErbB2/ErbB3 heterodimer preferentially stimulated Akt. The two growth factors regulated partially overlapping yet distinct sets of genes in these cells. In MDA-MB-453 cells, NRG1beta acting through an ErbB2/ErbB3 heterodimer stimulated prolonged signaling of all pathways examined relative to NRG2beta acting through the same heterodimeric receptor species. Surprisingly, NRG1beta and NRG2beta also regulated partially overlapping but distinct sets of genes in these cells. These results demonstrate that the activation of different RTKs, or activation of the same RTKs with different ligands, can lead to distinct profiles of gene regulation within a single cell type. Our observations also suggest that the identity and kinetics of signaling pathway usage by RTKs may play a role in the selection of regulated genes.  相似文献   

3.
In vertebrates, receptor tyrosine kinases (RTKs) have been identified as growth factor receptors and proto-oncogenes. Many of these RTKs appear to play a key role in the regulation of cell growth. Recent analyses of several Drosophila genes encoding putative RTKs indicate that this class of proteins also serves an important role in cell fate decisions which depend on cellular interactions during development. The sevenless RTK mediates the position-dependent specification of a particular photoreceptor cell type (R7) in the eye. The local specification of R7 cells requires a functional tyrosine kinase domain of the sevenless protein but does not depend on the spatially restricted expression of the sevenless gene. The Drosophila EGF receptor homolog serves multiple functions during development, some of which are clearly unrelated to regulation of cell growth. Finally, the torso gene encodes an RTK required for the specification of the terminal regions of the Drosophila larva. A number of other genes have been genetically identified that appear to function in the same developmental processes upstream or downstream of these three RTKs. These loci are excellent candidates for genes encoding other components of the signalling pathways such as ligands or substrates of the RTKs.  相似文献   

4.
Lowes VL  Ip NY  Wong YH 《Neuro-Signals》2002,11(1):5-19
Activation of G protein-coupled receptors (GPCRs) leads to stimulation of classical G protein signaling pathways. In addition, GPCRs can activate the mitogen-activated protein kinases (MAPKs) such as the extracellular signal-regulated kinases, c-Jun NH(2)-terminal kinases (JNKs), and p38 MAPKs, and thereby influence cell proliferation, cell differentiation and mitogenesis. Cross talk between GPCRs and receptor tyrosine kinases (RTKs) is an incredibly complex process, and the exact signaling molecules involved are largely dependent on the cell type and the type of receptor that is activated. In this review we investigate recent advances that have been made in understanding the mechanisms of cross talk between GPCRs and RTKs, with a focus on GPCR-mediated activation of the Ras/MAPK pathway, GPCR-induced transactivation of RTKs, GPCR-mediated activation of JNK, and p38 MAPK, integration of signals by RhoGTPases, and activation of G protein signaling pathways by RTKs.  相似文献   

5.
Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo.  相似文献   

6.
The regulation of adrenal function, including aldosterone production from adrenal glomerulosa cells, is dependent on a variety of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). In many cell types, GPCR-mediated MAPK activation is mediated through transactivation of RTKs, in particular the epidermal growth factor (EGF) receptor (EGF-R). However, the extent to which this cross-communication between GPCRs and RTKs is operative in the adrenal glomerulosa has not been defined. Bovine adrenal glomerulosa cells express receptors for lysophosphatidic acid (LPA) and EGF. In cultured bovine adrenal glomerulosa cells, LPA, which is predominantly coupled to Gi and partially to Gq/protein kinase C alpha and epsilon, caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), EGF-R, protein kinase B/Akt, extracellularly regulated signal kinases 1/2, and their dependent protein, p90 ribosomal S6 kinase. Overexpression of dominant negative mutants of Ras or EGF-R, and selective inhibition of EGF-R kinase with AG1478, significantly reduced LPA-induced ERK1/2 phosphorylation. However, this was not impaired by inhibition of matrix metalloproteinase (MMP) and heparin-binding EGF. LPA-induced ERK1/2 activation occurs predominantly through EGF-R transactivation by Gi/Src and partly through activation of protein kinase C, which acts downstream of EGF-R and Ras. In contrast, LPA-induced phosphorylation of Shc and ERK1/2 in clonal hepatocytes (C9 cells) was primarily mediated through MMP-dependent transactivation of the EGF-R. These observations in adrenal glomerulosa and hepatic cells demonstrate that LPA phosphorylates ERK1/2 through EGF-R transactivation in a MMP-dependent or -independent manner in individual target cells. This reflects the ability of GPCRs expressed in cell lines and neoplastic cells to utilize distinct signaling pathways that can elicit altered responses compared with those of native tissues.  相似文献   

