首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, treating the artery as a thick-walled cylindrical shell made of an incompressible, isotropic and elastic solid, utilizing the large deformation theory and the stress-strain relation proposed by Demiray (1976b,Trans. ASME Ser. E, J. Appl. Mech.,98, 194–197), an explicit expression for the pulse speed is obtained and the effect of lumen pressure and the axial stretch on wave speed is discussed. Numerical results indicate that the wave speed increases with lumen pressure but decreases with the axial stretch. The results of the present model are compared with our previous work (Demiray, 1988,J. Biomech. 21, 55–58) on the same subject.  相似文献   

2.
Theoretical and experimental evidence suggests that the dissipation of high frequency pressure waves in blood vessels is caused primarily by the viscoelastic behavior of the vessel wall. In this theoretical analysis the vessels are considered as fluid-filled circular cylindrical shells whose walls have isotropic and homogeneous viscoelastic properties and are subjected to an initial axial stretch and a transmural pressure. If the wall material is incompressible and behaves as a Voigt solid in shear, the results predict a decrease in wave amplitude per wavelength which is essentially independent of frequency over a wide range. This finding is in qualitative agreement with recent experiments on anesthetized dogs. A parametric study also shows a great sensitivity of the dissipation to changes in transmural pressure and axial stretch. Axisymmetric waves are only mildly dispersive, while all nonaxisymmetric waves are highly dispersive and exhibit much stronger damping per wavelength at low frequencies than do axisymmetric waves.  相似文献   

3.
Transmission characteristics of axial waves in blood vessels   总被引:2,自引:0,他引:2  
The elastic behavior of blood vessels can be quantitatively examined by measuring the propagation characteristics of waves transmitted by them. In addition, specific information regarding the viscoelastic properties of the vessel wall can be deduced by comparing the observed wave transmission data with theoretical predictions. The relevance of these deductions is directly dependent on the validity of the mathematical model for the mechanical behavior of blood vessels used in the theoretical analysis. Previous experimental investigations of waves in blood vessels have been restricted to pressure waves even though theoretical studies predict three types of waves with distinctly different transmission characteristics. These waves can be distinguished by the dominant displacement component of the vessel wall and are accordingly referred to as radial, axial and circumferential waves. The radial waves are also referred to as pressure waves since they exhibit pronounced pressure fluctuations. For a thorough evaluation of the mathematical models used in the analysis it is necessary to measure also the dispersion and attenuation of the axial and circumferential (torsion) waves.

To this end a method has been developed to determine the phase velocities and damping of sinusoidal axial waves in the carotid artery of anesthetized dogs with the aid of an electro-optical tracking system. For frequencies between 25 and 150 Hz the speed of the axial waves was between 20 and 40 m/sec and generally increased with frequency, while the natural pressure wave travelled at a speed of about 10 m/sec. On the basis of an isotropic wall model the axial wave speed should however be approximately 5 times higher than the pressure wave speed. This discrepancy can be interpreted as an indication for an anisotropic behavior of the carotid wall. The carotid artery appears to be more elastic in the axial than in the circumferential direction.  相似文献   


4.
Uniaxial and biaxial mechanical properties of purified elastic tissue from the proximal thoracic aorta were studied to understand physiological load distributions within the arterial wall. Stress–strain behaviour was non-linear in uniaxial and inflation tests. Elastic tissue was 40% stiffer in the circumferential direction compared to axial in uniaxial tests and~100% stiffer in vessels at an axial stretch ratio of 1.2 or 1.3 and inflated to physiological pressure. Poisson’s ratio vθz averaged 0.2 and vzθ increased with circumferential stretch from ~0.2 to ~0.4. Axial stretch had little impact on circumferential behaviour. In intact (unpurified) vessels at constant length, axial forces decreased with pressure at low axial stretches but remained constant at higher stretches. Such a constant axial force is characteristic of incrementally isotropic arteries at their in vivo dimensions. In purified elastic tissue, force decreased with pressure at all axial strains, showing no trend towards isotropy. Analysis of the force–length–pressure data indicated a vessel with vθz≈0.2 would stretch axially 2–4% with the cardiac pulse yet maintain constant axial force. We compared the ability of 4 mathematical models to predict the pressure-circumferential stretch behaviour of tethered, purified elastic tissue. Models that assumed isotropy could not predict the stretch at zero pressure. The neo-Hookean model overestimated the non-linearity of the response and two non-linear models underestimated it. A model incorporating contributions from orthogonal fibres captured the non-linearity but not the zero-pressure response. Models incorporating anisotropy and non-linearity should better predict the mechanical behaviour of elastic tissue of the proximal thoracic aorta.  相似文献   

