首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of solid-state fermentation is examined as a low-cost technology for the production of poly(hydroxyalkanoates) (PHAs) by Ralstonia eutropha. Two agroindustrial residues (babassu and soy cake) were evaluated as culture media. The maximum poly(hydroxybutyrate) (PHB) yield was 1.2 mg g–1 medium on soy cake in 36 h, and 0.7 mg g–1 medium on babassu cake in 84 h. Addition of 2.5% (w/w) sugar cane molasses to soy cake increased PHB production to 4.9 mg g–1 medium in 60 h. Under these conditions, the PHB content of the dry biomass was 39% (w/w). The present results indicate that solid-state fermentation could be a promising alternative for producing biodegradable polymers at low cost.Revisions requested 31 August 2004; Revisions received 12 October 2004  相似文献   

2.
Rheological properties of Chlorella pyrenoidosa culture grown heterotrophically in a 14 L fermentor were investigated. It was found that the fluid viscosity was rather low and remained almost unchanged during the cultivation, implying that no (or very few) viscous substances were excreted into the medium. Investigation of the condensed suspension of C. pyrenoidosa showed that for biomass concentration under 150 g.L−1, the suspension of C. pyrenoidosa exhibited Newtonian behavior, and the fluid viscosity was rather low (about 40 mPa·s) and increased very slowly with the increase in cell concentration. With further increase in biomass concentration however, the fluid rheological behavior changed to non-Newtonian, and the fluid viscosity increased rapidly with the increase in cell concentration. From the viewpoint of rheology, C. pyrenoidosa is an excellent organism for high-cell-density culture, and there will be no rheological problems at cell densities under 150 g.L−1.  相似文献   

3.
The ethanolic fermentation of liquid fractions (hydrolysates) issued from dilute acid pre-treatment of olive tree biomass by Pichia stipitis is reported for the first time. On the one side, P. stipitis has been reported as the most promising naturally occurring C5 fermenting microorganism; on the other side, olive tree biomass is a renewable, low cost, and lacking of alternatives agricultural residue especially abundant in Mediterranean countries. The study was performed in two steps. First, the fermentation performance of P. stipitis was evaluated on a fermentation medium also containing the main inhibitors found in these hydrolysates (acetic acid, formic acid, and furfural), as well as glucose and xylose as carbon sources. The effect of inhibitors, individually or in a mixture, on kinetic and yield parameters was calculated. In a second step, hydrolysates obtained from 1% (w/w) sulfuric acid pre-treatment of olive tree biomass at 190°C for 10 min were used as a real fermentation medium with the same microorganism. Due to inhibition, effective fermentation required dilution of the hydrolysate and either overliming or activated charcoal treatment. Results show that ethanol yields obtained from hydrolysates, ranging from 0.35 to 0.42 g/g, are similar to those from synthetic medium, although the process proceeds at lower rates. Inhibiting compounds affect the fermentation performance in a synergistic way. Furfural is rapidly assimilated by the yeast; acetic acid and formic acid concentrations decrease slowly during the process. Activated charcoal or overliming detoxification improve the fermentability of diluted hydrolysates.  相似文献   

4.
Continuous cultures of two strains of Clostridium acetobutylicum were stable for over 70 d when grown on glucose/glycerol mixtures. Butanol was the major fermentation end-product, accounting for 43 to 62% (w/w) of total products. Low-grade glycerol [65% (w/v) purity] could replace commercial glycerol [87% (w/v) purity], leading to a similar fermentation pattern: a butanol yield of 0.34 (mol/mol), a butanol productivity of 0.42 g l–1 h–1 and a 84% (w/w) glycerol consumption were attained when cultures were grown at pH 6 and D = 0.05 h–1; butanol accounted for 94% (w/w) of total solvents. These values are among the highest reported in literature for C. acetobutylicum simple chemostats.  相似文献   

5.
A rapid and efficient microwave-assisted extraction (MAE) process for the selective extraction of embelin from Embelia ribes was developed. Solvent selection, microwave energy input and solid loading were optimized. The rate of extraction and purity of embelin depended upon the solvent used and exposure time to microwaves. Maximum MAE was achieved in acetone with total yield of 92% (w/w) embelin with 90% (w/w) purity with 1% (w/v) raw material loading at 150 W power level in 80 s. Non-polar solvents, such as hexane and dichloromethane, were not effective for the selective extraction of embelin.  相似文献   