7.
Growth factors and their receptors regulate development of many organs through activation of multiple intracellular signaling cascades including a mitogen‐activated protein kinase (MAPK). Extracellular regulated kinases (ERK)1/2, classic MAPK family members, are expressed in fetal mouse submandibular glands (SMG), and stimulate branching morphogenesis. ERK5, also called big mitogen‐activated protein kinase 1, was recently found as a new member of MAPK super family, and its biological roles are still largely unknown. In this study, we investigated the expression and function of ERK5 in developing fetal mouse SMGs. Western blotting analysis showed that the expression pattern of ERK5 was different from the pattern of ERK1/2 in developing fetal SMGs. Both ERK1/2 and ERK5 were phosphorylated after exposure to ligands of the ErbB family of receptor tyrosine kinases (RTKs). Phosphorylation of ERK1/2 was strongly induced by epidermal growth factor (EGF) in SMG rudiments at embryonic day 14 (E14), E16 and E18. However, ERK5 phosphorylation induced by EGF was clearly observed at E14 and E16, but not at E18. Branching morphogenesis of cultured E13 SMG rudiments was strongly suppressed by administration of U0126, an inhibitor for ERK1/2 activation, whereas the phosphorylation of ERK5 was not inhibited by U0126. BIX02188, a specific inhibitor for ERK5 activation, also inhibited branching morphogenesis in cultured SMG rudiments. These results show that EGF‐responsive ERK5 is expressed in developing fetal mouse SMG, and suggest that both ERK1/2 and ERK5 signaling cascades might play an important role in the regulation of branching morphogenesis.  相似文献   

8.
The epidermal growth factor (EGF) and transforming growth factor beta (TGFbeta) families of signaling molecules play a major role in growth and development of embryos. Abrogation of either signaling pathway results in defects in embryogenesis, including cleft palate. In the developing palate, both EGF and TGFbeta regulate cellular proliferation, extracellular matrix synthesis, and cellular differentiation but often in an opposing manner. Evidence from various adult cell types suggests the existence of cross talk between the EGF and TGFbeta signaling pathways, although it is unclear whether such cross talk exists in murine embryonic maxillary mesenchymal cells, from which the developing palate is derived. In this study, embryonic maxillary mesenchymal cells in culture were treated with EGF and TGFbeta, either singly or in combination, and the cells were subsequently examined for signaling interactions between these two pathways. Immunoblot analyses of nuclear extracts of embryonic maxillary mesenchymal cells revealed that TGFbeta-induced nuclear translocation of Smad 2 and Smad 3 proteins was not affected by EGF. Conversely, immunoblot analyses of whole-cell extracts of these cells indicated that EGF-induced phosphorylation of extracellular signal-regulated kinase proteins, ERK1 and ERK2, was not affected by TGFbeta. Expression of a transfected luciferase reporter gene driven by a promoter with Smad binding elements was induced by TGFbeta in these cells but was not affected by EGF. Last, TGFbeta was found to induce expression of the endogenous gelatinase B gene in embryonic maxillary mesenchymal cells; however, this effect was independent of any interaction of EGF. Collectively, data from this study suggest that the EGF and TGFbeta signal transduction pathways do not converge in murine embryonic maxillary mesenchymal cells.  相似文献   