5.
Though tortuosity and kinking are often observed in various arteries and arterioles, little is known about the underlying mechanisms. This paper presents a biomechanical analysis of bent buckling in long arterial segments with a small initial curvature using a thick-walled elastic cylindrical arterial model. The critical buckling pressure was established as a function of wall stiffness, wall dimensions, and the axial tension (or axial stretch ratio). The effects of both wall dimensions and axial stretch ratio on the critical pressure, as well as the thin-walled approximation were discussed. The buckling equation sheds light on the biomechanical mechanism of artery tortuosity and provides guidance for the development of new techniques to treat and prevent artery tortuosity and kinking.  相似文献   

6.
The pressure-diameter relation (PDR) and the wall strain of coronary blood vessels have important implications for coronary blood flow and arthrosclerosis, respectively. Previous studies have shown that these mechanical quantities are significantly affected by the axial stretch of the vessels. The objective of this study was to measure the physiological axial stretch in the coronary vasculature; i.e., from left anterior descending (LAD) artery tree to coronary sinus vein and to determine its effect on the PDR and hence wall stiffness. Silicone elastomer was perfused through the LAD artery and coronary sinus trees to cast the vessels at the physiologic pressure. The results show that the physiological axial stretch exists for orders 4 to 11 (> 24 μm in diameter) arteries and orders -4 to -12 (>38 μm in diameter) veins but vanishes for the smaller vessels. Statistically, the axial stretch is higher for larger vessels and is higher for arteries than veins. The axial stretch λ(z) shows a linear variation with the order number (n) as: λ(z) = 0.062n + 0.75 (R(2) = 0.99) for artery and λ(z) = -0.029n + 0.89 (R(2) = 0.99) for vein. The mechanical analysis shows that the axial stretch significantly affects the PDR of the larger vessels. The circumferential stretch/strain was found to be significantly higher for the epicardial arteries (orders 9-11), which are free of myocardium constraint, than the intramyocardial arteries (orders 4-8). These findings have fundamental implications for coronary blood vessel mechanics.  相似文献   

7.
The study verifies the development of active axial stress in the wall of mouse aorta over a range of physiological loads when the smooth muscle cells are stimulated to contract. The results obtained show that the active axial stress is virtually independent of the magnitude of pressure, but depends predominately on the longitudinal stretch ratio. The dependence is non-monotonic and is similar to the active stress-stretch dependence in the circumferential direction reported in the literature. The expression for the active axial stress fitted to the experimental data shows that the maximum active stress is developed at longitudinal stretch ratio 1.81, and 1.56 is the longitudinal stretch ratio below which the stimulation does not generate active stress. The study shows that the magnitude of active axial stress is smaller than the active circumferential stress. There is need for more experimental investigations on the active response of different types of arteries from different species and pathological conditions. The results of these studies can promote building of refined constrictive models in vascular rheology.  相似文献   

8.
Swallow and esophageal distension-induced relaxations of the lower esophageal sphincter (LES) are associated with an orad movement of the LES because of a concurrent esophageal longitudinal muscle contraction. We hypothesized that the esophageal longitudinal muscle contraction induces a cranially directed mechanical stretch on the LES and therefore studied the effects of a mechanical stretch on the LES pressure. In adult opossums, a silicon tube was placed via mouth into the esophagus and laparotomy was performed. Two needles with silk sutures were passed, 90 degrees apart, through the esophageal walls and silicon tube, 2 cm above the LES. The tube was withdrawn, and one end of each of the four sutures was anchored to the esophageal wall and the other end exited through the mouth to exert graded cranially directed stretch on the LES by using pulley and weights. A cranially directed stretch caused LES relaxation, and with the cessation of stretch there was recovery of the LES pressure. The degree an d duration of LES relaxation increased with the weight and the duration of stretch, respectively. The mean LES relaxation in all animals was 77.7 +/- 4.7%. The required weight to induce maximal LES relaxation differed in animals (714 +/- 348 g). N(G)-nitro-L-arginine, a nitric oxide inhibitor, blocked the axial stretch-induced LES relaxation almost completely (from 78 to 19%). Our data support the presence of an axial stretch-activated inhibitory mechanism in the LES. The role of axial stretch in the LES relaxation induced by swallow and esophageal distension requires further investigation.  相似文献   