6.
The suitability of using a simple brewer's yeast extract (BYE), prepared by autolysis of complete beer slurry, for growth and sporulation of Bacillus thuringiensis kurstaki was studied in baffled shake flasks. In a standard buffered medium with 2.5% (w/v) glucose and 1% (w/v) brewer's yeast extract, growth of B. t. kurstaki resulted in a low biomass production with considerable byproduct formation, including organic acids and a concomitant low medium pH, incomplete glucose utilization and marginal sporulation, whereas growth in the same medium with a commercial laboratory-grade yeast extract (Difco) resulted in a high biomass concentration, complete glucose utilization, relatively low levels of byproducts and complete sporulation (2.6 × 109 spores/ml). When glucose was left out of the medium, however, growth parameters and sporulation were comparable for BYE and commercial yeast extract, but absolute biomass levels and spore counts were low. Iron was subsequently identified as a limiting factor in BYE. After addition of 3 mg iron sulphate/l, biomass formation in BYE-medium more than doubled, low byproduct formation was observed, and complete sporulation occurred (2.8 × 109spores/ml). These data were slightly lower than those obtained in media with commercial yeast extract (3.6 × 109spores/ml), which also benefited, but to a smaller extent, from addition of iron.  相似文献   

7.
Growth inhibition of Clostridium butyricum VPI 3266 by raw glycerol, obtained from the biodiesel production process, was evaluated. C. butyricum presents the same tolerance to raw and to commercial glycerol, when both are of similar grade, i.e. above 87% (w/v). A 39% increase of growth inhibition was observed in the presence of 100 g l–1 of a lower grade raw glycerol (65% w/v). Furthermore, 1,3-propanediol production from two raw glycerol types (65% w/v and 92% w/v), without any prior purification, was observed in batch and continuous cultures, on a synthetic medium. No significant differences were found in C. butyricum fermentation patterns on raw and commercial glycerol as the sole carbon source. In every case, 1,3-propanediol yield was around 0.60 mol/mol glycerol consumed.  相似文献   

8.
The biomass concentration extant in potassiumlimited cultures of either Klebsiella pneumoniae or Bacillus stearothermophilus (when growing at a fixed temperature and dilution rate in a glucose/ammonium salts medium) increased progressively as the medium pH value was raised step-wise from 7.0 to 8.5. Because the macromolecular composition of the organisms did not vary significantly, this increase in biomass could not be attributed to an accumulation of storage-type polymers but appeared to reflect a pH-dependent decrease in the cells' minimum K+ requirement. Significantly, this effect of pH was not eviden with cultures in which no ammonium salts were present and in which either glutamate or nitrate was added as the sole nitrogen source; however, it was again manifest when various concentrations of NH4Cl were added to the glutamate-containing medium. This suggested a functional replacement of K+ by NH 4 + , a proposition consistent with the close similarity of the ionic radii of the potassium ion (1.33 Å) and the ammonium ion (1.43 Å). At pH 8.0, and with a medium containing both glutamate (30 mM) and NH4Cl (100 mM), cultures of B. stearothermophilus would grow without added potassium at a maximum rate of 0.7 h-1. Under these conditions the cells contained maximally 0.1% (w/w) potassium (derived from contaminating amounts of this element in the medium constituents), a value which should be compared with one of 1.4% (w/w) for cells growing in a potassiumlimited medium containing initially 0.5 mM K+. Qualitatively similar findings were made with cultures of K. pneumoniae; and whereas one may not conclude that NH 4 + can totally replace K+ in the growth of these bacteria, it can clearly do so very extensively.  相似文献   

9.
Shoot buds were induced directly on either side of midrib from adaxial surface of immature leaf explants in Stevia rebaudiana Bertoni five weeks after culturing in Murashige and Skoog’s nutrient medium supplemented with 8.88 μM of N 6-benzylaminopurine and kinetin ranging from 4.65 to 6.98 μM. Immature leaves of 0.6 to 1 cm were found to produce best response (93 %) with a highest number of 4.93 shoot buds per explant. For elongation of regenerated shoot buds, MS medium supplemented with 30 g dm−3 sucrose and indole-3-butyric acid (IBA) ranging from 4.92 to 7.38 μM were found most suitable. The medium was further modified to suit bioreactor cultivation of regenerated shoots wherein the use of two-fold MS salts and 60 g dm−3 sucrose resulted in a high biomass yield of 50.68 g dm−3 (m/v) accounting for about 590 micro-cuttings in three weeks. Best rooting of micro-cuttings occurred in half strength MS medium supplemented with IBA ranging from 4.92 to 7.38 μM, 15 g dm−3 sucrose and gelled with 0.8 % agar. Rooted plants were successfully established in substrate containing sand, Vermicompost and garden soil in equal proportions and grown in greenhouse. This is the first report on direct shoot regeneration from Stevia leaves.  相似文献   

