首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
十字花科一新属——泡果荠属   总被引:11,自引:2,他引:9  
岩荠属泡果荠组植物(Cochlearia L.Sect.Hilliella O.E.Schulz)不仅在体态上而且在其它一系列特征特别是具泡状突起的果实特征上极不同于狭义的岩荠属(Cohc-learia L.s.str.),松蓝叶岩荠属[Glaucocochlearia(O.E.Schulz)Pobed.],以及拟常绿岩荠属[Pseudosempervium(Boiss)Grossh.]。这些特征看来可以作为建立一新属的根据,因此将其提升为一独立的属并把这一组的8个种组合到新属中去。  相似文献   

2.
Abstract: Twenty-one random and 29 SSR primers were used to assess genetic variation and interrelationships among subspecies and botanical varieties of cultivated peanut, Arachis hypogaea (2n = 4x = 40), and phylogenetic relationships among cultivated peanut and wild species of the genus Arachis. In contrast with the previous generalization that peanut accessions lack genetic variation, both random and SSR primers revealed 42.7 and 54.4% polymorphism, respectively, among 220 and 124 genetic loci amplified from 13 accessions. Moreover, the dendrograms based on RAPD, ISSR, and RAPD + ISSR data precisely organized the five botanical varieties of the two subspecies into five clusters. One SSR primer was identified that could distinguish all the accessions analysed within a variety. Although the polymorphic index content varied from 0.1 to 0.5 for both ISSR and RAPD markers, primer index values were substantially higher for RAPD primers (0.35-4.65) than for SSR primers (0.35-1.73). It was possible to identify accessions, particularly those of divergent origins, by RAPD and (or) ISSR fingerprints. Based on these results, marker-based genetic improvement in A. hypogaea appears possible. None of the 486 RAPD and 330 ISSR amplification products were found to be commonly shared among 13 species of section Arachis and one species each of sections Heteranthae, Rhizomatosae, and Procumbentes. Dendrograms constructed from RAPD, ISSR, and RAPD + ISSR data showed overall similar topologies. They could be resolved into four groups corresponding to the species grouped in four taxonomic sections. The present results strongly support the view that Arachis monticola (2n = 4x = 40) and A. hypogaea are very closely related, and indicate that A. villosa and A. ipaensis are the diploid wild progenitors of these tetraploid species.  相似文献   

3.
The origin of the crop species Allium fistulosum (bunching onion) and its relation to its wild relative A. altaicum were surveyed with a restriction fragment length polymorphism (RFLP) analysis of five noncoding cpDNA regions and with a random amplified polymorhic DNA (RAPD) analysis of nuclear DNA. Sixteen accessions of A. altaicum, 14 accessions of A. fistulosum, representing the morphological variability of the species, and five additional outgroup species from Allium section Cepa were included in this study. The RFLP analysis detected 14 phylogenetically informative character transformations, whereas RAPD revealed 126 polymorphic fragments. Generalized parsimony, neighbor-joining analysis of genetic distances, and a principal co-ordinate analysis were able to distinguish the two species, but only RAPD data allowed clarification of the interrelationship of the two taxa. The main results of this investigation were: (1) A. fistulosum is of monophyletic origin, and (2) A. fistulosum originated from an A. altaicum progenitor, making A. altaicum a paraphyletic species. Compared with A. altaicum the cultivated accessions of the bunching onion show less genetic variability, a phenomenon that often occurs in crop species due to the severe genetic bottleneck of domestication. Allium altaicum and A. fistulosum easily hybridize when grown together, and most garden-grown material is of recent hybrid origin.  相似文献   

4.
The chloroplast genomes of 44 accessions ofSecale were surveyed for restriction site polymorphisms. The accessions were chosen to represent the geographic as well as taxonomic range of the genus. Using 12 restriction enzymes a total of 348 sites were detected. Twenty-nine mutation sites were phylogenetically informative and used in a cladistic analysis. Further, a 0.1 kb insertion separatedSecale from the outgroup species. Only the annual speciesS. sylvestre was distinct from the rest of the taxa. Cultivated rye together with both wild annual and wild perennial accessions were mixed among each other. Sequence divergence (p) among taxa ofSecale was low, varying from 0.000 to 0.005, suggesting a rather recent origin of the genus.  相似文献   