9.
In the present work, we study the propagation of solitary waves in a prestressed thick walled elastic tube filled with an incompressible inviscid fluid. In order to include the geometric dispersion in the analysis the wall inertia and shear deformation effects are taken into account for the inner pressure-cross-sectional area relation. Using the reductive perturbation technique, the propagation of weakly non-linear waves in the long-wave approximation is examined. It is shown that, contrary to thin tube theories, the present approach makes it possible to have solitary waves even for a Mooney-Rivlin (M-R) material. Due to dependence of the coefficients of the governing Korteweg-deVries equation on initial deformation, the solution profile changes with inner pressure and the axial stretch. The variation of wave profiles for a class of elastic materals are depicted in graphical forms. As might be seen from these illustrations, with increasing thickness ratio, the profile of solitary wave is steepened for a M-R material but it is broadened for biological tissues.  相似文献   

10.
Arteries in vivo are subjected to large longitudinal stretch, which changes significantly due to vascular disease and surgery. However, little is known about the effect of longitudinal stretch on arterial endothelium. The aim of this study was to determine the morphologic adaptation of arterial endothelial cells (ECs) to elevated axial stretch. Porcine carotid arteries were stretched 20% more than their in vivo length while being maintained at physiological pressure and flow rate in an organ culture system. The ECs were elongated with the application of the axial stretch (aspect ratio 2.81+/-0.25 versus 3.65+/-0.38, n=8, p<0.001). The elongation was slightly decreased after three days and the ECs recovered their normal shape after seven days, as measured by the shape index and aspect ratio (0.55+/-0.03 versus 0.56+/-0.04, and 2.93+/-0.28 versus 2.88+/-0.20, respectively, n=5). Cell proliferation was increased in the intima of stretched arteries in three days as compared to control arteries but showed no difference after seven days in organ culture. These results demonstrate that the ECs adapt to axial stretch and maintain their normal shape.  相似文献   

11.
Many acute cardiovascular syndromes such as heart attack and stroke are caused by atherosclerotic plaque ruptures which often happen without warning. MRI-based models with fluid-structure interactions (FSI) have been introduced to perform flow and stress/strain analysis for atherosclerotic plaques and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. In this paper, cyclic bending was added to 3D FSI coronary plaque models for more accurate mechanical predictions. Curvature variation was prescribed using the data of a human left anterior descending (LAD) coronary artery. Five computational models were constructed based on ex vivo MRI human coronary plaque data to assess the effects of cyclic bending, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. In vitro experiments using a hydrogel stenosis model with cyclical bending were performed to observe effect of cyclical bending on flow conditions. Our results indicate that cyclical bending may cause more than 100% or even up to more than 1000% increase in maximum principal stress values at locations where the plaque is bent most. Stress increase is higher when bending is coupled with axial stretch, non-smooth plaque structure, or resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (21.6% decrease in maximum velocity, 10.8% decrease in flow rate, maximum flow shear stress changes were < 5%). Computational FSI models including cyclic bending, plaque components and structure, axial stretch, accurate in vivo measurements of pressure, curvature, and material properties should lead to significant improvement on stress-based plaque mechanical analysis and more accurate coronary plaque vulnerability assessment.  相似文献   

12.
Elastic arteries are significantly prestretched in an axial direction. This property minimises axial deformations during pressure cycle. Ageing-induced changes in arterial biomechanics, among others, are manifested via a marked decrease in the prestretch. Although this fact is well known, little attention has been paid to the effect of decreased prestretch on mechanical response. Our study presents the results of an analytical simulation of the inflation–extension behaviour of the human abdominal aorta treated as nonlinear, anisotropic, prestrained thin-walled as well as thick-walled tube with closed ends. The constitutive parameters and geometries for 17 aortas adopted from the literature were supplemented with initial axial prestretches obtained from the statistics of 365 autopsy measurements. For each aorta, the inflation–extension response was calculated three times, with the expected value of the initial prestretch and with the upper and lower confidence limit of the initial prestretch derived from the statistics. This approach enabled age-related trends to be evaluated bearing in mind the uncertainty in the prestretch. Despite significantly decreased longitudinal prestretch with age, the biomechanical response of human abdominal aorta changes substantially depending on the initial axial stretch was used. In particular, substituting the upper limit of initial prestretch gave mechanical responses which can be characterised by (1) low variation in axial stretch and (2) high circumferential distensibility during pressurisation, in contrast to the responses obtained for their weakly prestretched counterparts. The simulation also suggested the significant effect of the axial prestretch on the variation of axial stress in the pressure cycle. Finally, the obtained results are in accordance with the hypothesis that circumferential-to-axial stiffness ratio is the quantity relatively constant within this cycle.  相似文献   