9.
The phenomenon wherein the signaling by a given receptor is regulated by a different class of receptors is termed transactivation or crosstalk. Crosstalk between receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs) is highly diverse and has unique functional implications because of the distinct structural features of the receptors and the signaling pathways involved. The present study used the epidermal growth factor receptor (EGFR) and dopamine D3 receptor (D3R), which are both associated with schizophrenia, as the model system to study crosstalk between RTKs and GPCRs. Loss-of-function approaches were used to identify the cellular components involved in the tyrosine phosphorylation of G protein-coupled receptor kinase 2 (GRK2), which is responsible for EGFR-induced regulation of the functions of D3R. SRC proto-oncogene (Src, non-receptor tyrosine kinase), heterotrimeric G protein Gβγ subunit, and endocytosis of EGFR were involved in the tyrosine phosphorylation of GRK2. In response to EGF treatment, Src interacted with EGFR in a Gβγ-dependent manner, resulting in the endocytosis of EGFR. Internalized EGFR in the cytosol mediated Src/Gβγ-dependent tyrosine phosphorylation of GRK2. The binding of tyrosine-phosphorylated GRK2 to the T142 residue of D3R resulted in uncoupling from G proteins, endocytosis, and lysosomal downregulation. This study identified the molecular mechanisms involved in the EGFR-mediated regulation of the functions of D3R, which can be extended to the crosstalk between other RTKs and GPCRs.  相似文献   

10.
11.
Lysophosphatidic acid (LPA) is a small lysophospholipid that signals through G-protein coupled receptors (GPCRs) to mediate diverse cellular responses. Two LPA receptors, LPA(1) and LPA(2), show gene expression profiles in mouse embryonic cerebral cortex, suggesting roles for LPA signaling in cerebral cortical development. Here, we review loss-of-function and gain-of-function models that have been used to examine LPA signaling. Genetic deletion of lpa(1) or both lpa(1) and lpa(2) in mice results in 50-65% neonatal lethality, but not obvious cortical phenotypes in survivors, suggesting that compensatory signaling systems exist for regulating cortical development. A gain-of-function model, approached by increasing receptor activation through exogenous delivery of LPA, shows that LPA signaling regulates cerebral cortical growth and anatomy by affecting proliferation, differentiation and cell survival during embryonic development.  相似文献   

12.
SUMMARY One of the major goals of evo-developmentalists is to understand how the genetic mechanisms controlling embryonic development have evolved to create the current diversity of bodyplans that we encounter in the animal kingdom. Tyrosine kinase receptors (RTKs) are transmembrane receptors present in all metazoans known to control several developmental processes. They act via the activation of various cytoplasmic signaling cascades, including the mitogen-activated protein kinase (MAPK), the PI3K/Akt, and the phospholipase C-γ (PLCγ)/protein kinase C (PKC) pathways. In order to address the evolution of these three pathways and their involvement during embryogenesis in chordates, we took advantage of the complete genome sequencing of a key evolutionarily positioned species, the cephalochordate amphioxus, and searched for the complete gene set of the three signaling pathways. We found that the amphioxus genome contains all of the most important modules of the RTK-activated cascades, and looked at the embryonic expression of two genes selected from each cascade. Our data suggest that although the PI3K/Akt pathway may have ubiquitous functions, the MAPK and the PLCγ/PKC cascades may play specific roles in amphioxus development. Together with data known in vertebrates, the expression pattern of PKC in amphioxus suggests that the PLCγ/PKC cascade was implicated in neural development in the ancestor of all chordates.  相似文献   

13.
Wu EH  Wu KK  Wong YH 《Neuro-Signals》2006,15(5):217-227
Tuberin, a tumor suppressor protein, is involved in various cellular functions including survival, proliferation, and growth. It has emerged as an important effector regulated by receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). Regulation of tuberin by RTKs and GPCRs is highly complex and dependent on the type of receptors and their associated signaling molecules. Apart from Akt, the first kinase recognized to phosphorylate and inactivate tuberin upon growth factor stimulation, an increasing number of kinases upstream of tuberin have been identified. Furthermore, recruitment of different scaffolding adaptor components to the activated receptors appears to play an important role in the regulation of tuberin activity. More recently, the differential regulation of tuberin by various G protein family members have also been intensively studied, it appears that G proteins can both facilitate (e.g., G(i/o)) as well as inhibit (e.g., G(q)) tuberin phosphorylation. In the present review, we attempt to summarize our emerging understandings of the roles of RTKs, GPCRs, and their cross-talk on the regulation of tuberin.  相似文献   