5.
Summary Restriction fragment analysis of chloroplast (cp) DNAs from 35 wheat (Triticum) and Aegilops species, including their 42 accessions, was carried out with the use of 13 restriction enzymes to clarify variation in their cpDNAs. Fourteen fragment size mutations (deletions/insertions) and 33 recognition site changes were detected among 209 restriction sites sampled. Based on these results, the 42 accessions of wheat-Aegilops could be classified into 16 chloroplast genome types. Most polyploids and their related diploids showed identical restriction fragment patterns, indicating the conservatism of the chloroplast genome during speciation, and maternal lineages of most polyploids were disclosed. This classification of cpDNAs was principally in agreement with that of the plasma types assigned according to phenotypes arising from nucleus-cytoplasm interactions. These mutations detected by restriction fragment analysis were mapped on the physical map of common wheat cpDNA, which was constructed with 13 restriction endonucleases. Length mutations were more frequently observed in some regions than in others: in a 16.0 kilo base pairs (kbp) of DNA region, including rbcL and petA genes, 6 of 14 length mutations were concentrated. This indicates that hot spot regions exist for deletions/insertions in chloroplast genome. On the other hand, 33 recognition site mutations seemed to be distributed equally throughout the genome, except in the inverted repeat region where only one recognition site change was observed. Base substitution rate (p) of cpDNA was similar to that of other plants, such as Brassica, pea and Lycopersicon, showing constant base substitution rates among related taxa and slow evolution of cpDNA compared with animal mitochondrial DNA. Phylogenetic relationships among Triticum and Aegilops species were discussed, based on the present data.Contributions no. 45 and no. 490 from the Kihara Institute for Biological Research, Yokohama City University and the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, respectively.  相似文献   

6.
Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.  相似文献   

7.
The genus Cochleariopsis Y.H. Zhang was described in 1985, with C. zhejiangensis Y. H. Zhang, the only member of the genus, as its type. However, this species had been published by O.E. Schulz earlier in 1923, named Cochlearia warburgii O.E. Schulz. Hence, this species is not new one, and the type of the ge-nus should be Cochleariopsis warburgii (O. E. Schulz)L. L. Lu .  相似文献   

8.
The B genome of Glycine subgenus Glycine comprises three diploid species whose monophyly is supported by morphological, crossing, and chloroplast DNA (cpDNA) data. Previous cpDNA studies indicated low levels of divergence among these taxa and failed to resolve cladistic relationships among them. More intensive studies of cpDNA variation were initiated, using additional restriction endonucleases and accessions. Results from cladistic analyses of over 50 restriction site characters indicate that there is considerable cpDNA polymorphism within this group of species, with a minimum of 27 plastome types occurring among the 74 accessions sampled. Levels of homoplasy observed in this group are relatively high (15%) for closely related congeneric species. There is only limited congruence between plastome type and taxonomic classification based on morphological characters. Explanations for this lack of concordance include: 1) the early state of taxonomic understanding in this group, 2) lack of resolution in the cpDNA tree caused by homoplasy and the small number of synapomorphic characters, 3) introgression among these interfertile, often sympatric taxa, and 4) maintenance of ancestral cpDNA polymorphisms resulting in shared plastomes among species.  相似文献   

9.
Random amplified polymorphic DNA (RAPD) was assessed for its suitability as a tool to be used in the identification of taxa from the genusStylosanthes (Fabaceae, Papilionoideae, Aeschynomeneae). Five random primers were used to fingerprint accessions from seven species in the genus, and generated RAPD profiles that were species-specific. Data were used to examine evolutionary relationships between taxa, employing both clustering and ordination techniques, and the results were compared with those from a previous cladistic analysis of chloroplast DNA (cpDNA) restriction fragments. Both multivariate approaches indicated relationships that were generally similar to those obtained by RFLP analysis of cpDNA. However, while cluster analysis grouped together all accessions within species, ordination placed certain accessions ofS. humilis, S. macrocephala andS. capitata into separate groups. Experiments to test the assumed homology of comigrating RAPDs estimated 85.7% homology for accessions within species, and 53.8% homology for accessions between species. The value of RAPD data in systematics is discussed.  相似文献   

10.
Evolutionary relationships within Actinidia, a genus known for the contrasting mode of inheritance of its plastids and mitochondria, were studied. The phylogenetic analysis is based on chloroplast (cp) and mitochondrial (mt) restriction site and sequence data (matK, psbC-trnS, rbcL, and trnL-trnF for cpDNA; nad1-2/3 and nad4-1/2 for mtDNA). The analysis of cp sequence data confirms the hypothesis that the four currently recognized sections are not monophyletic. The detection of incongruences among phylogenies (mtDNA vs. cpDNA tree) coupled with the detection of intraspecific polymorphisms confirms some of the reticulations previously emphasized, diagnoses new hybridization/introgression events, and provides evidence for multiple origin of at least two polyploid taxa. A number of hybridization/introgression events at the diploid, tetraploid, and possibly hexaploid levels are documented. The extensive reticulate evolution undergone by Actinidia could account for the lack of clear morphological discontinuities at the species level.  相似文献   