13.
It has recently been shown that shear wave speed in tendons is directly dependent on axial stress. Hence, wave speed could be used to infer tendon load provided that the wave speed-stress relationship can be calibrated and remains robust across loading conditions. The purpose of this study was to investigate the effects of loading rate and fluid immersion on the wave speed-stress relationship in ex vivo tendons, and to assess potential calibration techniques. Tendon wave speed and axial stress were measured in 20 porcine digital flexor tendons during cyclic (0.5, 1.0 and 2.0 Hz) or static axial loading. Squared wave speed was highly correlated to stress (r2avg = 0.98) and was insensitive to loading rate (p = 0.57). The constant of proportionality is the effective density, which reflects the density of the tendon tissue and additional effective mass added by the adjacent fluid. Effective densities of tendons vibrating in a saline bath averaged 1680 kg/m3 and added mass effects caused wave speeds to be 22% lower on average in a saline bath than in air. The root-mean-square error between predicted and measured stress was 0.67 MPa (6.7% of maximum stress) when using tendon-specific calibration parameters. These errors increased to 1.31 MPa (13.1% of maximum stress) when calibrating based on group-compiled data from ten tendons. These results support the feasibility of calculating absolute tendon stresses from wave speed squared based on linear calibration relationships.  相似文献   

14.
Image-based computational models for atherosclerotic plaques have been developed to perform mechanical analysis to quantify critical flow and stress/strain conditions related to plaque rupture which often leads directly to heart attack or stroke. An important modeling issue is how to determine zero stress state from in vivo plaque geometries. This paper presents a method to quantify human carotid artery axial and inner circumferential shrinkages by using patient-specific ex vivo and in vivo MRI images. A shrink-stretch process based on patient-specific in vivo plaque morphology and shrinkage data was introduced to shrink the in vivo geometry first to find the zero-stress state (opening angle was ignored to reduce the complexity), and then stretch and pressurize to recover the in vivo plaque geometry with computed initial stress, strain, flow pressure and velocity conditions. Effects of the shrink-stretch process on plaque stress/strain distributions were demonstrated based on patient-specific data using 3D models with fluid-structure interactions (FSI). The average artery axial and inner circumferential shrinkages were 25% and 7.9%, respectively, based on a data set obtained from 10 patients. Maximum values of maximum principal stress and strain increased 349.8% and 249% respectively with 33% axial stretch. Influence of inner circumferential shrinkage (7.9%) was not very noticeable under 33% axial stretch, but became more noticeable under smaller axial stretch. Our results indicated that accurate knowledge of artery shrinkages and the shrink-stretch process will considerably improve the accuracy of computational predictions made based on results from those in vivo MRI-based FSI models.  相似文献   

15.
Several studies from our laboratory show that axial stretch of the lower esophageal sphincter (LES) in an oral direction causes neurally mediated LES relaxation. Under physiological conditions, axial stretch of the LES is caused by longitudinal muscle contraction (LMC) of the esophagus. Because longitudinal muscle is composed of skeletal muscle in mice, vagal-induced LMC and LES relaxation are both blocked by pancuronium. We conducted studies in rats (thought to have skeletal muscle esophagus) to determine if vagus nerve-mediated LES relaxation is also blocked by pancuronium. LMC-mediated axial stretch on the LES was monitored using piezoelectric crystals. LES and esophageal pressures were monitored with a 2.5-Fr solid-state pressure transducer catheter. Following bilateral cervical vagotomy, the vagus nerve was stimulated electrically. LES, along with the esophagus, was harvested after in vivo experiments and immunostained for smooth muscle (smooth muscle α-actin) and skeletal muscle (fast myosin heavy chain). Vagus nerve-stimulated LES relaxation and esophageal LMC were reduced in a dose-dependent fashion and completely abolished by pancuronium (96 μg/kg) in six rats (group 1). On the other hand, in seven rats, LES relaxation and LMC were only blocked completely by a combination of pancuronium (group 2) and hexamethonium. Immunostaining revealed that the longitudinal muscle layer was composed of predominantly skeletal muscle in the group 1 rats. On the other hand, the longitudinal muscle layer of group 2 rats contained a significant amount of smooth muscle (P < 0.05). Our study shows tight coupling between axial stretch on the LES and relaxation of the LES, which suggests a cause and effect relationship between the two. We propose that the vagus nerve fibers that cause LMC induce LES relaxation through the stretch-sensitive activation of inhibitory motor neurons.  相似文献   