14.
Sphingosine 1-phosphate (S1P) is the ligand for a family of specific G protein-coupled receptors (GPCRs) that regulate a wide variety of important cellular functions, including growth, survival, cytoskeletal rearrangements, and cell motility. However, whether it also has an intracellular function is still a matter of great debate. Overexpression of sphingosine kinase type 1, which generated S1P, induced extensive stress fibers and impaired formation of the Src-focal adhesion kinase signaling complex, with consequent aberrant focal adhesion turnover, leading to inhibition of cell locomotion. We have dissected biological responses dependent on intracellular S1P from those that are receptor-mediated by specifically blocking signaling of Galphaq, Galphai, Galpha12/13, and Gbetagamma subunits, the G proteins that S1P receptors (S1PRs) couple to and signal through. We found that intracellular S1P signaled "inside out" through its cell-surface receptors linked to G12/13-mediated stress fiber formation, important for cell motility. Remarkably, cell growth stimulation and suppression of apoptosis by endogenous S1P were independent of GPCRs and inside-out signaling. Using fibroblasts from embryonic mice devoid of functional S1PRs, we also demonstrated that, in contrast to exogenous S1P, intracellular S1P formed by overexpression of sphingosine kinase type 1 promoted growth and survival independent of its GPCRs. Hence, exogenous and intracellularly generated S1Ps affect cell growth and survival by divergent pathways. Our results demonstrate a receptor-independent intracellular function of S1P, reminiscent of its action in yeast cells that lack S1PRs.  相似文献   

15.
The lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), regulate various signaling pathways within cells by binding to multiple G protein-coupled receptors. Receptor-mediated LPA and S1P signaling induces diverse cellular responses including proliferation, adhesion, migration, morphogenesis, differentiation and survival. This review will focus on major components of lysophospholipid signaling: metabolism, identification and expression of LPA and S1P receptors, general signaling pathways and specific signaling mechanisms in mouse embryonic fibroblasts. Finally, in vivo effects of LP receptor gene deletion in mice will be discussed.  相似文献   

16.
17.
Epidermal growth factor (EGF) receptor (EGFR) regulates development of cell-cell communication in fetal lung, but the signal transduction mechanisms involved are unknown. We hypothesized that, in late-gestation fetal rat lung, phospholipase C-gamma (PLC-gamma) expression and activation by EGF is cell specific and developmentally regulated. PLC-gamma immunolocalized to cuboidal epithelium and mesenchymal clusters underlying developing saccules. PLC-gamma protein increased from day 17 to day 19 and then decreased. In cultured fetal lung fibroblasts, EGF stimulated PLC-gamma phosphorylation 2.6-fold (day 17), 10.8-fold (day 19), and 4.2-fold (day 21). EGF stimulated (3)H-labeled diacylglycerol production in fibroblasts (beginning on day 18 in female and on day 19 in male rats), but not in type II cells at any time during gestation. EGFR blockade abrogated the observed stimulation of PLC-gamma phosphorylation by EGF. In conclusion, PLC-gamma expression and activation by EGF in fetal lung are cell specific, corresponding to the development of EGFR expression. EGF induces diacylglycerol production in a cell- and gestation-specific manner. PLC-gamma activation by EGFR in fetal lung fibroblasts may be involved in EGF control of lung development.  相似文献   

18.
Shan D  Chen L  Wang D  Tan YC  Gu JL  Huang XY 《Developmental cell》2006,10(6):707-718
Heterotrimeric G proteins are critical cellular signal transducers. They are known to directly relay signals from seven-transmembrane G protein-coupled receptors (GPCRs) to downstream effectors. On the other hand, receptor tyrosine kinases (RTKs), a different family of membrane receptors, signal through docking sites in their carboxy-terminal tails created by autophosphorylated tyrosine residues. Here we show that a heterotrimeric G protein, G alpha(13), is essential for RTK-induced migration of mouse fibroblast and endothelial cells. G alpha(13) activity in cell migration is retained in a C-terminal mutant that is defective in GPCR coupling, suggesting that the migration function is independent of GPCR signaling. Thus, G alpha(13) appears to be a critical signal transducer for RTKs as well as GPCRs. This broader role of G alpha(13) in cell migration initiated by two types of receptors could provide a molecular basis for the vascular system defects exhibited by G alpha(13) knockout mice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号