11.
We examined intraspecific chloroplast (cp) DNA variation within Populus deltoides, P. nigra, and P. maximowiczii by restriction fragment analysis using 16 restriction endonucleases and six heterologous probes of cloned Petunia cpDNA fragments. All three Populus species showed intraspecific cpDNA variation, which was intra- and inter-varietal in P. deltoides, intervarietal in P. nigra, and origin-specific in P. maximowiczii. Two varieties of P. deltoides, var deltoides and var occidentalis, showed distinct cp genomes/DNA. Three distinct cp genomes/DNA, separated by a loss or gain of 1 EcoRV restriction site and/or 1 restriction fragment length polymorphism (RFLP), were observed among the individuals of P. deltoides var deltoides. Within P. nigra, cpDNA of var italica was distinct from that of vars nigra and plantierensis by one RFLP and by a loss or gain of one BamHI restriction site. Populus maximowiczii clones of Chinese origin were separated from those of Japanese origin by a gain or loss of one ClaI restriction site in their cpDNA. The estimate of nucleotide substitutions per site in cpDNA was 0.07% between two varieties of P. deltoides, 0.05% between var italica and var nigra or plantierensis of P. nigra, and 0.01% between Japanese and Chinese accessions of P. maximowiczii.  相似文献   

12.
When the genus Yinshania Ma et Y. Z. Zhao was published, it had only a single species, Y. albiflora Ma et Y. Z. Zhao which was indicated as the type of the genus (Acta Phytotax. Sin. 1979). Y. Z. Zhao 155. was indicated as the type specimen of Y. albiflora. It is adequate to cite Y. albiflora Ma et Y. Z. Zhao as the type of genus Yinshania Ma et Y. Z. Zhao. In a revision (Acta Phytotax. Sin. 25(3): 204-219, 1987) Y. H. Zhang made a combintion, Yinshania acutangula (O. E. Schulz) Y. H. Zhang (=Cochlearia acutangula O. E. Schulz) and reduced Yinshania albiflora Ma et Y. Z. Zhao as a variety of Y. acutangula,i. e. Y. acutangula var. albiflora (Ma et Y. Z. Zhao) Y. H. Zhang. She is uncorrect, however, when she cited Y. acutangula (O. E. Schulz) Y. H . Zhang as the type of the genus Yinshania Ma et Y. Z. Zhao. It should be cited as follows: Yinshania Ma et Y. Z. Zhao Typus generis: Yinshania albiflora Ma et Y. Z. Zhao (=Yinshania acutangula(O. E. Schulz) Y. H. Zhang var. albiflora (Ma et Y. Z. Zhao) Y. H. Zhang)  相似文献   

13.
Polymorphism in the lengths of restriction fragments of the whole cpDNA molecule were studied in 15 taxa (species or subspecies) of the genus Olea. From restriction analysis using nine endonucleases, 28 site mutations and five length polymorphisms were identified, corresponding to 12 distinct chlorotypes. From a phenetic analysis based on a Nei’s dissimilarity matrix and a Dollo parsimony cladistic analysis using, as an outgroup, a species of the genus Phillyrea close to Olea, the ten taxa of section Olea were distinguished clearly from the five taxa of section Ligustroides which appear to posses more ancestral cpDNA variants. Within the section Ligustroides, the tropical species from central-western Africa, Olea hochtetteri, showed a chlorotype which differed substantially from those of the other four Olea taxa growing in southern Africa, supporting a previous assessment according to which O. hochtetteri may have been subjected to a long period of geographical isolation from the other Olea taxa. Within the Olea section, three phyla were identified corresponding to South and East Africa taxa, Asiatic taxa, and a group including Saharan, Macaronesian and Mediteranean taxa, respectively. On the basis of cpDNA variation, the closest Olea taxa to the single Mediterranean species, Olea europaea, represented by its very predominant chlorotype, observed in both wild and cultivated olive, were found to be Olea laperrinei (from the Sahara), Olea maroccana (from Maroccan High Atlas) and Olea cerasiformis (from Macaronesia). These three taxa, which all share the same chlorotype, may have a common maternal origin. Received: 5 December 1999 / Accepted: 30 December 1999  相似文献   