10.
There are many published studies presenting ethanol and acetone as PHAs‐poor solvents, where these two solvents are shown to dissolve <2% (w/v) of PHAs at low temperatures. In this study, the suitability of ethanol and acetone for the recovery of PHB at different temperatures (from room temperature to near boiling point) in Cupriavidus necator was investigated. Experiments were performed using response surface methodology to examine the effects of different temperatures and heating incubation times on recovery percentage using the two solvents. The highest recovery percentage (92.3%) and product purity (up to 99%) were obtained with ethanol‐assisted extraction at 76°C for 32 min of incubation time. Under these conditions the extracted PHB exhibited a molecular mass of 1.2 × 106. The present strategy showed that at temperatures near its boiling point, ethanol, as a nonhalogenated solvent, represents a good alternative to halogenated solvents, like chloroform, when PHB recovery is concerned. DSC analysis showed good thermal properties for ethanol‐ and acetone‐extracted biopolymers. GC and 1H NMR analysis confirmed the extracted biopolymer to be polyhydroxybutyrate of good purity. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1480–1486, 2016  相似文献   

11.
The effects of glucose concentration and irradiance on mixotrophiccultivation of Platymonas subcordiformis were investigated in flaskcultures. The optimal glucose concentration was 24 g L-1, andirradiance was 95 mol photon m-2 s-1. Based on theoptimization of culture conditions and a modified SK(IA) medium, themaximum biomass was 3.68 g L-1 after 14 days, which was about6 times that in autotrophic culture, and the specific growth rate reached0.62 d-1, twice that in autotrophic culture. Using the optimalconditions established in flasks, mixotrophic culture in a 5.0-Lphotobioreactor was achieved, and the yield after 8 days was 3.30 gL-1.  相似文献   

12.
For highly purified preparations of neoblasts, density gradient centrifugation in Percoll solutions (Pertoft et al., 1978) was applied to cell suspensions obtained by disintegrating Dugesia polychroa (Schmidt) in culture medium contained in a Dounce homogenizer (tolerance: 50 µm; one animal 12 mm in length per ml). To reduce the high viscosity caused by mucus, 0.00063% (w/v) of dithiothreitol was added during disintegration and purification. Based on previous experiments (Schürmann & Peter, 1988), five media were compared.For prepurification, four washing steps (differential centrifugations at 500 × g for 5 min each) were followed by subsequent filtration through a series of nylon gauzes (40, 30, 20 and 15 µm mesh size) and a final washing step. The resulting cell suspensions were then fractionated by isopycnic centrifugation (500 × g, 45 min) in one continuous (1.018–1.121 g ml–1) or one of seven different discontinuous Percoll gradients (Schürmann, 1993). The best yield and highest purity of neoblasts in one fraction was obtained with a four step gradient (1.03–1.09 g ml–1): the neoblasts (purity: 91%) were concentrated in one sharp band at the boundary between the densities 1.05 and 1.07 g ml–1. The spherical cells (diameter from 10 to 13 µm in vivo) stained as typical neoblasts (Pedersen, 1959).Primary cultures were obtained with all media. The medium developed by Teshirogi and Tohya (1988) and its isotonic modification (Schürmann, 1993) proved best, resulting in 86% of viable cells without signs of differentiation after 17 days of culture at 18 °C, with still 46% being left after 31 days. Earlier reports state that isolated neoblasts only survive for 4 days (Betchaku, 1967) and total planarian cell suspensions only 2–3 weeks (Teshirogi & Tohya, 1988).  相似文献   