16.
It has not been possible to measure wave speed in the human coronary artery, because the vessel is too short for the conventional two-point measurement technique used in the aorta. We present a new method derived from wave intensity analysis, which allows derivation of wave speed at a single point. We apply this method in the aorta and then use it to derive wave speed in the human coronary artery for the first time. We measured simultaneous pressure and Doppler velocity with intracoronary wires at the left main stem, left anterior descending and circumflex arteries, and aorta in 14 subjects after a normal coronary arteriogram. Then, in 10 subjects, serial measurements were made along the aorta before and after intracoronary isosorbide dinitrate. Wave speed was derived by two methods in the aorta: 1) the two-site distance/time method (foot-to-foot delay of pressure waveforms) and 2) a new single-point method using simultaneous pressure and velocity measurements. Coronary wave speed was derived by the single-point method. Wave speed derived by the two methods correlated well (r = 0.72, P < 0.05). Coronary wave speed correlated with aortic wave speed (r = 0.72, P = 0.002). After nitrate administration, coronary wave speed fell by 43%: from 16.4 m/s (95% confidence interval 12.6-20.1) to 9.3 m/s (95% confidence interval 6.5-12.0, P < 0.001). This single-point method allows determination of wave speed in the human coronary artery. Aortic wave speed is correlated to coronary wave speed. Finally, this technique detects the prompt fall in coronary artery wave speed with isosorbide dinitrate.  相似文献   

17.
In order to better understand the effect of initial stress in blood flow in arteries, a theoretical analysis of wave propagation in an initially inflated and axially stretched cylindrical thick shell is investigated. For simplicity in the mathematical analysis, the blood is assumed to be an incompressible inviscid fluid while the arterial wall is taken to be an isotropic, homogeneous and incompressible elastic material. Employing the theory of small deformations superimposed on a large initial field the governing differential equations of perturbed solid motions are obtained in cylindrical polar coordinates. Considering the difficulty in obtaining a closed form solution for the field equations, an approximate power series method is utilized. The dispersion relations for the most general case of this approximation and for the thin tube case are thoroughly discussed. The speeds of waves propagating in an unstressed tube are obtained as a special case of our general treatment. It is observed that the speeds of both waves increase with increasing inner pressure and axial stretch.  相似文献   

18.
Higher carpal tunnel pressure is related to the development of carpal tunnel syndrome. Currently, the measurement of carpal tunnel pressure is invasive and therefore, a noninvasive technique is needed. We previously demonstrated that speed of wave propagation through a tendon in the carpal tunnel measured by ultrasound elastography could be used as an indicator of carpal tunnel pressure in a cadaveric model, in which a balloon had to be inserted into the carpal tunnel to adjust the carpal tunnel pressure. However, the method for adjusting the carpal tunnel pressure in the cadaveric model is not applicable for the in vivo model. The objective of this study was to utilize a different technique to adjust carpal tunnel pressure via pressing the palm and to validate it with ultrasound surface wave elastography in a human cadaveric model. The outcome was also compared with a previous balloon insertion technique. Results showed that wave speed of intra-carpal tunnel tendon and the ratio of wave speed of intra-and outer-carpal tunnel tendons increased linearly with carpal tunnel pressure. Moreover, wave speed of intra carpal tunnel tendon via both ways of altering carpal tunnel pressure showed similar results with high correlation. Therefore, it was concluded that the technique of pressing the palm can be used to adjust carpal tunnel pressure, and pressure changes can be detected via ultrasound surface wave elastography in an ex vivo model. Future studies will utilize this technique in vivo to validate the usefulness of ultrasound surface wave elastography for measuring carpal tunnel pressure.  相似文献   

19.
Recent studies have renewed interest in the effects of perivascular tethering on vascular mechanics, particularly growth and remodeling. We quantified effects of axial and circumferential tethering on rabbit pial arterioles from the ventral occipital lobe of the brain. The homeostatic axial pre-stretch, which is influenced by perivascular tethering, was measured in situ to be 1.24±0.04. Using a cannulated microvessel preparation, wall mechanics were then quantified in vitro for isolated arterioles at low (1.10) or normal (1.24) values of axial stretch and for tethered arterioles having perivascular support. Axial stretch did not significantly affect changes in circumferential stretch or stress upon pressurization, but circumferential tethering caused arteriolar geometry to change from a circular cross-section at normal pressure to an elliptical one at pressures above and below normal. Calculations suggested that the observed levels of ellipticity could cause a modest decrease in volumetric blood flow, but also a pronounced variation in shear stress around the circumference of the arteriole. An elliptical cross-section could thus increase vascular resistance or promote luminal remodeling at pressures different from normal. This characterization of effects of perivascular tethering on pial arterioles should prove useful in future studies of roles of perturbed cerebral blood flow on the propensity of the cerebral microcirculation to remodel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号