14.
Persson K  Díaz O  von Bothmer R 《Hereditas》2001,134(3):237-243
Little is known about the extent and patterns of distribution of RAPD diversity in outcrossing species. This study is the first step in using RAPD markers to quantify the amount and distribution of genetic variation within and between accessions of 9 landraces and 3 cultivars of cultivated rye from Northern Europe. A high level of RAPD variation was detected, demonstrating the utility of RAPDs for genetic characterisation in rye. The results show that: (1) landraces and improved cultivars maintain roughly the same high levels of RAPD variation, (2) landraces from Norway, Germany and Finland showed the lowest level of variation, probably because of a small amount of seeds from the original samples, (3) most of the RAPD variation was found within rather than between the accessions, which is consistent with the pattern expected for a cross pollinated crop. Both the cluster and the principal coordinates analyses displayed the same pattern of genetic relationship among the accessions studied.  相似文献   

15.
Two hundred and seventy-five accessions of cultivated Asian rice and 44 accessions of AA genome Oryza species were classified into 8 chloroplast (cp) genome types (A-H) based on insertion-deletion events at 3 regions (8K, 57K, and 76K) of the cp genome. The ancestral cp genome type was determined according to the frequency of occurrence in Oryza species and the likely evolution of the variable 57K region of the cp genome. When 2 nucleotide substitutions (AA or TT) were taken into account, these 8 cp types were subdivided into 11 cp types. Most indica cultivars had 1 of 3 cp genome types that were also identified in the wild relatives of rice, O. nivara and O. rufipogon, suggesting that the 3 indica cp types had evolved from distinct gene pools of the O. rufipogon - O. nivara complex. The majority of japonica cultivars had 1 of 3 different cp genome types. One of these 3 was identified in O. rufipogon, suggesting that at least 1 japonica type is derived from O. rufipogon with the same cp genome type. These results provide evidence to support a polyphyletic origin of cultivated Asian rice from at least 4 principal lineages in the O. rufipogon - O. nivara complex.  相似文献   

16.
Restriction site variation in the chloroplast genome (cpDNA) was surveyed among 37 taxa or cytotypes (40 accessions) of the genus Hordeum. Seventeen restriction enzymes were employed, and a total of 491 restriction sites were assayed. Of these, 120 were variable among the taxa, including 70 synapomorphies. The level of sequence divergence (p) among species of Hordeum varied from 0.0 to 0.017, indicating that Hordeum possesses an about-average level of cpDNA diversity as compared to most other genera of flowering plants for which data are available. Wagner and polymorphism parsimony phytogenies were constructed from the restriction site data. These analyses divided the genus into several distinct groups; 1) American taxa; 2) diploid H. marinum; 3) Asian taxa; 4) H. vulgare-H. bulbosum; and 5) the H. murinum complex. Bootstrap-based confidence limits provided statistical support for the monophylesis of the latter three groups. The cpDNA data showed remarkably good congruence with previously published isoenzymatic, molecular, cytological, and crossing data.  相似文献   

17.
The evolutionary history of the common chloroplast (cp) genome of the allotetraploid Arabidopsis suecica and its maternal parent A. thaliana was investigated by sequencing 50 fragments of cpDNA, resulting in 98 polymorphic sites. The variation in the A. suecica sample was small, in contrast to that of the A. thaliana sample. The time to the most recent common ancestor (T(MRCA)) of the A. suecica cp genome alone was estimated to be about one 37th of the T(MRCA) of both the A. thaliana and A. suecica cp genomes. This corresponds to A. suecica having a MRCA between 10 000 and 50 000 years ago, suggesting that the entire species originated during, or before, this period of time, although the estimates are sensitive to assumptions made about population size and mutation rate. The data was also consistent with the hypothesis of A. suecica being of single origin. Isolation-by-distance and population structure in A. thaliana depended upon the geographical scale analysed; isolation-by-distance was found to be weak on the global scale but locally pronounced. Within the genealogical cp tree of A. thaliana, there were indications that the root of the A. suecica species is located among accessions of A. thaliana that come primarily from central Europe. Selective neutrality of the cp genome could not be rejected, despite the fact that it contains several completely linked protein-coding genes.  相似文献   