13.
The growth of Clostridium populeti in 2% (w/v) glucose medium containing 0.2% (w/v) yeast extract was optimal with 10 mM NH4Cl as the nitrogen source. Although the maximum specific growth rate (=0.32 h-1) with 5 mM NH4Cl was similar, the biomass yield was about 30% lower than that at the optimum. Either sodium sulphide or cysteine-HCl at an optimum concentration of 0.33 mM and 5.0 mM respectively, could serve as the sole sulphur source for growth. The growth rate was unaffected by initial glucose concentrations of up to 10% (w/v), but in the presence of 15% glucose it declined by about 35%. The molar yield of butyric acid (mol/mol glucose) declined from 0.70 in 1% (w/v) initial glucose medium to 0.39 in 10% glucose medium. In 5.7% initial glucose medium, butyric acid levels of 6.3 g/l were obtained (0.56 mol butyrate/mol glucose) after 72 h of incubation in 2.5 l batch cultures. A decrease of about 50% in the maximum specific growth rate of C. populeti was observed in the presence of an initial concentration of either 1.2 g/l of butyric acid or 18.9 g/l of acetic acid.This paper is issued as NRCC No. 29032  相似文献   

14.
The herbaceous perennial energy crops miscanthus, giant reed, and switchgrass, along with the annual crop residue corn stover, were evaluated for their bioconversion potential. A co‐hydrolysis process, which applied dilute acid pretreatment, directly followed by enzymatic saccharification without detoxification and liquid–solid separation between these two steps was implemented to convert lignocellulose into monomeric sugars (glucose and xylose). A factorial experiment in a randomized block design was employed to optimize the co‐hydrolysis process. Under the optimal reaction conditions, corn stover exhibited the greatest total sugar yield (glucose + xylose) at 0.545 g g?1 dry biomass at 83.3% of the theoretical yield, followed by switch grass (0.44 g g?1 dry biomass, 65.8% of theoretical yield), giant reed (0.355 g g?1 dry biomass, 64.7% of theoretical yield), and miscanthus (0.349 g g?1 dry biomass, 58.1% of theoretical yield). The influence of combined severity factor on the susceptibility of pretreated substrates to enzymatic hydrolysis was clearly discernible, showing that co‐hydrolysis is a technically feasible approach to release sugars from lignocellulosic biomass. The oleaginous fungus Mortierella isabellina was selected and applied to the co‐hydrolysate mediums to accumulate fungal lipids due to its capability of utilizing both C5 and C6 sugars. Fungal cultivations grown on the co‐hydrolysates exhibited comparable cell mass and lipid production to the synthetic medium with pure glucose and xylose. These results elucidated that combining fungal fermentation and co‐hydrolysis to accumulate lipids could have the potential to enhance the utilization efficiency of lignocellulosic biomass for advanced biofuels production. Biotechnol. Bioeng. 2013; 110: 1039–1049. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The solvent-tolerant bacterium Pseudomonas putida S12 was engineered to efficiently utilize the C1 compounds methanol and formaldehyde as auxiliary substrate. The hps and phi genes of Bacillus brevis, encoding two key steps of the ribulose monophosphate (RuMP) pathway, were introduced to construct a pathway for the metabolism of the toxic methanol oxidation intermediate formaldehyde. This approach resulted in a remarkably increased biomass yield on the primary substrate glucose when cultured in C-limited chemostats fed with a mixture of glucose and formaldehyde. With increasing relative formaldehyde feed concentrations, the biomass yield increased from 35% (C-mol biomass/C-mol glucose) without formaldehyde to 91% at 60% relative formaldehyde concentration. The RuMP-pathway expressing strain was also capable of growing to higher relative formaldehyde concentrations than the control strain. The presence of an endogenous methanol oxidizing enzyme activity in P. putida S12 allowed the replacement of formaldehyde with the less toxic methanol, resulting in an 84% (C-mol/C-mol) biomass yield. Thus, by introducing two enzymes of the RuMP pathway, co-utilization of the cheap and renewable substrate methanol was achieved, making an important contribution to the efficient use of P. putida S12 as a bioconversion platform host.  相似文献   

16.
Summary Protoplasts were isolated from Agrobacterium rhizogenes A4-transformed cell line of Medicago sativa L. The highest yield of protoplasts (4.2×106 per g fresh weight) was obtained from 12-d-old calluses after being subeultured on fresh medium. The viability of protoplasts reached over 80%. Protoplasts were induced to undergo sustained divisions when cultured in Durand et al. (DPD) medium supplemented with 2 mgl−1 (9.05 μM) 2,4-dichlorophenoxyacetic acid, 0,2mgl−1 (0.93 μM) kinetin, 0.3 M mannitol, 2% (w/v) sucrose, and 500 mgl−1 casein hydrolyzate at a plating density of 1.0×105 per ml. An agarose-beads culture method was appropriate for protoplast division of transformed alfalfa. The division frequency was about 30%. Numerous hairy roots were induced from protocalluses on Murashige and Skoog medium without growth regulators. Paper electrophoresis revealed that all of the regenerated hairy roots tested synthesized the corresponding opines. This protoplast culture system would be valuable for further somatic hybridization in forage legumes.  相似文献   