18.
RAPD markers were used to study variation among 20 taxa in the genus OROBANCHE: O. alba, O. amethystea, O. arenaria, O. ballotae, O. cernua, O. clausonis, O. cumana, O. crenata, O. densiflora, O. foetida, O. foetida var. broteri, O. gracilis, O. haenseleri, O. hederae, O. latisquama, O. mutelii, O. nana, O. ramosa, O. rapum-genistae and O. santolinae. A total of 202 amplification products generated with five arbitrary RAPD primers was obtained and species-specific markers were identified. The estimated Jaccard's differences between the species varied between 0 and 0.864. The pattern of interspecific variation obtained is in general agreement with previous taxonomic studies based on morphology, and the partition into two different sections (Trionychon and Orobanche) is generally clear. However, the position in the dendrogram of O. clausonis did not fit this classification since it clustered with members of section TRIONYCHON: Within this section, O. arenaria was relatively isolated from the other members of the section: O. mutelii, O. nana and O. ramosa. Within section Orobanche, all O. ramosa populations showed a similar amplification pattern, whereas differences among O. crenata populations growing on different hosts were found. Orobanche foetida and O. densiflora clustered together, supporting the morphological and cytological similarities and the host preferences of these species.  相似文献   

19.
A restriction-site analysis of chloroplast DNA (cpDNA) variation in Lens was conducted to: (1) assess the levels of variation in Lens culinaris ssp. culinaris (the domesticated lentil), (2) identify the wild progenitor of the domesticated lentil, and (3) construct a cpDNA phylogeny of the genus. We analyzed 399 restriction sites in 114 cultivated accessions and 11 wild accessions. All but three accessions of the cultivar had identical cpDNAs. Two accessions exhibited a single shared restriction-site loss, and a small insertion was observed in the cpDNA of a third accession. We detected 19 restriction-site mutations and two length mutations among accessions of the wild taxa. Three of the four accessions of L. culinaris ssp. orientalis were identical to the cultivars at every restriction site, clearly identifying ssp. orientalis as the progenitor of the cultivated lentil. Because of its limited cpDNA diversity, we conclude that either the cultivated lentil has passed through a genetic bottleneck during domestication and lost most of its cytoplasmic variability or else was domesticated from an ancestor that was naturally depauperate in cpDNA restriction-site variation. However, because we had access to only a small number of populations of the wild taxa, the levels of variation present in ssp. orientalis can only be estimated, and the extent of such a domestication bottleneck, if applicable, cannot be evaluated. The cpDNA-based phylogeny portrays Lens as quite distinct from its putative closest relative, Vicia montbretii. L. culinaris ssp. odemensis is the sister of L. nigricans; L. culinaris is therefore paraphyletic given the current taxonomic placement of ssp. odemensis. Lens nigricans ssp. nigricans is by far the most divergent taxon of the genus, exhibiting ten autapomorphic restriction-site mutations.  相似文献   

20.
We developed a combined molecular and morphological approach to unravel complex variation at low taxonomic levels, exemplified by some arctic members of Potentilla. Twenty-one populations from Svalbard were analyzed for random amplified polymorphic DNAs (RAPDs) and 64 morphological characters to test the hypotheses that (1) the P. nivea complex (section Niveae) consists of three taxa (P. chamissonis, P. insularis, and P. nivea), (2) three "eco-morphotypes" in P. pulchella (section Multifidae) should be considered different taxa, and (3) P. insularis originated as an intersectional hybrid (Niveae × Multifidae). Twenty-two RAPD multilocus phenotypes were observed in the 136 plants analyzed based on 35 markers. Three fairly distinct groups of RAPD phenotypes were identified in the P. nivea complex based on multivariate analyses and an analysis of molecular variance (AMOVA; 77.6% among-group variation). The variation within the P. nivea complex was more or less continuous in multivariate analyses of the morphological data. We identified, however, several individual morphological characters that separated unambiguously among the three groups of RAPD phenotypes, revealing that these groups correspond to the previously hypothesized taxa. Many identical RAPD multilocus phenotypes were observed in the "eco-morphotypes" of P. pulchella, suggesting that its conspicuous morphological variation is caused by plasticity or by genetic variation at a small number of loci. The hypothesis of the hybrid origin of P. insularis was not supported by the RAPD data. Overall, very little RAPD variation was observed within populations of the four taxa (2.1-16.7% in AMOVA analyses; average genotypic diversity, D, was 0.10-0.30). We conclude that detailed, concerted analysis of molecules and morphology is a powerful tool in low-level taxonomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号