17.
Various inocula and grains were evaluated for carotenoid production by solid-state fermentation using Penicillium sp. PT95. Millet medium was more effective in both sclerotia growth and carotenoid production than other grain media. An inoculum in the form of sclerotia yielded higher sclerotia biomass compared to either a spore inoculum or a mycelial pellet inoculum. Adding wheat bran to grain medium favored the formation of sclerotia. However, neither the inoculum type nor addition of wheat bran resulted in a significant change in the carotenoid content of sclerotia. Among grain media supplemented with wheat bran (wheat bran:grain =1:4 w/w, dry basis), a medium consisting of rice and wheat bran gave the highest sclerotia biomass (15.10 g/100 g grain), a medium consisting of buckwheat and wheat bran gave the highest content of carotenoid in sclerotia (0.826 mg/g dry sclerotia), and a medium consisting of millet and wheat bran gave the highest carotenoid yield (11.457 mg/100 g grain).  相似文献   

18.
The composition of the essential oil isolated from Achillea millefolium L. ssp. millefolium cell suspension cultures was analysed by GC and GC-MS. The yield of the oil obtained by hydrodistillation or a simultaneous distillation -extraction of these cultures, harvested at days 8–10 (end of exponential phase), was 0.001 % (w/w). The analysis of the volatiles showed the presence of thirteen components; monoterpenes amounted to 5%, sesquiterpene hydrocarbons attained 40%, while eugenol, demethoxyencecalin and two unidentified compounds amounted to 45% of the total oil. Several methods were tested in an attempt to increase the essential oil production by the cultures: growth on solid medium, growth in light, use of a different culture medium, elicitation with cellulase or yeast extract, and growth in a two-phase system. Of the different methods tested, the growth in B5+ medium with Miglyol 812 led to the highest essential oil yield (0.002%, w/w), and resulted in a more diverse oil composition.  相似文献   

19.
The influence of culture age on biomass production and alkaloid yield of “hairy roots” obtained after infection ofDatura stramonium L. withAgrobacterium ATCC 15834 was investigated. Maximal hyoscyamine yield was obtained with roots harvested after six weeks. Fluctuations were found for tropine yield, the precursor of the ring moiety of hyoscyamine. These indicate a continuous conversion to hyoscyamine during the exponential growth phase. The effect of the ion-balance was investigated by preparing five different media that only differed in their ionic composition. The ionic interactions between macroelements, differently influenced biomass production and alkaloid yield. As a result, highest biomass yield was found with NO3 - and K+-dominance, whereas hyoscyamine yield was highest with the culture medium in which SO4 2− and K+ were dominant. Shifting the intercationic balance to strongly towards Ca2+ caused an overall reduced metabolism, since as well biomass yield as hyoscyamine yield was lowest with the NO3 Ca2+-medium. Also tropine yield was affected by the ion-balance, indicating that this culture parameter also influences alkaloid synthesis.[/p]  相似文献   

20.
Glycerol, a byproduct of the biodiesel industry, can be used by bacteria as an inexpensive carbon source for the production of value‐added biodegradable polyhydroxyalkanoates (PHAs). Burkholderia cepacia ATCC 17759 synthesized poly‐3‐hydroxybutyrate (PHB) from glycerol concentrations ranging from 3% to 9% (v/v). Increasing the glycerol concentration results in a gradual reduction of biomass, PHA yield, and molecular mass (Mn and Mw) of PHB. The molecular mass of PHB produced utilizing xylose as a carbon source is also decreased by the addition of glycerol as a secondary carbon source dependent on the time and concentration of the addition. 1H‐NMR revealed that molecular masses decreased due to the esterification of glycerol with PHB resulting in chain termination (end‐capping). However, melting temperature and glass transition temperature of the end‐capped polymers showed no significant difference when compared to the xylose‐based PHB. The fermentation was successfully scaled up to 200 L for PHB production and the yield of dry biomass and PHB were 23.6 g/L and 7.4 g/L, respectively. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号